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The last decade has seen an explosion of the family
of framework materials and their study, both from
the experimental and computational point of view.
We propose here a short highlight of the current state
of methodologies for modelling framework materials
at multiple scales, putting together a brief review of
new methods and recent endeavours in this area, as
well as outlining some of the open challenges in this
field. We will detail advances in atomistic simulation
methods, the development of materials databases, and
the growing use of machine learning for properties
prediction.

1. Introduction
Nanoporous materials with high specific surface area
are extensively used in a wide range of applications,
including catalysis, ion exchange, gas storage, gas or
liquid separations, sensing and detection, electronics, and
drug delivery. The last 15 years have seen the emergence
of entire new classes of crystalline nanoporous materials,
based on weaker bonds (coordination bonds, π–π stacking,
hydrogen bonds, . . . ). The most studied of these new
materials are the metal-organic frameworks (MOFs): these
nanoporous hybrid organic–inorganic materials, built
from metal centers interconnected by organic linkers, have
been the subject of an intensive research effort since the
pioneering work done by R. Robson in the 90s, with
thousands of structures synthesized. Other classes of
crystalline nanoporous materials that have emerged in the
past decade include covalent organic frameworks, porous
molecular organic solids, and other porous molecular
framework materials.
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Among these nanoporous materials, an interesting family of materials has recently started to
emerge, named "stimuli-responsive materials" or "soft porous crystals", [1] which exhibit large
or anomalous responses to external physical or chemical stimulation. [2] These modifications of
framework structure and pore dimensions also involve, in turn, a modification of other physical and
chemical properties, making such materials multifunctional (or "smart materials"). Stimuli-reactive
crystals include a wide diversity of eye-catching phenomena such as negative adsorption [3],
negative linear compressibility or negative area compressibility [4], pressure-induced bond
rearrangement and framework topology changes [5], photoresponsive frameworks [6], and
intrusion-induced polymorphism [7], to name a few. Each of these properties can be leveraged
for applications in several fields, for example to make sensors and actuators, to store mechanical
energy, to engineer composite materials with targeted mechanical and thermal properties, etc.

Soft framework materials, because they are built from weaker interactions, have large-scale
complex supramolecular architectures, and can exhibit many dynamic phenomena such as those
just described, are a particular challenge in terms of computational modelling. Compared to
"traditional" dense materials, such as oxides, they can require additional computational power
(due to the increased time and length scales involved), or even novel simulation methodologies.
In this paper, we propose a brief review of new methods and recent endeavours in this area, of
the perspectives opened, as well as outline some of the open challenges in this field. We will first
detail recent advances in atomistic simulation methods for framework materials, going beyond
structural properties of perfect crystals to address their behaviour under stimulation and in a large
range of working conditions, as well as the emergence of defects and disordered phases. We will
then highlight the recent development of materials databases, and within this the specific place of
framework materials. Finally, we will focus our last section on the growing use of machine learning
techniques for the prediction of complex materials’ structure and properties.

2. Computational methods for framework materials

(a) Classical and ab initio simulations
If one wants to understand the properties and behaviour of a crystalline material using
computational methods, the usual starting point is to compute “static” properties of the perfect
infinite crystal, using quantum chemistry methods, such as Kohn–Sham Density Functional Theory.
Starting from an energy-minimized (relaxed) structure, researchers can then compute zero Kelvin
properties, at or around that energy minimum: structural and electronic properties, such as the band
gap and the band structure; vibrations of the atoms around their equilibrium position, computed as
phonons; and infinitesimal deformations of the system can yield elastic properties. For “traditional”
materials, such as oxides, metallic alloys or other dense inorganic materials, most of the behaviour
and properties of a system can be computed using such methodology. In stark contrast, for complex
framework materials with highly dynamic behaviour, this might not be enough and one has to
resort to more complex and more demanding simulations methods. Specifically for soft porous
materials, their dynamic properties and response to various external stimuli play a crucial part
in their properties and possible applications. There, exploring the behaviour of the system in the
vicinity of its energy-minimal structure is not sufficient, and molecular dynamics (MD) simulations
can be necessary to adequately describe the behaviour of the material — as well as providing
important insight into the atomistic processes governing the macroscopic behaviour.

The so-called “classical” molecular dynamics simulations, relying on parameterized force-fields
to represent intra- and intermolecular interactions, have the advantage of being usable for big
simulations, either in the duration of the simulated events or the size of the system. This means that
we can study rare events such as crystal nucleation or reactions – as well as systems where a large
simulation box is needed, for example the effects of disorder and defects (a topic which we will
discuss more below). The issue here is that there are very few reliable, well-tested and transferable
force-fields for use with framework materials. One has to choose between: (i) force fields derived
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for a single material, which describe the potential energy surface of the system with high accuracy,
but are not transferable to other materials; (ii) generic force fields, whose analytically expressions
and parameters are transferable among a large class of material, but that poorly reproduce physical
properties. The second approach has been widely used, by relying on generic force-fields such as
AMBER [8] or UFF [9] — possibly with adjustments or extensions — to get a consistent treatment
of all frameworks, and therefore to compare different materials when searching the best candidate
for a given application in high-throughput studies. [10–12] One problem arising from this approach
is that these force-fields might not contain adequate terms to describe the delicate balance of intra-
and intermolecular interactions in framework materials. In particular, one can think of the metal
coordination bonds, π–π stacking and other soft intermolecular interactions. On the other hand,
deriving new force-fields for a specific systems, while useful to investigate the behavior of a given
material thanks to higher accuracy of the potential energy surface, fails to allow for comparisons
with other systems and is not suitable for large-scale screening.

Another choice of methodology is to use an ab initio description of the interactions in the
system, where a quantum chemistry method is used at every time step of the MD simulation —
this approach is also called first-principles molecular dynamics (FPMD). This has a much higher
computational cost, and thus limits the length and time scales that can be reached, but does not
make any assumption on the nature of the interactions. This was used by Chaplais et al. [13] to
describe how the adsorbed phase arranges inside a fully flexible ZIF-8, without needing to create a
classical force field that would be able to reproduce the full flexibility of ZIF-8. Furthermore, FPMD
allows the description of bond breaking and formation, which can be crucial in some dynamic
phenomena: as an example, Howe et al. [14] used it to analyze the stability of MOFs in presence of
water.

We note that the question of the “level of description” applied to the systems (quantum
chemistry vs empirical potentials) is relevant not only to molecular dynamics, but also for Monte
Carlo simulations, which stochastically generates representative configurations of the system in a
given thermodynamic ensemble, by application of random moves weighted by the appropriate
Boltzmann probabilities. However, while ab initio Monte Carlo simulations are possible, the large
number of energy evaluations necessary make them relatively rare in the literature. [15,16] In the
context of framework materials, Monte Carlo simulations are used at various scales. First, simulated
annealing and biased Monte Carlo simulations are extensively used in the areas of structure
solution and to localization of extra-framework ions and adsorbed species. [17,18] Secondly, Grand
Canonical Monte Carlo is very often used to describe the thermodynamics of adsorption of fluids
and fluid mixtures in nanoporous frameworks. [19] Finally, mesoscale Monte Carlo modelling
methods can be used to assess the large-scale ordering (or disorder) in supramolecular frameworks,
based on carefully constructed Hamiltonians that describe the local interactions. [20–22]

(b) Make force fields great again
Despite the rather strong limitations of force fields described above for their application to
framework materials, there have been several recent developments in that area, which we want
to highlight here. Deriving a new force-field for a material is a hard and long task, where one
need not only to gather or generate reference data, but adapt parameters and check every time
that the physical properties predicted by the force-field are right. In the past few years, novel
methodologies for force field fitting have been proposed, relying on machine learning algorithms.
They aim to make the process more automatic, more reproducible, and also reduce its reliance on
human input. Starting from the structure optimized with ab initio calculations and the Hessian at
this energy minimum, a machine-learning procedure (for example a genetic algorithm coupled
with a least-squares minimization) find the optimal set of parameters matching the structure and
the Hessian. Some implementations of this idea are the MOF-FF [23] and QuickFF [24] force-fields —
or maybe more accurately, force field optimization methodologies. While they use slightly different
input data and fitting procedures, they share the common goal of parameterizing force fields in a
systematic and consistent fashion, from first principles reference data.
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Figure 1. A representation of a neural network mapping from Xi to Yj using three layers. Circles represent neurons

using f as the activation function, and lines are adjustable weights wαij for the input values. In this case, the output of the
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To give an example of the use of these new force field methodologies, MOF-FF was recently used
to predict the most stable structure and topology for copper paddle-wheel MOFs depending on the
linker. [25] The authors generated all the structure by combining simple building blocks (linkers
and copper paddle-wheel) with different topologies, and where then able to use the same force-
field to optimize and study them all. Finally, we note that these methods were originally developed
by relying on reference data gathered on (finite) clusters representative of the MOF structures, and
were later extended to periodic input data. The use of periodic structures as a reference was shown
to be essential for a correct description of structural, vibrational and thermodynamic properties of
soft framework materials like MIL-53(Al) by QuickFF. [26]

Despite this progress, classical force-fields remain fundamentally limited by the analytical form
they choose to represent interactions, even when parameterized in an optimal fashion. For example,
a force-field using a Lennard-Jones dispersion potential will be unable to reproduce any long-range
interaction that does not follow this functional form. A promising alternative, in order to be able to
reproduce any possible interaction profile coming from the reference data (i.e., quantum chemistry
calculations), is the use of neural-networks force-field. Neural networks are algorithms that map
a set of input values to a set of output values by associating adjustable weights with each value,
and then using a non-linear function (called the activation function) to map the weighted inputs
to the outputs. If the outputs are then fed to another neural network, the resulting network is
said to have multiple layers — see Fig. 1 for a graphical representation with three layers. One
property of neural networks is their ability to reproduce arbitrary multidimensional Rn →Rm

functions with arbitrary accuracy [27]. This makes them very appealing to reproduce energy or
forces from ab initio calculations, using only the atomic position as input — effectively functioning
like a force-field, without any assumptions on the nature of the interactions. Before being usable,
the network must be “trained” with data representative of the system of interest. During this
training, the weights are adapted to ensure a correct mapping from the input (the atomic positions)
to the output (forces and energy). Using atomic positions in Cartesian coordinates as the input is
not optimal, as the generated network will only be usable with the exact same system used for
training. An alternative is to rely solely on the local environment of an atom up to a cutoff distance,
represented in a translation and rotation-independent manner. [28] Neural network force-field are
a very promising approach to cheap simulation with high accuracy, and they are already used for
small organic molecules [29], water [30,31]; as well as classical dense crystalline materials [32] ,
and amorphous inorganic materials. [33,34] They are especially helpful with amorphous materials
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such as silicon or glasses, where the usual classical potential are complex multi-body potentials.
This approach still remains to be extended to porous frameworks materials.

(c) Simulating complex systems
One of the biggest current challenges in the simulation of framework materials lies in the
complexity of these systems. The computational cost of our tools imposes limits on the systems we
can model, both in terms of length scale (and thus number of atoms) and time scales. For crystalline
phases, the use of periodic boundary conditions, where the simulated system is repeated in all
spatial dimensions, is a very effective way to describe infinite systems within computers with
limited memory and CPUs. However this approach falls short when we want to study phenomena
involving large correlation lengths, such as dynamic properties of soft materials. Another difficult
area is the computational modelling of disordered phases, where a very large simulation box
would be necessary to correctly describe the system. Yet, within the field of framework materials,
such disordered systems are attracting a lot of interest due to their properties that differ from their
crystalline counterparts. We can here cite as examples systems such as MOF glasses [35–37] and
liquids, [38] or framework materials with defects and correlated disorder. [39] There is thus an
important drive to model these materials, because of their properties (e.g., amorphous phases
can have more appealing mechanical and optical properties than crystals) or because catalysis,
nucleation, or adsorption can occur preferentially around defects.

Figure 2. Ring size distribution in silica glass, as computed from 18 small (72 atoms) replicas, or a single big (1497 atoms)

simulation. Reprinted with permission from Ref. 40. Copyright 2005 by the American Physical Society.

A strategy that can be used in this case — if the brute force approach of using a very large
simulation box is not feasible — is to use multiple realizations (or “copies”) of the system of interest,
and average the measured properties over those replicas. This approach has been extensively
used in the past for the study of amorphous systems such as silica glasses or disordered carbons.
For example, Van Ginhoven et al. [40] used DFT calculations on 18 different configurations of
silica glass created using a classical force-field, and were thus able to obtain a good statistical
representation of static and dynamic properties with comparable or better accuracy than a longer,
bigger simulation (see Fig. 2).

Another strategy to study large-scale systems is to change the level of description, moving closer
to mesoscopic methods and using coarse-grained force fields instead of atomistic ones. Dürholt et
al. [41] have generated such a coarse-grained force field for the HKUST-1 MOF, based on copper
paddle-wheels. These authors showed that even a very coarse model is able to reproduce the
low energy deformations of the system, with only one coarse-grained bead for 30 atoms. Another
mesoscopic approach, in the field of adsorption, is the use of Lattice Boltzmann methods to describe
the coupling between fluid flow and adsorption in porous media with complex geometries. [42]
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Beyond this scale, it can also be useful to turn to macroscopic modelling methods to simulate
even larger systems. Indeed, many potential applications of framework materials are based on
their use not as single crystals, but are expect to construct nanostructured or composite systems:
common examples include monoliths, supported thin films, and mixed-matrix membranes. In
order to describe these composite systems, one has to turn to conventional microscopic modelling
methods: finite elements for solid mechanics, computational fluid dynamics to describe transport,
etc. In this vein, Evans et al. [43] used a macroscopic description and finite element methods to
compute deformation properties of mixed-matrix membrane and other composite of framework
materials and polymers. The use of finite element methods allowed them to study sizes up to
400 µm, which is five orders of magnitude bigger than typical atomistic simulations.

Finally, we note that while we are starting to see new techniques and methods that go from
one level of description to the next (quantum to classical, micro to meso, meso to macro), the
bridging of those various scales of simulations into a coherent multi-scale simulation methodology
is still a widely open research question. How can one use data from ab initio simulation to fit
atomistic classical force-field? [23,44] Or leverage force-field-based data to create a coarse-grained
model? [41] Or transfer microscopic properties into input for a finite element methods? [43,45]
Every time we go up a level of description, we are able to work with bigger systems at longer
timescales, at the cost of some accuracy and precision, but we still lack a systematic way to create
and validate these novel models for performance and accuracy.

(d) Describing excited states
We note here that a particularly challenging area of the modelling of framework materials is that of
the description of their excited states, in order to better understand, e.g., their optical properties and
photocatalytic activity. Such phenomena involve transitions between the system’s ground state and
another state of higher energy (the excited state) upon photon absorption or emission. The energy
difference involved in the electronic transitions is directly related to the position of absorption and
emission bands. Theoretical models can give insight into the properties of electronically excited
states, and are therefore a useful complement to experimental measurements. In that framework,
Density Functional Theory (DFT), and more precisely its time-dependent form (TD-DFT) [46,47] is
the ab initio method of choice for most of the cases, [48,49] as it may treat structures containing up
to ca. 300 atoms. To study framework materials, Wilbraham et al. have developed a computational
protocol in order to simulate the optical signatures of two MOF structures based on the 4,4′-bis((3,5-
dimethyl-1H-pyrazol-4-yl)methyl)-biphenyl (H2DMPMB) linker. The developed protocol was
successfully applied to characterize and to rationalize the adsorption and the emission behavior on
the interchange of zinc and cadmium as metal cation. [48] Another important optical properties in
hybrid materials is the nature of the electronic excitations that could present ligand-to-metal charge
transfer (LMCT) character. Very recently, Wu et al. showed that from different cations, electronic
excitations occur in the linker of the UiO-66(Ce) MOF upon light absorption. These authors
showed that incorporation of the cerium cation presents an effective way not only to stabilize the
LMCT, but also to increase the photocatalytic activity of UiO-66 MOF. [49] For applications in
photocatalysis, the magnitude of the band gap and the absolute positions of the band edges are
of high importance. [50,51] As an example, based on the mixing of organic linkers, Ricardo et al.
have designed new ZIF materials with a narrower band gaps in order to allow the absorption of
the visible range solar spectrum. They showed that introducing a transition metal (copper) in the
tetrahedral position of the mixed-linker ZIFs, it is possible to increase photo-adsorption. [51]

3. Materials databases
As stated in the introduction, the last decade has seen an important increase in the number of
studies on various families of framework materials, with the goal of discovering or designing novel
materials with targeted properties. Given the large number of materials synthesized, characterized
and reported, three important series of questions arise:
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(i) Where and how is stored the information on these materials? What is the available data?
(ii) Under what form is it stored, how can it be queried, retrieved, and interpreted? That is,

issues of Application Programming Interface (API), format, and interoperability.
(iii) What is the extent of information and properties provided for each structure? How were

they determined? Those are questions about the metadata associated with each structure.

In this section, we will briefly review the current state of the art and describe some of the existing
materials databases for framework materials, contrasting the situation with that of inorganic
materials.

(a) Zeolites
Let us start with the grandparent of this family of databases, namely the database of zeolites
structures from the International Zeolite Association (IZA), which is a freely available on the
internet at http://www.iza-structure.org/databases/. Most of the information it is also available
in printed form, as the Atlas of zeolite framework types book. [52] Zeolite belong to the class of
nanoporous materials and are composed of oxygen, silicon and aluminium. They have widespread
applications at the industrial level in the fields of catalysis, adsorption and separation. [53–56]
At the current date, the corresponding database provides structural information for 230 zeolite
framework types reported experimentally, among which 67 are natural zeolites. Ten years ago, only
176 zeolite frameworks were known, showing that even among “conventional” porous materials,
progress is steady and the synthesis of new zeolites remains a considerable challenge. The IZA
database is heavily curated, as all the zeolitic structures it includes have been approved by the
Structure Commission of the IZA, to verify that it is unique and that the structure has been
satisfactorily proven.

The nomenclature for these materials is recognized by IUPAC (the International Union of
Pure and Applied Chemistry) and is assigned by a three letter code — such as FAU, for the
faujasite framework, or MOR for the mordenite framework. Data associated with each framework
type code includes crystallographic data: space group, cell parameters, positions of vertices in
the idealized framework, but also topological density, ring size, channel dimensions, maximum
diameter of an included sphere, accessible volume and composite building units. Moreover, going
beyond idealized framework structure and topological properties, the database features detailed
information for building models, and simulated powder diffraction patterns for representative
materials, as well as all corresponding literature references.

At this stage, the reader unfamiliar with zeolites may be surprised that only 230 zeolitic
structures have been identified experimentally. Indeed, at the molecular scale, zeolites are
constituted of TO4 tetrahedra (where typically T = Al or Si), connected by their corners. It is
mathematically possible to create an infinite number of such four-connected nets that have three-
dimensional periodicity. The question of why only a few structures are experimentally realized,
known as “zeolite feasibility”, is still wide open. [57,58] Nevertheless, researchers have used
theoretical and computational tools to develop databases of hypothetical zeolitic structures —
based on four-connected nets, but usually with added constraints such as an upper bound on the
lattice energy or topology. Compared to the experimental zeolites, the number of hypothetical
zeolitic structures is much larger and rapidly growing. In the first such database published, by Li
et al. [59–61] and available at http://mezeopor.jlu.edu.cn/hypo/, two sets of hypothetical zeolite
structures are provided. [61,62] The first set is generated by the FraGen algorithm, which is based
on Monte Carlo direct space structure modeling. [63] The second set is composed of so-called
ABC-6 structures, which are enumerated through a materials genome approach. [64] The number of
all the ABC-6 structures is 84 292. Besides their structures in CIF format, all hypothetical structures
are assembled in an Excel spreadsheet listing their properties, such as stacking layers, stacking
sequences, space groups, cell dimensions, channel openings, framework energies, framework
densities, stacking compactness and the constituent cages. [61]

http://www.iza-structure.org/databases/
http://mezeopor.jlu.edu.cn/hypo/
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A second hypothetical zeolite structures database, available at http://www.hypotheticalzeolites.
net, was generated by Treacy and Foster [65,66]. It contains 5 millions of different frameworks,
triaged into “bronze” and “silver” sets, depending on their feasibility based respectively on a
specifically-designed cost function and force field energy minimization. The two sets contain
5 389 408 bronze and 1 270 921 silver structures, and have been used as starting point for a series
of theoretical surveys of zeolitic frameworks [67] and related four-connected frameworks. [68,69]
Using Monte Carlo approach, Earl et al. have developed a systematic computational procedure
to search through unit cells with different space group symmetries, [70] called the Symmetry-
Constrained Intersite Bonding Search (SCIBS) approach. They have used it to generate a third
database of 2.6 million zeolite-like materials that have topological, geometrical, and diffraction
characteristics that are similar to those of known zeolites. [71] All three hypothetical zeolites
databases are maintained by individual research groups, and are not open to external submissions
of new structures.

Besides the aluminosilicate zeolites, open-framework aluminophosphates, or AlPOs, constitute
an important class of microporous inorganic materials with a variety of structures ranging from
neutral zeolites to anionic frameworks. The AlPO framework is not only limited to Al and Si as
tetrahedral atoms, the upper limit of pore size can go beyond twelve-membered rings, and the
primary building units are not restricted to tetrahedra. This gives the AlPO family a rich variety
of structural architectures and physico-chemical properties. There is an AlPO database, available
online at http://mezeopor.jlu.edu.cn/alpo/, developed by Y. Li, J. Yu and R. Xu. It contains over
200 experimental AlPO structures reported in the literature. [72] In addition to general information,
such as formula, space group, cell parameters, and atomic coordinates, this database also includes
more detailed structural information, such as coordination environment, Al/P ratio, stacking
sequences for 2D structures and coordination sequences. Simulated XRD reflections and references
are also included to aid the identification of users’ samples.

Figure 3. Schematic of the CSD and MOF entries since 1972. The inset shows the MOF self-assembly process from

building blocks: metal nodes (red spheres) and organic ligands (blue struts). Reprinted with permission from Ref. 73.

Copyright 2017 American Chemical Society.

http://www.hypotheticalzeolites.net
http://www.hypotheticalzeolites.net
http://mezeopor.jlu.edu.cn/alpo/
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(b) Metal-Organic Framework
Metal-organic frameworks appeared almost thirty years ago, and designate a class of materials
composed of inorganic nodes linked by organic ligands. These materials are a novel generation
of materials, with promising applications to follow zeolites in catalysis and adsorption-related
applications. Since their discovery, the growth in number of MOFs structures number reported in
the Cambridge Structural Database (CSD) has been staggering, as show on Fig. 3. The latter contains
more than 900 000 structures of small molecule crystal structures and materials, among which
70 000 MOF materials can be found. Each crystal structure undergoes extensive validation and
cross-checking by expert chemists and crystallographers to ensure that the database is maintained
to the highest possible standards. Apart from X-ray, neutron diffraction analyses and 3D structure,
every entry is enriched with bibliographic, chemical and physical information. Even though all
published MOF structures are collected in the CSD, it is not easy to distinguish them from the
rest of the structures in the CSD. In this vein, Watanabe et al. have extracted 30 000 extended
MOFs compounds from the CSD, among which 1 163 MOF materials were applied for CO2/N2
separation. [74] In 2013, Goldsmith et al. published an automated approach for screening 20 000
porous structures in the CSD useful for hydrogen storage. [75] This requires the use of algorithms
for virtual solvent removal, and relies on an established empirical correlation between excess
hydrogen uptake and surface area.

In 2014, Chung et al. have developed a curated database of MOF structures, named
“Computation-Ready Experimental MOFs” (CoRE MOF) database; it is available at https://

gregchung.github.io/CoRE-MOFs/. It contains over 6 000 three-dimensional MOFs, with solvents
and templating agents cleaned, and with a pore limiting diameter (PLD) larger than 2.4 Å. [76] The
protocol used to generate the database, represented in figure 4, is the following: (i) identify and
extract MOFs structures from CSD, based on atomic types and bonds present; (ii) remove solvents
molecules and included templates; (iii) in some cases, remove disorder. Several recent studies have
used this database as a starting point. [77,78] Additional computational data can also be added
to the database, as did the Sholl group by computing and publishing point charges derived from
periodic DFT calculations for more than 2 000 structures in the CoRE MOF database. [79] This
allows for easier reuse by other research groups, as a starting point for adsorption calculations of
polar molecules, for example.

Despite the importance of these CSD-derived databases, they are not integrated within the CSD,
and thus require manual updates over time, as new entries are added to the CSD. To address this
deficiency, Moghadam et al. have recently implemented seven criteria for MOFs embedded within
a custom CSD Python Application Programming Interface (API) workflow. [73] The constructed
CSD MOF is currently integrated into the CCDC’s (Cambridge Crystallographic Data Centre)
structure search program ConQuest, which allows for tailored structural queries and visualization.
CSD MOF thus presents the most complete collection of MOFs, and will stay synchronized with
the CSD as time goes by. The authors have also developed an array of computational algorithms
in order to remove the solvent molecules from the CSD MOF subset, and then to calculate the
geometric and physical properties for all the structures in the database.

Finally, we should note here that some effort has also been devoted to design hypothetical
MOFs structures. In this quest, Wilmer et al. have generated a database of 137 953 hypothetical
MOFs structures from 102 different building blocks, containing secondary building units (SBU)
and organic linkers. [80] The authors then used this dabase as a starting point for computational
screening, with the goal of identifying the best candidates for specific applications. This was
applied for example to the cases of hydrogen storage, methane storage and adsorption/stability of
water. [81–83] However, once a computational screening approach has identified possible targets,
the design of synthesis protocol for these hypothetical materials, as well as their feasibility, is still
often a complex issue.

https://gregchung.github.io/CoRE-MOFs/
https://gregchung.github.io/CoRE-MOFs/
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Figure 4. Schematic illustration of the CoRE MOF database construction. Reprinted with permission from Ref. 76.

Copyright 2014 American Chemical Society.

(c) The Materials Project
For other crystalline compounds, and for inorganic solids in particular, there have been a large
number of databases, often with a specific focus on a particular class of materials. Most — but
not all — are dedicated to experimental structures and properties. They are briefly reviewed in
Ref. 84, for the interested reader. We want to focus here on a recent development, the development
of the Materials Project, which provides a materials database as well as an open API (and web
portal) to computed information on known and predicted materials. As we are writing this,
it includes information about 86 371 inorganic compounds, and it is regularly updated with
additional entries. It also aggregates nanoporous structures from several databases, including CoRE
MOFs, hypothetical MOFs and zeolites described in the previous sections, as well as computational
predicted porous polymeric networks (PPNs). The main goal of this database is to accelerate
advanced materials discovery and deployment. [85] Classes of materials that feature a specific
focus include battery materials, intercalation electrodes and conversion electrodes.

The database is open — after registration — and accessible through its own open-source API. A
high-quality reference implementation of this API is provided as part of the open-source Python
Materials Genomics (pymatgen) materials analysis package, available at http://pymatgen.org/. In
addition to the Materials Project API, pymatgen is a generic materials-oriented Python library, with
classes for the representation of elements, sites, molecules, and periodic structures, input/output
support for several common file formats, analysis tools for electronic structure and physical
properties, etc. For non programmers, the Materials Project also includes a web front-end at
https://materialsproject.org/, through which one can access the large data set. Properties
such as space group, X-Ray diffraction, band structures, elastic properties, etc. can be browsed
or searched. This architecture is extensible; for example, our group has recently provided an
integration of the online ELATE application for analysis and visualization of elastic tensors. [86]
This ELATE analysis and visualization is linked from every Materials Project entry that contains
elastic data, i.e. every crystalline solid for which the elastic stiffness tensor has been computed by
DFT calculations. In 2015, Jong et al. reported elastic properties for 1 181 inorganic compounds. [87]
This number has since grown, and the database currently contains elastic information for 13 934
inorganic compounds — and this number is still growing.

http://pymatgen.org/
https://materialsproject.org/
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4. Machine learning for properties prediction
While the databases of structures, both experimentally determined and hypothetical, grow at a
fast pace, the efforts to add physical and chemical properties of these materials in databases is
happening on a longer timescale. The current theoretical chemistry methods, using microscopic
(quantum chemistry and classical molecular modeling) and mesoscopic scales, make it possible
to predict and understand the physical and chemical behaviour of given materials that already
exist. However, these methods are computationally intensive, and their use on a very large scale
is somewhat limited. Computational screening studies based on existing databases, as we have
described below, are often limited to very simple descriptors of a materials’ performance for a given
application. They are often used in a multi-stage strategy, where filters of increasing complexity
and computational cost are applied successfully. For example, in the case of adsorption, studies
will focus first on pore space and accessible area (geometric descriptors), then identify among
those best-performing candidates the ones suitable for adsorption based on Grand Canonical
Monte Carlo simulations. A similar strategy was applied by Davies et al. for the screening of
stoichiometric inorganic materials for water splitting, where low-computational cost filters based
on electronegativity, electronic chemical potential, and atomic solid-state energy. [88]

To go beyond these methods and identify novel materials for targeted applications, there is
thus a need to develop active methods for property prediction based on structure and chemical
composition, bypassing quantum calculations and classical molecular simulations — at least
during an initial high-throughput screening step. In order to develop such methods, databases are
useful in two different ways: first, databases of physical and chemical properties are necessary in
order to train, benchmark and validate the new prediction methods. Secondly, larger databases of
hypothetical structures are needed as a basis for large-scale screening, once the property prediction
methods are adequate.

With this goal in mind, machine learning appears as a powerful tool for predicting chemical and
physical properties for large number of materials, i.e. at low computational cost. Neural networks
— already presented in section 2 — are a class of machine learning algorithms, but many other exist.
Machine learning is the generic term used for algorithms that generate another algorithm, in order
to progressively improve their performance for a task they have not been explicitly programmed
to perform. In the most commonly-used family of machine learning methods, called supervised
learning, the algorithm generated is called the predictor. It takes a set of input descriptors, and map
them to the required output. This output is usually the numeric value of a physical property in our
case, but it can also be the classification of the input in a given class. When using machine learning
on chemical systems, the descriptors can take multiple forms: local descriptors such as atomic
positions, bond length, angle, or dihedral angles; global descriptors like mass density, largest
included sphere in a porous framework, or elastic properties; and topological descriptors such as
ring sizes distribution. As we said, machine learning algorithms generate predictor algorithms
from a set of reference input and output data. The idea is to train the machine learning algorithm
on a subset of the data, and then test the generated predictor on the remaining part of the reference
data. This allow to evaluate the accuracy of the predictor. For more information on machine
learning and its usage in molecular and materials science, we refer the interested reader to the very
pedagogical review by Butler at al. [89]

Within the fields of physics and chemistry, machine learning has been applied to a large diversity
of applications. On the computational side, research is ongoing on the use of machine learning to
improve electronic structure calculations by bypassing the Kohn–Sham equations, [90] developing
machine-learned functionals [91] and creating adaptive basis sets. [92] Other applications in
chemistry include the extraction of chemical data (structures, reactions, etc.) from published
work, [93] the prediction of novel synthetic pathways, [94] the design of catalysts, [95] etc. In
2016, Jong et al. used machine learning techniques to predict elastic properties (bulk and shear
modulus) for inorganic compounds in order to accelerate materials discovery and design. [96]
However, few studies have focused so far on framework materials and their physical properties.
Recently, Evans et al. [97] used a machine learning algorithm to predict elastic properties (such
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as the bulk modulus and shear modulus) of 590 448 hypothetical pure-silica zeolites, using an
accurate training set of elastic properties determined with DFT calculations. [98] Evans combined
the GBR (gradient boosting regressor) approach using regression trees and a set of local, structural
and porosity-related descriptors, and their results highlighted several important correlations and
trends in terms of stability for zeolitic structures. Romain Gaillac extended this to predict the
auxeticity and the Poisson’s ratio of more than 1 000 zeolites. [99] These recent advances, combined
with the availability of DFT-computed elastic tensors for a large number of inorganic materials
within the Materials Project, creates new opportunities for computationally assisted materials
discovery and design. We should also note here, for the sake of completeness, that unsupervised
machine learning has also been applied to chemical questions: such techniques take a data set as
input and identify hidden structure in the data — e.g., clustering of data points or structures by
similarity. [100,101]

5. Conclusion
We have given here a short overview of the current state of methodologies for modelling framework
materials at multiple scales, and tried to highlight some of the common themes as well as differences
between this rapidly expanding class of materials and other inorganic solids. It is clear from the
examples listed that the diversity of modelling methods is also growing to match the rapid pace
of experimental developments, and the increasing complexity of the systems and phenomena
studied. However, while modelling strategies develop at all length and time scales, from the
microscopic to the macroscopic, the links between these simulation scales are still rather ad hoc,
and comprehensive, coherent multi-scale simulation strategies are still the exception, rather than
the norm. Just like experimental and computational tools are complementary in providing a large
variety of viewpoints on a given material, studies containing multiple simulations strategies at
different scales are appearing, which provide a very deep understanding of the macroscopic
properties of a material, and their microscopic origins.

Data Accessibility. Supporting data is available online in our data repository at https://github.com/
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