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SOME RESULTS FOR THE LARGE TIME BEHAVIOR OF

HAMILTON-JACOBI EQUATIONS WITH CAPUTO TIME DERIVATIVE

OLIVIER LEY, ERWIN TOPP, AND MIGUEL YANGARI

Abstract. We obtain some Hölder regularity estimates for an Hamilton-Jacobi with frac-
tional time derivative of order α ∈ (0, 1) cast by a Caputo derivative. The Hölder seminorms
are independent of time, which allows to investigate the large time behavior of the solutions.
We focus on the Namah-Roquejoffre setting whose typical example is the Eikonal equation.
Contrary to the classical time derivative case α = 1, the convergence of the solution on the
so-called projected Aubry set, which is an important step to catch the large time behavior, is
not straightforward. Indeed, a function with nonpositive Caputo derivative for all time does
not necessarily converge; we provide such a counterexample. However, we establish partial
results of convergence under some geometrical assumptions.

1. Introduction.

In this note we are interested in nonlocal Hamilton-Jacobi equations with the form

∂αt u+H(x,Du) = 0 in Q := TN × (0,+∞).(1.1)

subject to the initial condition

u(·, 0) = g in TN ,(1.2)

for some H ∈ C(TN × RN ) and g ∈ Lip(TN ) given.
The nonlocal nature of the problem is cast by the operator ∂αt , which denotes the Caputo

time derivative of order α ∈ (0, 1), starting at time zero. For φ ∈ C1(0,+∞) it is defined as

∂αt φ(t) =
1

Γ(1− α)

∫ t

0

φ′(s)

|t− s|α
ds,(1.3)

where Γ is the Gamma function that acts as a normalizing constant making ∂αt become the
usual first order derivative when α → 1−, see [10, 16] and references therein. Following the
ideas of [3], where under appropriate assumption on the function φ, its Caputo derivative
in (1.3) can be equivalently computed as

(1.4) ∂αt φ(t) = c̃α

∫ t

−∞

φ(t)− φ(s)

|t− s|1+α
ds,
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for some c̃α > 0, and where we have extended φ as φ(t) = φ(0) for t < 0. This operator
has a nonlocal degenerate elliptic nature in the sense of Barles and Imbert [6] that allows
to conclude comparison principle among viscosity solutions as it is proved in [23]. This is a
powerful reason to consider Caputo derivative instead of other fractional derivatives, as, for
example, Riemann-Liouville derivative defined for adequate functions φ as

∂αRLφ(t) = cα
d

dt

∫ t

0

φ(z)

(t− z)α
dz.

Moreover, as it can be seen in [10, Chapters 5,6], Caputo derivative is more adequate to deal
with the most classical notion of initial condition compared with Riemann-Liouville problems,
where the initial condition is understood in a generalized sense.

Coming back to (1.1), and more specifically to the Hamiltonian H, we assume throughout
this paper H(x, p) is periodic in x and coercive in p.

We focus our attention into Bellman-type Hamiltonians with the classical structure related
to optimal control problems with compact control set, that is, satisfying the regularity/growth
condition

(1.5)

{
|H(x, p)−H(y, p)| ≤ cH(1 + |p|)|x− y|,

lim
|p|→+∞

inf
x∈TN

H(x, p) = +∞.

for some cH > 0, and for all x, y ∈ TN , p ∈ RN .
We are also interested in the case H has superlinear growth in the gradient, common in

control problems with unrestricted control space. We refer to this case through the following
assumption: there exists m > 1 (the “gradient growth”) and A > 0, cH > 1 such that

(1.6)


µH(x, µ−1p)−H(x, p) ≥ (1− µ)

(
c−1
H |p|m −A

)
,

|H(x, p)−H(y, p+ q)| ≤ cH(1 + |p|m)|x− y|+ cH |q|(1 + |p|m−1),

for all µ ∈ (0, 1), x, y ∈ TN , p, q ∈ RN with |q| ≤ 1. We notice at once that the first condition
in (1.6) implies that there exist C > 0 such that

(1.7) H(x, p) ≥ C−1|p|m − C for all x ∈ TN , p ∈ RN ,

and the same inequality holds with m = 1 if the second condition holds in (1.6) and H is
convex.

Our interest is the analysis of the behavior of the solutions to (1.1)-(1.2) and make a
contrast with the classical case α = 1, namely, the Hamilton-Jacobi equation

(1.8) ∂tu+H(x,Du) = 0 in Q.

There is a vast literature regarding problem (1.8)-(1.2). We refer the surveys of Barles and
Ishii in [2] and references therein for the basics about this problem, like existence, uniqueness
and regularity.

A natural question that arises is the analysis of the behavior of the solution for long times.
There too, there are a lot of references when α = 1, see [12, 20, 4, 13, 9, 17, 7, 2] and
the references therein. Here, we focus on the nowadays classical framework of Namah and
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Roquejoffre paper [20], where the authors address the long time behavior of (1.8) under the
assumption that

(1.9)


H(x, p) = F (x, p)− f(x) for all (x, p), with F , f continuous,

F (x, ·) is convex for all x ∈ TN ,

F (x, p) > F (x, 0) = 0 for all x ∈ TN , p ∈ RN \ {0},
f ≥ 0 in TN .

It is possible to generalize slightly the above assumptions but we choose to state them in this
form since all the main difficulties are present.

Under these assumptions, (1.1) reads

∂αt u+ F (x,Du) = f(x),(1.10)

f ∈ Lip(TN ) and

Z := {x ∈ TN : f(x) = min
TN

f},(1.11)

the so-called projected Aubry set [13], which is a compact subset of TN . It follows from Lions,
Papanicolaou and Varadhan [19] that the so-called ergodic problem

(1.12) F (x,Dv) = f(x) + c x ∈ TN ,

has a solution (c, v) ∈ R×W 1,∞(TN ) and c is unique. Actually, under our assumptions, it is
easy to see that c = −minTN f .

It is then expected that the long time behavior of the solution u of (1.1)-(1.2) is given by
the asymptotic expansion

u(x, t) + ctα = v(x) + o(1), o(1)→ 0 uniformly as t→ +∞,(1.13)

where (c, v) is a solution of (1.12).
In the local case α = 1, this asymptotic behavior is established in [20, Theorem 1]. The

proof relies basically on three steps. The first step is to obtain that the set {u(·, t) + ct, t ≥ 0}
is relatively compact in W 1,∞(TN ). Let us point out that this property is not sufficient and
the main difficulty is to prove the full convergence of u(·, t) + ct as t → +∞. The second
step is to notice that ∂t(u(x, t) + ct) ≤ 0 for x ∈ Z, from which one infers that u(·, t) + ct is
nonincreasing in time on Z, so it converges uniformly to a Lipschitz continuous function φ on
Z as t→ +∞. The third step is to take the half-relaxed limits

u(x) = lim sup
y→x,s→t,ε→0

u(y,
s

ε
) + c

s

ε
and u(x) = lim inf

y→x,s→t,ε→0
u(y,

s

ε
) + c

s

ε
,

which are, respectively, a sub- and a supersolution of (1.12) and then to apply a strong
comparison result for (1.12) with the “Dirichlet boundary condition” u = u = φ on Z. It
follows u = u in TN , which gives the desired full convergence.

Our goal is to develop a similar procedure for the Caputo fractional case α ∈ (0, 1). The
first step holds. Indeed, the elliptic properties shown by the expression (1.4) are not only
related to comparison principles but also to regularity in the time variable. Using Ishii-Lions
method for nonlocal problems presented in [5], we are able to prove that bounded solutions
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to (1.1) are α-Hölder continuous in time, uniformly in Q, see Theorem 2.1. We recall that
such a property does not come from the contraction principle given by comparison arguments
as in the classical case, basically because such a property is not known for fractional problems,
where the influence of the ”memory” put troubles in the analysis of problems shifted in time.
Moreover, in the local case (1.8), Lipschitz estimates in time allows to use Rademacher’s
Theorem to regard ut as an L∞ function, and extract the boundedness of Du through the
coercivity of H. Such a program cannot be carried out directly in (1.1) since α-Hölder
functions are not sufficient to make ∂αt u in L∞. Nevertheless, we can get equicontinuity in
the space variable by a regularization procedure via inf and sup convolutions, see Theorem 2.2.

Similarly, the third step is identical to the one in the classical case since the ergodic prob-
lem (1.12) is the same for all α ∈ (0, 1].

It follows that the limiting step is the second one. We still have ∂αt (u(x, t) + ctα) ≤ 0 for
x ∈ Z but it is not anymore sufficient to infer neither that u(·, t) + ctα is nonincreasing in
time on Z, nor that it converges. As we show in Section 3, it is possible to have bounded
functions with signed α-order Caputo derivative, but not converging as t → ∞, which is a
surprising result interesting by itself.

To overcome this difficulty and obtain the convergence on Z, we need to give additional
assumptions on the geometry of Z and argmin{g}. Precise assumptions are stated in Section 4
but basically, we assume

Z ∩ argmin{g} 6= ∅,(1.14)

for any z ∈ Z, there exists a rectifiable curve in Z joining argmin{g} and z.(1.15)

These assumptions are inspired from the classical case, where it is known that the solution
u of (1.8) is the value function of an optimal control problem for which assumptions (1.14)-
(1.15) means roughly that we can travel with minimal cost on Z. But let us point out that
these geometrical assumptions are not required in the classical case and that there is no
rigorous link between the fractional case and the expected control problem, which could make
these ideas rigorous. See Camilli, De Maio, Iacomini [8] for the precise statement of a related
control problem which should be associated with the case α ∈ (0, 1), and some discussion in
this direction.

It follows that we need to translate these ideas in the PDE framework building some suitable
supersolutions, which tends to 0 thanks to (1.14)-(1.15). By comparison, we obtain estimates

min
TN

g ≤ u(z, t) + ctα ≤ min
TN

g + Lip(g) length(γ) E(t), for any z ∈ Z,

where γ is a rectifiable curve on Z joining argmin{g} and z, and E is the solution of a
fractional ODE with limit 0 at +∞; see Theorem 4.2 and Theorem 4.4 for an extension to
some possibly infinite length curves. This implies the convergence of u on Z from which we
deduce easily (1.13), see Corollary 4.6. This approach is new but we think it does not provide
optimal results. In particular, it relies too heavily on the geometry of Z, which is not the
case in the classical approach described above for α = 1. To go further, one would need some
quantitative estimates on how much nonpositive is ∂αt (u(x, t) + ctα), which seems difficult to
obtain, even in the case α = 1.
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The paper is organized as follows. We start by introducing precisely the Caputo fractional
operator and recalling some useful properties. Then we establish some regularity estimates
for the solution of (1.1) in Section 2. Section 3 is devoted to a counterexample showing
that a bounded function with nonnegative Caputo derivative does not necessarily converges.
Finally, some positive results for the large time behavior of the solution of (1.1) are proved
in Section 4.

Notations and preliminaries. We will write the Caputo derivative using (1.4) (with c̃α = 1
for simplicity). More precisely, let φ : (0,+∞) → R. We extend φ to (−∞, 0) by setting
φ(s) = φ(0) for s < 0 and define, when it exists, for every t > 0 and 0 < δ < t,

(1.16) ∂αt φ(t) =

∫ t

−∞

φ(t)− φ(s)

|t− s|1+α
ds = ∂αt [t− δ]φ(t) + ∂αt [t− δ, t]φ(t),

where, for a < b ≤ t, we set

∂αt [a]φ(t) :=

∫ a

−∞

φ(t)− φ(s)

|t− s|1+α
ds, ∂αt [a, b]φ(t) =

∫ b

a

φ(t)− φ(s)

|t− s|1+α
ds.

Notice that ∂αt φ(t) is well-defined as soon as φ ∈ L1
loc(0,+∞) and φ is C1 in a neighborhood of

t. More about the functional formulation of this operator can be found in the references [18,
10, 16]. For the definition of viscosity solutions to (1.1), we refer to [6, 23].

Notice that for all β > 0, there exists cα,β > 0 such that

∂αt t
β = cα,βt

β−α, for all t ≥ 0. [10, Appendix B](1.17)

We introduce the Mittag-Leffler functions Eα(z) of order α as in [10, Definition 4.1]. Recall
that Eα is smooth on R, Eα(0) = 1 and we have the following useful properties

t ∈ [0,+∞) 7→ Eα(−t) is positive, convex and nonincreasing, [22, Section 6.2],(1.18)

∂αt Eα(λtα) = λEα(λtα), for all t > 0 and λ ∈ R, [10, Theorem 4.3],(1.19)

1

Γ(1− α)t
≤ Eα(−t) ≤ 1

Γ(1 + α)−1t
for all t ≥ 0, [22, Theorem 4].(1.20)

We will write x̂ = x/|x| for every x ∈ RN \ {0}.

2. Regularity Estimates

We start with a regularity result in time for bounded solutions to (1.1). This result is a
consequence of the Hölder estimates reported by Barles, Chasseigne and Imbert in [5].

Theorem 2.1. Assume (1.5) or (1.6), and g ∈ Lip(TN ). Let u be bounded, continuous
viscosity solution to (1.1)-(1.2). Then, u is Hölder continuous in time, that is there exists a
constant L > 1 large enough such that

(2.1) |u(x, s)− u(x, t)| ≤ L|s− t|α, s, t ≥ 0.

The constant L depends on the data and ||u||∞ but does not depend on t.
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Proof. Despite the proof we present here is valid for both (1.5) and (1.6), we underline the
arguments in the later case. Let µ ∈ (0, 1] be away from zero, and denote ū = µu. If (1.6) is
assumed, then we consider µ < 1, and if (1.5) is assumed, then µ = 1 in what follows.

Using the linearity of the Caputo derivative, it is direct to check that ū solves

(2.2) ∂αt ū+ µH(x, µ−1Dū) = 0 in Q,

with initial condition ū(·, 0) = µg.
By (1.17) and g ∈ Lip(TN ), we have that g(x)±Ctα are respectively super- and subsolutions

of (1.1)-(1.2) for C > 0 large enough depending only on g and H. Therefore, a direct
application of the comparison results in [23] leads to the estimates

(2.3) g(x)− Ctα ≤ u(x, t) ≤ g(x) + Ctα, for all t ≥ 0.

These bounds can be readily adapted to ū by multiplying by µ the last inequality.
By contradiction, assume that for all L > 1 we have

sup
x∈TN ,s,t≥0

{u(x, s)− u(x, t)− L|s− t|α} =: θL > 0.(2.4)

Taking µ very close to 1 in term of θL above, we can get

sup
x∈TN ,s,t≥0

{ū(x, s)− u(x, t)− L|s− t|α} = θL/2 > 0.

For localization purposes, we introduce a function ψβ with the following properties: we
consider ψ : R→ R smooth and nondecreasing, such that ψ(t) = 0 if t ≤ 1, ψ(t) ≥ 2||u||∞ if
t ≥ 2, and for β > 0 small we denote ψβ(t) = ψ(βt). Then, for all β small enough, we have

max
x∈RN ,s,t∈R

{ū(x, s)− u(x, t)− L|s− t|α − ψβ(s)} = θL/4 > 0,

where we recall that we extend u(x, t) as g for negative times t.
Then, for β, ε > 0 small we define

Φ(x, y, s, t) := ū(x, s)− u(y, t)− L|s− t|α − ε−2|x− y|2 − ψβ(s).

We have that Φ attains its maximum at a point (x̄, ȳ, s̄, t̄) ∈ Q̄2 and this maximum is bigger
than θL/4.

Standard arguments lead to

|x̄− ȳ| ≤ εωβ(ε), |s̄|, |t̄| ≤ 2/β,

where ωβ(ε) → 0 as ε → 0 if β is fixed (ωβ is a modulus of continuity in space of u in the

compact set TN × [0, 2/β]), and

|s̄− t̄| ≤ C0L
−1/α,(2.5)

for some constant C0 > 0 just depending on ||u||∞. In particular, for L large enough we may
assume that |s̄− t̄| < 1.

Below, we use a constant C, which may vary line to line but only depend on the data of
the problem and not on ε, β nor µ.
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Here we claim that s̄, t̄ > 0 for all L large, and ε small in terms of L. In fact, if s̄ = 0 (the
case t̄ = 0 is analogous), then, using (2.3), we see that

θL/4 < Φ(x̄, ȳ, s̄, t̄) ≤ µg(x̄)− g(ȳ) + (C0 − L)t̄α ≤ C0L0ε ωβ(ε) + C0(1− µ) + (C0 − L)t̄α,

where L0 is the Lipschitz constant of g. Taking L ≥ C0, we arrive at

θL/4 ≤ Cε+ C(1− µ),

which is a contradiction if ε is taken small, and µ close to 1 in terms of L.
In addition, since u is uniformly continuous in space, then s̄ 6= t̄ for all L large enough and

ε small in terms of L. Indeed, if s̄ = t̄, then we would have

0 < θL/4 ≤ ū(x̄, t̄)− u(ȳ, t̄) ≤ ωβ(ε) + C0(1− µ).

Hence, for L and β fixed, taking ε small and µ close to 1, we arrive at a contradiction.
Since s̄, t̄ > 0 and s̄ 6= t̄, we can use the penalization defining Φ as a testing for u. For this,

in what follows we write φ(x, y, s, t) := L|s− t|α + ε−2|x− y|2 +ψβ(s), from which we see that

Φ(x, y, s, t) = ū(x, s)− u(y, t)− φ(x, y, s, t).

At this point, denoting φ1(x, s) = φ(x, ȳ, s, t̄) we notice that the function

(x, s) 7→ ū(x, s)− (u(ȳ, t̄) + φ1(x, s))

has a local maximum point at (x̄, s̄), from which we can use the subsolution’s viscosity in-
equality to write, for all δ > 0, that

∂αt [s̄− δ]ū(x̄, ·)(s̄) + ∂αt [s̄− δ, s̄]φ1(x̄, ·)(s̄) + µH(x̄, µ−1Dφ1(x̄, s̄)) ≤ 0.

Similarly, denoting φ2(y, t) = φ(x̄, y, s̄, t) we notice the function

(y, t) 7→ u(y, t)− (ū(x̄, s̄)− φ2(y, t))

has a local minimum point at (ȳ, t̄), from which we can use the supersolution’s viscosity
inequality to write, for all δ > 0, that

∂αt [t̄− δ]u(ȳ, ·)(t̄) + ∂αt [t̄− δ, t̄](−φ2)(ȳ, ·)(t̄) +H(ȳ, D(−φ2)(ȳ, t̄)) ≥ 0.

Then, we subtract both inequalities to arrive at

D ≤ H,(2.6)

where, noticing that D(−φ2)(ȳ, t̄)− = Dφ1(x̄, s̄) = 2(x̄− ȳ)/ε2, we write

D =∂αt [s̄− δ]ū(x̄, ·)(s̄) + ∂αt [s̄− δ, s̄]φ1(x̄, ·)(s̄)− ∂αt [t̄− δ]u(ȳ, ·)(t̄) + ∂αt [t̄− δ, t̄]φ2(ȳ, ·)(t̄).
H =H(ȳ, p)− µH(x̄, µ−1p), p := 2(x̄− ȳ)/ε2.

From (1.6), we get

H ≤ −(1− µ)c−1
H |p|

m + cH(1 + |p|m)ε+A(1− µ)

and from here, taking ε ≤ (1− µ)c−2
H , we conclude that

H ≤ Cε+A(1− µ),(2.7)

where C > 0 just depends on cH .
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Consider δ = |s̄− t̄|/2 > 0 and we split the term D as

D = D1 +D2

with

D1 =∂αt [s̄− δ]ū(x̄, ·)(s̄)− ∂αt [t̄− δ]u(ȳ, ·)(t̄)
D2 =∂αt [s̄− δ, s̄]φ1(x̄, ·)(s̄) + ∂αt [t̄− δ, t̄]φ2(ȳ, ·)(t̄).

We start with D2. Directly from the definitions, we see that

D2 =L

∫ s̄

s̄−δ

|s̄− t̄|α − |z − t̄|α

|s̄− z|1+α
dz + L

∫ t̄

t̄−δ

|s̄− t̄|α − |s̄− z|α

|t̄− z|1+α
dz +

∫ s̄

s̄−δ

ψβ(s̄)− ψβ(z)

|s̄− z|1+α
dz

=:D′2 + oβ(1),

where oβ(1) → 0 as β → 0 independent of the rest of the variables by the smoothness of ψ.
Now, performing the change of variables z = s̄ + y in the first integral, and z = t̄ + y in the
second, we arrive at

D′2 = L

∫ 0

−δ

|s̄− t̄|α − |s̄− t̄+ y|α

|y|1+α
dy + L

∫ 0

−δ

|s̄− t̄|α − |s̄− t̄− y|α

|y|1+α
dy

= L

∫ 0

−δ

|s̄− t̄|α − |s̄− t̄+ y|α

|y|1+α
dy + L

∫ δ

0

|s̄− t̄|α − |s̄− t̄+ y|α

|y|1+α
dy

= −L
∫ δ

−δ

|s̄− t̄+ y|α − |s̄− t̄|α

|y|1+α
dy

= −L
∫ δ

−δ

|s̄− t̄+ y|α − |s̄− t̄|α − α|s̄− t̄|α−1̂̄s− t̄ y
|y|1+α

dy,

where the last equality comes from the symmetry of the kernel. Performing a second order
expansion and recalling that δ = |s̄− t̄|/2, we obtain that there exists ρ(y) ∈ (−δ, δ) such that

−
(
|s̄− t̄+ y|α − |s̄− t̄|α − α|s̄− t̄|α−1̂̄s− t̄ y

)
= −α(α− 1)

2
|s̄− t̄+ ρ(y)|α−2y2

≥ −α(α− 1)

2α−1
|s̄− t̄|α−2y2.

Therefore,

D′2 ≥ −
Lα(α− 1)

2α−1
|s̄− t̄|α−2

∫ δ

−δ
|y|1−αdy =

α(1− α)

2− α
L =: cL,

and from here

D2 ≥ cL− oβ(1).(2.8)
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Now we deal with D1, writing

D1 =∂αt [s̄− 1]ū(x̄, ·)(s̄)− ∂αt [t̄− 1]u(ȳ, ·)(t̄)
+ ∂αt [s̄− 1, s̄− δ]ū(x̄, ·)(s̄)− ∂αt [t̄− 1, t̄− δ]u(ȳ, ·)(t̄)
≥− C||u||∞ + ∂αt [s̄− 1, s̄− δ]ū(x̄, ·)(s̄)− ∂αt [t̄− 1, t̄− δ]u(ȳ, ·)(t̄)
=:− C||u||∞ +D′1,

where C > 0 depends only on α.
To deal with the remaining term D′1, we assume that s̄ < t̄ (the case t̄ < s̄ follows the same

lines). Performing similar change of variables as above and using the maximal inequality
Φ(x̄, ȳ, s̄, t̄) ≥ Φ(x̄, ȳ, s̄+ y, t̄+ y) we arrive at

D′1 =

∫ −δ
−1

ū(x̄, s̄)− u(ȳ, t̄)− (ū(x̄, s̄+ y)− u(ȳ, t̄+ y))

|y|1+α
dy ≥

∫ −δ
−1

ψβ(s̄+ y)− ψβ(s̄)

|y|1+α
dy.

Noticing that the smooth function ψβ satisfies |ψ′β| ≤ Cβ, we conclude that D′1 ≥ −oβ(1).
From this

D1 ≥ −C||u||∞ − oβ(1).

Joining this with (2.7) and (2.8) in (2.6) we get

cL ≤ C||u||∞ + oβ(1) + Cε+A(1− µ).

Then, we let ε→ 0 first, then µ→ 1 and finally β → 0 and, having taken L large enough just
in terms of the data and ||u||∞, we reach a contradiction. It ends the proof. �

Now we would like to obtain estimates in space.

Theorem 2.2. Assume hypotheses of Theorem 2.1 hold. For each bounded viscosity solution
to (1.1), there exists a modulus of continuity m ∈ C([0,+∞)) independent of t such that

|u(x, t)− u(y, t)| ≤ m(|x− y|) for all x, y ∈ TN , t ≥ 0.

If, in addition, H satisfies (1.7) for some m ≥ 1, then, for each β ∈ (0, 1), there exists a
constant C > 0 such that

|u(x, t)− u(y, t)| ≤ C|x− y|β for all x, y ∈ TN , t ≥ 0.

The modulus m and the constant C depend on the datas and ||u||∞ but do not depend on t.

Proof. For ε ∈ (0, 1), we introduce the sup-convolution

uε(x, t) = sup
s≥0
{u(x, s)− ε−1|s− t|2}.

We collect some properties of this regularization of u:

(i) uε is still Hölder continuous in time satisfying (2.1) like u,

(ii) ||uε − u||∞ ≤ Cεα/2,
(iii) uε is Lipschitz continuous in time with Lipschitz constant Cε−1 with C > 0 just

depending on ||u||∞,
(iv) uε is a viscosity subsolution to (1.1) in TN × (aε,+∞) for some aε → 0 as ε→ 0.
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The proofs of (i) and (ii) are easy consequences of Theorem 2.1, (iii) is a classical property of
the sup-convolution regularization and (iv) is proved in [23].

Now we prove the desired regularity of u by adapting the standard viscosity procedure to
get regularity estimates from the coercivity of H. For any x0 ∈ TN , s0 > 0, β > 0 and L > 0
to be chosen, we consider

(2.9) sup
x∈TN ,s≥0

{uε(x, s)− uε(x0, s0)− L|x− x0| −
|s− s0|2

β2
},

where ε is chosen small enough in order that s0 > aε in (iv). Classical results imply that this
maximum is achieved at (x̄, s̄) with s̄→ s0 as β → 0. We take β small enough in order that
s̄ > aε.

If x̄ 6= x0, then we use (x, s) 7→ uε(x0, s0) + L|x − x0| + |s−s0|2
β2 as a test function for the

subsolution uε of (1.1) at (x̄, s̄) to get that, for every δ̄ ∈ (0, 1),

(2.10) ∂αt [s̄− δ̄]uε(x̄, ·)(s̄) + ∂αt [s̄− δ̄, s̄] | · −s0|2

β2
(s̄) +H(x̄, L¯̂x− x0) ≤ 0.

Actually, since |·−s0|
2

β2 is smooth and uε is Lipschitz continuous, we can send δ̄ → 0 in the

previous inequality. In other words, due to the Lipschitz continuity of uε, we can use uε itself
as a test-function in the fractional derivative in the viscosity inequality, see [23, Proposition
2.4] for details.

It follows that it is enough to estimate the fractional term ∂αt u
ε(x̄, ·)(s̄) that we expand,

for δ > 0, as

∂αt u
ε(x̄, ·)(s̄) = ∂αt [s̄− 1]uε(x̄, ·)(s̄) + ∂αt [s̄− 1, s̄− δ]uε(x̄, ·)(s̄) + ∂αt [s̄− δ, s̄]uε(x̄, ·)(s̄).

At first, from (ii),

∂αt [s̄− 1]uε(x̄, ·)(s̄) ≥ −C||uε||∞ ≥ −C(||u||∞ + εα/2).

Then, using (i),

∂αt [s̄− 1, s̄− δ]uε(x̄, ·)(s̄) =

∫ s̄−δ

s̄−1

uε(x̄, s̄)− uε(x̄, s)
|s̄− s|1+α

ds ≥ −C
∫ s̄−δ

s̄−1

1

|s̄− s|
ds ≥ −C| log(δ)|.

For the third term, we use (iii) to obtain

∂αt [s̄− δ, s̄]uε(x̄, ·)(s̄) ≥ −C
∫ s̄

s̄−δ

1

|s̄− s|α
ds ≥ −C

ε
δ1−α.

Plugging these estimates in (2.10), we obtain

H(x̄, L¯̂x− x0) ≤ C(1 + | log(δ)|+ ε−1δ1−α,

where C > 0 just depends on the data and ||u||∞. Taking the minimum for δ > 0 we arrive
at

(2.11) H(x̄, L¯̂x− x0) ≤ C(1 + | log(ε)|).

From the coercivity of H, we reach a contradiction if L = L(ε) is large enough.
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It follows that the maximum in (2.9) is achieved for x̄ = x0, which implies

uε(x, s̄)− uε(x0, s̄) ≤ L(ε)|x− x0|, for all x ∈ TN .

Sending β → 0, recalling s̄ → s0 as β → 0 and that x0, s0 are arbitrary, we finally obtain
that, for all x, y ∈ TN , t > 0,

u(x, t)− u(y, t) ≤ uε(x, t)− uε(y, t) + Cεα/2 ≤ L(ε)|x− y|+ Cεα/2, 0 < ε < 1.(2.12)

This latter inequality means that u is uniformly continuous with respect to x independently
of t.

In addition, if H satisfies (1.7) for some m ≥ 1, then (2.11) and (2.12) lead to

u(x, t)− u(y, t) ≤ C(1 + | log(ε)|)|x− y|+ Cεα/2, 0 < ε < 1.

Thus, taking the infimum with respect to 0 < ε < 1, we conclude that

|u(x, t)− u(y, t)| ≤ C(1 + | log |x− y||)|x− y|,
from which the result follows. �

Remark 2.3. When H has a sublinear growth, it is possible to obtain some better regularity es-
timates in space, namely, Lipschitz estimates. More precisely, if (1.5) holds and g ∈ Lip(TN ),
then every bounded viscosity solution to (1.1) satisfies

|u(x, t)− u(y, t)| ≤ (1 + Lip(g))Eα (2cHt
α) |x− y| for all x, y ∈ TN , t ≥ 0.

Such a result was already showed in Giga and Namba [15]. We do not focus on such results
because the Lipschitz constant depends heavily on time, a dependence we want to avoid in
order to obtain the large time behavior of the solution.

3. Oscillating function with positive Caputo derivative.

In this section we construct a bounded function u : [0,+∞) → R such that ∂αt u ≥ 0 but
such that

lim inf
t→+∞

u(t) < lim sup
t→+∞

u(t),

which prevents u to have any limit as t → +∞. This result shows a great contrast with the
standard case α = 1 in which ∂tu ≥ 0 implies that u is a nondecreasing function and therefore
it is convergent.

In what follows, for any α ∈ (0, 1), we define the incomplete regularized beta function
(see [1, Chapter 6]) by

Bα[z0, z1] :=
1

π csc(απ)

∫ z1

z0

t−α(1− t)α−1dt, for all 0 ≤ z0 ≤ z1 ≤ 1,

and we simply write Bα[z] = Bα[0, z]. We remark that Bα[0, 1] = 1 ([1, 6.1.17 and 6.2.2]).
We also define

bα := B−1
α [1/2] ∈ (0, 1),

where B−1
α [·] is the inverse function of Bα[·]. As an example, if α = 1/2, then bα = 1/2.

Hence, in the general case, with this choice of bα, we have

Bα[0, bα] = Bα[bα, 1] = 1/2.(3.1)
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Then, we define

ηα := π csc(απ)Bα[b3α, b
2
α] ∈ (0, 1),

and consider the continuous functions

f1(t) =

{
1 if t ∈ [0, 1],
t−α if t ≥ 1,

and

f2(t) =


t−a2k
εk

if t ∈ [a2k, a2k + εk),

1 if t ∈ [a2k + εk, a2k+1 − εk),
a2k+1−t

εk
if t ∈ [a2k+1 − εk, a2k+1),

0 if not,

where

ak := (1/bα)k and εk :=
1− b2α

4

ηα
a2k

, for all k ≥ 0.

Next, we consider the continuous function f := f1f2 (see Figure 1) and we define u as

(3.2) u(t) =

∫ t

0

f(z)

(t− z)1−αdz, for all t ≥ 0.

Figure 1. Behavior of f = f1f2

t

1
tα

f

a0 a1 a2 a3 a4 a5

The function f is regular enough (locally Lipschitz) to use the representation formula in [10,
Theorem 3.7], meaning that u solves the fractional ODE

(3.3) ∂αt u = f in (0,+∞), u(0) = 0,

where ∂αt is the Caputo derivative of order α ∈ (0, 1).
Notice that u = 0 in [0, 1] and 0 ≤ u is bounded in R+. In fact, for t > 1 we see that

u(t) ≤
∫ t

1

f1(z)

(t− z)1−αdz,
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from which we get that

u(t) ≤ tα−1

∫ t

1

z−α

(1− z/t)1−αdz = tα−1

∫ 1

1/t

t−αy−α

(1− y)1−α tdy ≤
∫ 1

0

dy

yα(1− y)1−α = π csc(απ),

from which u is bounded.
Now we compare u(a2N+1) and u(a2N+2), for N large enough such that

(3.4)

∫ 1

1−εN/a2N+1

dy

yα(1− y)1−α < ηα/4 and a2N (a1 − 1) = (1/bα)2N (1/bα − 1) ≥ 2.

Using the definition of f we see that

u(a2N+1) =

∫ a2N+1

1

z−αf2(z)

(a2N+1 − z)1−αdz

=

N∑
k=0

(∫ a2k+εk

a2k

z−αf2(z)

(a2N+1 − z)1−αdz +

∫ a2k+1−εk

a2k+εk

z−α

(a2N+1 − z)1−αdz

+

∫ a2k+1

a2k+1−εk

z−αf2(z)

(a2N+1 − z)1−αdz

)

=
N∑
k=0

∫ a2k+1

a2k

z−α

(a2N+1 − z)1−αdz −
N∑
k=0

∫ a2k+εk

a2k

z−α(1− f2(z))

(a2N+1 − z)1−αdz

−
N∑
k=0

∫ a2k+1

a2k+1−εk

z−α(1− f2(z))

(a2N+1 − z)1−αdz

=:v1(a2N+1)− v2(a2N+1)− v3(a2N+1),

and similarly

u(a2N+2) =: v1(a2N+2)− v2(a2N+2)− v3(a2N+2).

From here, by simple integration we get

v1(a2N+1) =
N∑
k=0

∫ a2k+1/a2N+1

a2k/a2N+1

dy

yα(1− y)1−α

=π csc(απ)
N∑
k=0

Bα[a2k/a2N+1, a2k+1/a2N+1].

Moreover,

v1(a2N+2) = π csc(απ)
N∑
k=0

Bα[a2k/a2N+2, a2k+1/a2N+2].
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Now, we estimate the term v1(a2N+2) − v1(a2N+1). For this, using the definition of bα, ηα
and (3.1), we notice that

v1(a2N+2)− v1(a2N+1)

π csc(απ)
=

N∑
k=0

(Bα[a2k/a2N+2, a2k+1/a2N+2]−Bα[a2k/a2N+1, a2k+1/a2N+1])

≤Bα[0, bα]−
N∑
k=0

Bα[a2k/a2N+1, a2k+1/a2N+1]

=Bα[0, bα]−Bα[bα, 1]−
N−1∑
k=0

Bα[a2k/a2N+1, a2k+1/a2N+1]

=−
N−1∑
k=0

Bα[a2k/a2N+1, a2k+1/a2N+1]

≤−Bα[b3α, b
2
α].

Therefore, we have that v1(a2N+2)−v1(a2N+1) ≤ −ηα. Hence, using the above result and the
fact that v2, v3 ≥ 0, we have that

u(a2N+2)− u(a2N+1) ≤− ηα + v2(a2N+1) + v3(a2N+1).

Finally, we estimate the last two terms

v2(a2N+1) =
N∑
k=0

∫ a2k+εk

a2k

z−α(1− z−a2k
εk

)

(a2N+1 − z)1−αdz

=
N∑
k=0

εk

∫ 1

0

1− y
(a2k + εky)α(a2N+1 − a2k − εky)1−αdy.

We have a2k+εky ≥ a0 = 1 and, using εk ≤ 1 and (3.4), a2N+1−a2k−εky ≥ a2N+1−a2N−1 =
a2N (a1 − 1)− 1 ≥ 1. It follows

v2(a2N+1) ≤
N∑
k=0

εk

∫ 1

0
dy =

∞∑
k=0

εk =
ηα
4
.

Similarly, we have that

v3(a2N+1) ≤
N−1∑
k=0

∫ a2k+1

a2k+1−εk

z−α(1− a2k+1−z
εk

)

(a2N+1 − z)1−α dz +

∫ a2N+1

a2N+1−εN

z−α

(a2N+1 − z)1−αdz

=
N−1∑
k=0

εk

∫ 1

0

1− y
(a2k+1 − εky)α(a2N+1 − a2k+1 + εky)1−αdy

+

∫ a2N+1

a2N+1−εN

z−α

a1−α
2N+1(1− z/a2N+1)1−αdz.



15

To estimate the first term above we notice first that a2k+1 − εky − 1 ≥ a1 − (1 − b2α)/4 =
(bα−1)(b2α−bα−4)/(4bα) ≥ 0 since 0 < bα < 1. Moreover, for k ≤ N−1, a2N+1−a2k+1+εky ≥
a2N+1 − a2N−1 ≥ a2N (a1 − 1) ≥ 2 by (3.4). To estimate the second term, we notice∫ a2N+1

a2N+1−εN

z−α

a1−α
2N+1(1− z/a2N+1)1−αdz =

∫ 1

1−εN/a2N+1

1

yα(1− y)1−αdz ≤
ηα
4
,

using again (3.4). It follows

v3(a2N+1) ≤
N−1∑
k=0

εk

∫ 1

0
dy +

ηα
4

=
ηα
2
.

Therefore, u(a2N+2)− u(a2N+1) ≤ −ηα/4 < 0, and this means that

lim inf
t→∞

u(t)− lim sup
t→∞

u(t) ≤ −ηα/4,

from which u does not have any limit at infinity.

4. Ergodic Large Time Behavior.

In this section we present some cases for which ergodic large time behavior (1.13) holds.
The main assumption here follows the classical requirements of Namah and Roquejoffre [20],
see Assumptions (1.9).

We have in mind the classical Eikonal case

H(x, p) = F (x, p)− f(x) = a(x)|p| − f(x),(4.1)

where a, f : TN → R are Lipschitz continuous, a(x) ≥ a > 0 and f(x) ≥ minTN f = 0.
However, we are able to deal with Hamiltonians with superlinear growth on the gradient.

We notice that the convexity and the coercivity condition in (1.5) leads to a quantitative
growth for the Hamiltonian, that is

H(x, p) ≥ C−1|p| − C, for all x ∈ TN , p ∈ RN ,

for some constants C > 0. Since a similar condition is found when (1.6) holds, throughout
this section we assume the existence of a constants CH > 1 and m ≥ 1 such that

(4.2) F (x, p) ≥ C−1
H |p|

m − CH , for all x ∈ TN , p ∈ RN .

We also require some assumption on the behavior of F near p = 0 which is not reflected
by (4.2). In order to be able to deal with more general Hamiltonian, e.g., smooth ones which
are nonnegative and nondegenerate near p = 0, we introduce an additional assumption:

There exists ν, r > 0 and k ≥ 1 such that F (x, p) ≥ ν|p|k for all x ∈ TN , p ∈ B(0, r).(4.3)

Thus, if (1.5) or (1.6) holds, then the later condition together with (1.9) lead to

for every R > 0, there exists νR > 0 such that F (x, p) ≥ νR|p|k for all p ∈ B(0, R).(4.4)

This is a sort of nondegeneracy condition in the sense that F is not too flat around p = 0.

By replacing f with f −minTN f in (1.10), we may assume without loss of generality that

min
TN

f = 0.
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It follows that c = 0 in (1.12).

As we will see later in the proof of Lemma 4.3, the solutions of (1.1) for x ∈ Z are strongly
related to the solutions of the ODE ∂αt E(t) + A|E(t)|k = 0, for which we state a technical
lemma.

Lemma 4.1. For every A > 0 and k ≥ 1, there exists a unique positive solution E ∈
C([0,∞)) ∩ C1((0,∞)) to

∂αt E(t) +A|E(t)|k = 0, E(0) = 1,(4.5)

such that E(t)↘ 0 as t→ +∞. Moreover, there exists C = C(A, k, α) > 0 and, for all ε > 0,
there exists Cε = Cε(A, k, α) such that

C

tα/k
≤ E(t) ≤ Cε

tα/k−ε
for t large enough.(4.6)

Proof of Lemma 4.1. Existence and uniqueness of the positive decreasing solution E of (4.5)
satisfying the lower bound in (4.6) is given by [14, Theorem 5.10].

Concerning the (upper) estimates in (4.6), we start with the case k = 1. In this case
the related ODE (4.5) reads ∂αt E(t) + AE(t) = 0, for which we have the explicit solution
t 7→ Eα(−Atα), see (1.19). In this case, the estimate (4.6) is then optimal and given by (1.20).

Now we concentrate on the case k > 1. Below, c is a positive constant which may change
line to line. Also, by ∂αt (1 + t)−p we mean ∂αt (1 + ·)−p(t).

Claim: For each p > 0, there exists c > 0 just depending on α and p such that

−ct−α ≤ ∂t(1 + t)−p ≤ 0 for all t > 1.

The upper bound is obvious. The lower bound can be obtained by a combination of [10,
p.193] and [1, Chapter 15, 7.3], but we present here an alternative proof for completeness.

Using the definition of Caputo derivative, for t > 1 we see that

∂αt (1 + t)−p ≥ ∂αt [t/2, t](1 + t)−p + ∂αt [0, t/2](1 + t)−p +

∫ 0

−∞

−1

|t− z|1+α
dz

≥ ∂αt [t/2, t](1 + t)−p + ∂αt [0, t/2](1 + t)−p − ct−α,

for some c > 0 just depending on α. Using the Mean Value Theorem, there exists a constant
c depending on p such that

∂αt [t/2, t](1 + t)−p ≥ −c(1 + t)−p−1

∫ t

t/2
|t− z|−αdz ≥ −ct−p−α,

meanwhile, neglecting positive terms, we see that

∂αt [t/2, t](1 + t)−p ≥ −
∫ t/2

0

(1 + z)−p

|t− z|1+α
dz ≥ −

∫ t/2

0

dz

|t− z|1+α
≥ −ct−α,

and joining the above inequalities we conclude the Claim.



17

Let ε > 0 be small enough in order to have pε := α/k − ε > 0. Take C > 0 large enough
such that C(1 + t)−pε ≥ C2−pε ≥ E in [0, 1]. By the Claim, it is possible to take C larger if it
is necessary to get

∂αt C(1 + t)−α/k+ε + (C(1 + t)−α/k+ε)k ≥ 0 in [1,+∞).

Then, by comparison, we arrive at 0 ≤ E(t) ≤ Cε(1 + t)−α/k+ε for all t ≥ 0. This concludes
the proof. �

In order to state our key result to obtain the large time behavior, we need some definitions.
Given two points x0, x1 ∈ RN , we denote [x0, x1] the line segment joining x0 and x1. For a
set of points x0, x1, ..., xn, with n ∈ N, we denote

[x0, ..., xn] =
n⋃
i=1

[xi, xi−1],

that is, the polygonal curve joining the points xi, i = 0, ..., n. The length of a finite polygonal

line [x0, x1, · · · , xn], xi ∈ TN , is given by `([x0, x1, · · · , xn]) =
n∑
i=1

|xi − xi−1|. A continuous

curve γ : [0, 1]→ TN is said to be rectifiable if

`(γ) := sup
n ∈ N

0 := t0 < t1 < · · · < tn = 1

`([γ(t0), γ(t1), · · · , γ(tn)]) < +∞.

We call `(γ) the length of γ.
As explained in the introduction, the proof of Namah-Roquejoffre Theorem [20, Theorem 1]

relies on three steps, the limiting one being the second one, i.e., to prove that u(·, t) converges
on Z = {f = 0} when t→ +∞ (recall that we assume c = 0). We prove now this key result
under the additional assumption

argmin{g} ∩ Z 6= ∅.(4.7)

The large time behavior is an easy consequence, see Corollary 4.6.

Theorem 4.2. Assume (1.5) or (1.6), (1.9), (4.3) and (4.7). Assume further that for each
z ∈ Z, there exists x0 ∈ Z ∩ argmin{g} and a rectifiable curve γ : [0, 1] → TN such that
γ(0) = x0, γ(1) = z and γ(t) ∈ Z for all t ∈ [0, 1]. Then, the unique solution u to (1.1)-(1.2)
converges on Z, i.e.,

for every x ∈ Z, u(x, t)→ min{g} as t→ +∞.

Before giving the proof of the theorem, we state the following key lemma.

Lemma 4.3. Assume hypotheses of Theorem 4.3 hold. Let z ∈ Z, x0 ∈ Z ∩ argmin{g} and
assume that there exists a finite polygonal line γ := [x0, x1, · · · , xn:= z] lying in Z and joining
x0 to z. Then, the unique solution u to (1.1)-(1.2) satisfies

min{g} ≤ u(z, t) ≤ min{g}+ Lip(g)`(γ)E(t),(4.8)

where E(t)↘ 0 as t→ +∞ is a function which depends on H, ||f ||∞, Lip(g), N and `(γ).
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Proof of Lemma 4.3. Without loss of generality we can assume min{g} = 0. From this
and (1.9), we obtain that 0 is a subsolution of (1.1)-(1.2) in Q. Therefore, by comparison,
0 ≤ u in Q.

For the upper bound, the idea is to construct a function U such that U(z, t)↘ 0 as t→ +∞
and such that u(z, t) ≤ U(z, t) for all t > 0. This is performed by an inductive procedure,
building a sequence of functions (Ui)0≤i≤n−1 which are supersolutions for the equation solved
by u but in the set Qi := Q \ {xi}× [0,+∞), with some control on the line {xi}× [0,+∞) in
order to use comparison principles for the Cauchy-Dirichlet problem.

We divide the proof in several steps.

Step 1. Definition of E(t). By Lemma 4.1, for every A > 0 and k ≥ 1, there exists a unique
positive solution E ∈ C([0,∞)) ∩ C1((0,∞)) to (4.5) such that E(t)↘ 0 as t→ +∞. Notice
that, since E is nonincreasing, ∂αt E(t) ≤ 0.

We now define A and other constants, the definition of which will be clear below. We set
L := Lip(g) and

M := L+ C2
H + CH ||f ||∞ + LCH(

√
N + `(γ)),(4.9)

where CH appears in (4.2) and
√
N = diam(TN ).

From (4.3) and (4.4), we may define νL+M > 0 such that

F (x, p) ≥ νL+M |p|k for |p| ≤ L+M.(4.10)

We then fix

A =
νL+ML

k−1

√
N + `(γ)

(4.11)

in (4.5). Notice that we may assume without loss of generality that that A ≤ 1 by decreasing
νL+M > 0 if necessary.

Step 2. Definition of the function Ui, 0 ≤ i ≤ n− 1. We set

U0(x, t) = L|x− x0|E(t) +Md[x0,x1](x)

and

(4.12) Ui(x, t) = L

i∑
j=1

|xj − xj−1|E(t) + L|x− xi|E(t) +Md[xi,xi+1](x), 1 ≤ i ≤ n− 1,

where M is given by (4.9) and d[xi,xi+1] denotes the (periodic) distance function to the segment

[xi, xi+1], that is, for each x ∈ TN (cast as a point in [0, 1)N ), we write

d[xi,xi+1](x) = inf
y∈[xi,xi+1],k∈ZN

|x+ k − y|.

This is a 1-Lipschitz continuous. At the points where it is differentiable we have the gradient
meets x̂− pi, where pi is the projection of x to the segment, from which |Dd[xi,xi+1](x)| = 1.
In addition, for each point in the set of non differentiability of d[xi,xi+1] which do not lie on

the segment [xi, xi+1], there is not C1 function touching the function from below.
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Step 3. The initial supersolution U0. We prove actually that U0 is a supersolution. At first,
for t = 0 and all x ∈ TN , since L = Lip(g) and g(x0) = 0, we have

U0(x, 0) ≥ L|x− x0| ≥ g(x)− g(x0) = g(x).

If t > 0, x 6∈ [x0, x1] and U0 is C1 at (x, t), by the choice of the constant M0 we use the
coercivity properties of the Hamiltonian to write the following computation holds

∂αt U0 + F (x,DU0)− f(x)

= L|x− x0|∂αt E(t) + F
(
x, LE(t)x̂− x0 +M0Dd[x0,x1](x)

)
− f(x)

≥ L
√
N∂αt E(t) +

1

CH

∣∣∣LE(t)x̂− x0 +M0Dd[x0,x1](x)
∣∣∣− CH − ||f ||∞

≥ M

CH
− L

CH
− CH − ||f ||∞ + L

√
N
(
∂αt E(t) +A|E(t)|k

)
− L
√
NA|E(t)|k

≥ M

CH
− L

CH
− CH − ||f ||∞ − L

√
NA,

where we used (4.2), 0 ≤ E(t) ≤ 1, ∂αt E(t) ≤ 0, (4.5) and
√
N = diamTN . By the choice of

M in (4.9) and since A ≤ 1, the right hand side of the previous inequality is nonnegative. So
U0 is a supersolution outside [x0, x1].

Now, let t > 0, x ∈ [x0, x1] and consider any C1 test-function ϕ touching U0 from below at
(x, t), i.e., U0(y, s) ≥ ϕ(y, s) and U0(x, t) = ϕ(x, t). Since U0 is sufficiently smooth in time,
the following computation holds in a classical way,

∂αt ϕ(x, t) =

∫ t

−∞

ϕ(x, t)− ϕ(x, s)

|t− s|1+α
ds ≥

∫ t

−∞

U0(x, t)− U0(x, s)

|t− s|1+α
ds

= ∂αt U0(x, t) = L|x− x0|∂αt E(t).

Since the right hand side of the above inequality is zero at x = x0 and F (x, p) ≥ 0, the
supersolution property holds at x = x0.

It remains to prove that U0 is a supersolution for x ∈ [x0, x1] \ {x0}. In this case, x −
hx̂− x0 ∈ [x0, x1] for h > 0 enough small and d[x0,x1](x) = d[x0,x1](x−hx̂− x0) = 0. It follows

ϕ(x− hx̂− x0, t)− ϕ(x, t) ≤ U0(x− hx̂− x0, t)− U0(x, t)

= L|x− hx̂− x0 − x0|E(t)− L|x− x0|E(t) = −hE(t).

Dividing by h and letting h↘ 0 we obtain a lower-bound for |Dϕ(x, t)|,

|Dϕ(x, t)| ≥ 〈Dϕ(x, t), x̂− x0〉 ≥ LE(t).(4.13)

Noticing that U0 is Lipschitz continuous with constant L+M in space, we have also an upper-
bound |Dϕ(x, t)| ≤ L+M . For x ∈ [x0, x1] \ {x0}, recalling f(x) = 0, we use the behavior of
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F near the origin in (4.4) together with (4.13) to write

∂αt ϕ(x, t) + F (x,Dϕ(x, t))− f(x)

≥ ∂αt U0(x, t) + νL+M |Dϕ(x, t)|k

= L|x− x0|∂αt E(t) + νL+ML
k|E(t)|k

≥ L
√
N
(
∂αt E(t) +A|E(t)|k

)
− L
√
NA|E(t)|k + νL+ML

k|E(t)|k

≥ L
(
νL+ML

k−1 −A
√
N
)
|E(t)|k

by (4.5). Recalling the choices of A in (4.11), the right hand side of the above inequality is
nonnegative.

Since the viscosity inequality follows at once in the points where the distance function
cannot be touched from below, the previous discussion leads to conclude that U0 is a super-
solution of (1.1)-(1.2) in Q. By comparison, we obtain u(x, t) ≤ U0(x, t) for all (x, t) ∈ Q̄,
from which, in particular we get that

u(x1, t) ≤ L|x1 − x0|E(t) for all t.

Step 4. Proof by induction for Ui, i ≥ 1. By induction, we will prove that Ui in (4.12) satisfies

∂αi Ui +H(x,DUi) ≥ 0 in Qi, u ≤ Ui in ∂pQi,(4.14)

where ∂pQi is the parabolic boundary {xi} × (0, t) ∪ TN × {0}.
We first deal with the Cauchy-Dirichlet condition. By assumption, we have 0 ≤ u(xi, t) ≤

Ui−1(xi, t) for every t ≥ 0. When i = 1, it follows

u(x1, t) ≤ U0(x1, t) = L|x1 − x0|E(t) ≤
√
NLE(t) ≤ U1(x1, t).

When i ≥ 2, we have

u(xi, t) ≤ Ui−1(xi, t) = L

i−1∑
j=1

|xj − xj−1|E(t) + L|xi − xi−1|E(t) = Ui(xi, t).

For t = 0 and all x ∈ TN , we have, using the triangle inequality,

Ui(x, 0) = L
i∑

j=1

|xj − xj−1|E(0) + L|x− xi|E(0) ≥ L|x− x0| ≥ g(x)− g(x0) = g(x),

so the initial condition is satisfied.

Now we deal with the PDE in (4.14). The proof follows the same lines as the one in Step
4, so we only sketch it.
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If t > 0 and x 6∈ [xi, xi+1], then Ui is C1 at (x, t) and we can do the same computation as
in Step 4 to obtain

∂t
αUi + F (x,DUi)− f(x)

= L`(γ)∂αt E(t) + L|x− xi|∂αt E(t) + F
(
x, Lx̂− xiE(t) +MDd[xi,xi+1](x)

)
− f(x)

≥ L(`(γ) +
√
N)∂αt E(t) +

M − L
CH

− CH − ||f ||∞

≥ L(`(γ) +
√
N)
(
∂αt E(t) +A|E(t)|k

)
+
M

CH
− L

CH
− CH − ||f ||∞ − L(`(γ) +

√
N)A|E(t)|k.

By the choice of M in (4.9), recalling that A ≤ 1, we obtain that the right hand side of the
above inequality is nonnegative.

Now, let t > 0, x ∈ [xi, xi+1] \ {xi} and consider any C1 test-function ϕ touching Ui from
below at (x, t), i.e., Ui(y, s) ≥ ϕ(y, s) and Ui(x, t) = ϕ(x, t). As in Step 4, we check easily

that ∂αt ϕ(x, t) ≥ ∂αt Ui(x, t) and, since d[xi,xi+1](x− hx̂− xi) = 0 for h > 0 small enough, that
|Dϕ(x, t)| ≥ LE(t). Moreover, |Dϕ(x, t)| ≤ L+M . It follows

∂αt ϕ(x, t) + F (x,Dϕ(x, t))− f(x)

≥ L(`(γ) +
√
N)
(
∂αt E(t) +A|E(t)|k

)
− L(`(γ) +

√
N)A|E(t)|k + νL+ML

k|E(t)|k

≥ L
(
νL+ML

k−1 − (`(γ) +
√
N)A

)
|E(t)|k

recalling that f = 0 on [xi, xi+1]. By the choice of A in (4.11), the right hand side of the
above inequality is nonnegative.

It ends the proof of the supersolution property for Ui, and therefore the inductive process.
Then, using Cauchy-Dirichlet comparison principles in [21] (or standard adaptation of the

comparison principles presented in [23] when the Dirichlet condition is satisfied pointwisely),
we conclude that u ≤ Ui in Qi, from which we get u(z, t) ≤ Ui(z, t) for all t > 0. This
concludes the proof. �

Proof of Theorem 4.2. We may assume without loss of generality that min g = 0. It follows
that 0 ≤ u in Q and we need to prove that u(x, t)→ 0 on Z as t→ +∞.

Let ε > 0 and fε := (f − Cf ε)+, where Cf := Lip(f). Then fε is a periodic function that
satisfies the following properties,

0 ≤ fε ≤ f, ||fε − f ||∞ ≤ Cf ε,
Z = {f = 0} ⊂ {dZ(x) ≤ ε} ⊂ Zε = {fε = 0}.

To prove the last inclusion, let x ∈ TN such that dZ(x) ≤ ε. Then there exists xZ ∈ Z such
that |x− xZ | ≤ ε and 0 ≤ f(x) ≤ f(xZ) + Cf |x− xZ | ≤ Cf ε. Thus fε(x) = 0.

Now we consider (1.10)-(1.2) by replacing f with fε. Notice that the assumptions of Theo-
rem 4.2 and Lemma 4.3 still holds. In particular, there exists a unique solution uε. Moreover,
uε ± ||f − fε||c−1

α,αt
α, where cα,α appears in (1.17), are respectively a super- and a subsolution



22 OLIVIER LEY, ERWIN TOPP, AND MIGUEL YANGARI

of (1.10)-(1.2) with f . By comparison, we get

||u− uε|| ≤
Cf
cα,α

εtα.(4.15)

Let z ∈ Z and γ : [0, 1] → Z be a rectifiable polygonal curve such that γ(0) = x0 ∈
Z ∩ argmin{g} and γ(1) = z. By assumption, there exists a sequence of subdivision tk0 := 0 <
tk1 < · · · < tknk := 1, k ∈ N and a finite polygonal line γk := [γ(tk0), · · · , γ(tknk)] which satisfies
`(γk)↗ `(γ) as k →∞.

In particular, we can prove that dist(γk, γ) → 0 as k → ∞. It follows that there exists
kε ∈ N such that γkε ⊂ Zε and γkε is a finite polygonal line joining x0 and z. We can apply
Lemma 4.3 to obtain

0 ≤ uε(z, t) ≤ Lip(g)`(γkε)E(t), for all t ≥ 0.(4.16)

A priori, E depends on γkε through the dependence of A with respect to `(γkε) in (4.5) but,
since `(γk) ≤ `(γ) < +∞, we can fix A and E independently of ε. From (4.15), we finally
obtain

0 ≤ u(z, t) ≤
Cf
cα,α

εtα + Lip(g)`(γ)E(t), for all t ≥ 0.

Sending first ε→ 0 and then t→ +∞, we conclude. �

In the Eikonal case (4.1), we have an explicit formula for E in Lemma 4.3, see the proof of
Lemma 4.1, which allows to deal with more involved Z. More precisely, we consider subsets
Z satisfying the following assumption

There exists D ≥ 1 and C > 0 such that, for all ε > 0 and x ∈ Z(ε) := {dZ < ε},
there exists x0 ∈ Z ∩ argmin{g} and a finite polygonal line γε ⊂ Z(ε)

such that γε is formed by at most Cε−D lines of length ε.
(4.17)

We remark that a set Z satisfying Assumption (4.17) is a curve of box-counting dimen-
sion D, see Falconer [11]. In several interesting cases, box-counting dimension agrees with
Hausdorff dimension and when D > 1 then the curve have infinite length.

Theorem 4.4. (Eikonal case) Assume (1.5), (1.9), (4.4) with k = 1, and (4.17) for 1 ≤ D <
3
2 . Then, the unique solution u to (1.1)-(1.2) converges on Z, i.e.,

for every x ∈ Z, u(x, t)→ min {g} as t→ +∞.

Proof of Theorem 4.4. We proceed exactly as in the proof of Theorem 4.2, where γkε is re-
placing with γε given by Assumption (4.17). From (4.15) and (4.16), we arrive at

0 ≤ u(z, t) ≤
Cf
cα,α

εtα + Lip(g)`(γε)E(t), for all t ≥ 0.(4.18)

The difference with the proof of Theorem 4.2 is that γ is not necessarily rectifiable anymore.
But we can estimate the length of γε thanks to (4.17) and take profit of the explicit formula
for the solution of (4.5) in the Eikonal case k = 1.
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The constant C > 0 below may change line to line but it does not depend neither on ε nor
on t. We have

`(γε) ≤ Cε−Dε, from Assumption (4.17),

E(t) = Eα(−Atα) ≤ C

Atα
, from (1.19)-(1.20),

A ≥ 1

C`(γε)
, from (4.11) and Assumption (4.4) with k = 1.

Plugging all the estimates in (4.18), we end up with

0 ≤ u(z, t) ≤ C
(
εtα +

1

ε2(D−1)tα

)
, for all t ≥ 0, ε > 0.(4.19)

Minimizing over ε > 0, we obtain

0 ≤ u(z, t) ≤ Ctα
2D−3
2D−1 ,

and the right hand side tends to 0 as t→ +∞ when D < 3
2 . �

Remark 4.5. Notice that the condition on D does not depend on α ∈ (0, 1). If we use the same
approach in the classical case (α = 1), then we can repeat the above proof with E(t) = e−At

and the right hand side of (4.19) now reads Cεt + ε1−De−tε
D−1/C . We can prove that the

minimum over ε > 0 tends to 0 as t → +∞ if and only if D < 2. Even, if we obtain a
more general result than in the fractional case α ∈ (0, 1), this result is not optimal since the
convergence on Z holds for any Z and argmin{g} even without any connectedness requirement
(see Introduction).

Corollary 4.6. Under the assumptions of Theorem 4.2 or 4.4, the unique solution u of (1.1)-
(1.2) satisfies

u(x, t) + ctα − v(x)→ 0 uniformly as t→ +∞,

where c = −minTN f and v is the unique solution of (1.12) satisfying v = minTN g on Z.

The proof of the corollary follows the procedure described in the introduction. We only
sktech it. By comparison, we obtain that u+ ctα is uniformly bounded in TN × [0,+∞). We
then apply Theorems 2.1 and 2.2 to u+ ctα to prove Step 1. Step 2 follows from Theorem 4.2
or 4.4 and Step 3 is classical. For details, we refer the reader to the survey of Barles in [2] or
Namah-Roquejoffre [20].
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