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Abstract

This paper proposes a comprehensive methodology for the stochastic multi-period two-echelon distribution
network design problem (2E-DDP) where product flows to ship-to-points are directed from an upper layer
of primary warehouses to distribution platforms (DPs) before being transported to the ship-to-points. A
temporal hierarchy characterizes the design level dealing with DP location and capacity decisions, as well
as the operational level involving transportation decisions as origin-destination flows. These design decisions
must be calibrated to minimize the expected distribution cost associated with the two-echelon transportation
schema on this network under stochastic demand. We consider a multi-period planning horizon where demand
varies dynamically from one planning period to the next. Thus, the design of the two-echelon distribution
network under uncertain customer demand gives rise to a complex multi-stage decisional problem. Given the
strategic structure of the problem, we introduce alternative modeling approaches based on two-stage stochastic
programming with recourse. We solve the resulting models using a Benders decomposition approach. The
size of the scenario set is tuned using the sample average approximation (SAA) approach. Then, a scenario-
based evaluation procedure is introduced to post-evaluate the design solutions obtained. We conduct extensive
computational experiments based on several types of instances to validate the proposed models and assess the
efficiency of the solution approaches. The evaluation of the quality of the stochastic solution underlines the
impact of uncertainty in the two-echelon distribution network design problem (2E-DDP).

Keywords:
Supply chain management, Two-echelon Distribution Network Design, Location models, Uncertainty,
Multi-period.

1. Introduction

The emergence of e-commerce and the arrival of innovative players, such as Amazon, have unquestionably
changed the logistics landscape. More specifically, the major shift to an on-demand economy has tremendously
affected the distribution schemas of several companies that aim to continue improving response time to customers
while efficiently offering their products in a multi-channel setting. The delivery service level expectancy has
significantly increased in the last decade: it is now expressed in hours rather than days. In addition, the ship-to-
locations have recently evolved, making use of lockers, relay points, drives, and collection stores as alternatives
to home delivery. In such context, several global B-to-C players, and retailers such as Walmart, Carrefour,
Amazon or jd.com, have recently undertaken a sustained reengineering of their distribution networks. They
have incorporated extra considerations to be closer to their key customer zones without reducing the efficiency
of their consolidation policies in warehousing and transportation. For several global companies, the location
of their primary warehouses followed various optimization rules going from centralization and risk-pooling
incentives to sourcing-dependent and financial constraints. In practice, companies may have a single centralized
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warehouse or a reduced set of market-dedicated regional warehouses where they generally keep about a month
or a season’s worth of inventory depending on the demand dynamics and the production/sourcing cycles. When
customers are globally deployed, these storage-locations are not specifically designed to provide next day and/or
same day deliveries, especially when the customer bases are located in large geographic and almost urban areas.
Such one-echelon networks constrain the companies’ ability to provide fast delivery services, and reduce their
opportunities to capture online orders.

In this new context, such strategic considerations imply a distribution schema with more than one-echelon
that can be dynamically adjusted to the business needs over time. A typical predisposition schema, claimed
now by practitioners, is the two-echelon distribution network. The network topology includes an intermediate
echelon of distribution/fulfillment platforms located between the initial sites where inventory is held and the
ship-to-points. For instance, Walmart plans to convert 12 Sam’s Club stores into e-commerce fulfillment centers
to support the rapid e-commerce growth [41]. City logistics is probably the most significant example of the
shift from a one-echelon to a two-echelon distribution network setting [18, 50]. This is achieved by creating
peripheral distribution/consolidation centers dedicated to transferring and consolidating freight from back-level
platforms on large trucks into smaller and environmentally friendly vehicles, more suitable for city distribution.
Parcel delivery is also a relevant context where two-echelon distribution networks operate [30]. With this in
mind, most of the literature considers the one-echelon network topology to characterize distribution operations
where the aim is to find optimal locations, minimize the number of depots, and build routes around the depots
to serve customers [54]. At the tactical level, the notion of multi-echelon distribution is well studied from an
inventory optimization perspective [31], however, its strategic counterpart is less developed [22, 19]. Several
authors have recently recalled the need to expand one-echelon networks by considering an intermediate echelon
of platforms where storing, merging, consolidation or transshipment operations take place [12].

This is specifically the focus of this paper where we address the two-echelon distribution-network design
problem (2E-DDP). This strategic problem aims to decide on the number and location of distribution platforms
(DPs), and the capacity allocated to these platforms to efficiently distribute goods to customer ship-to-bases. It
also integrates the allocation decisions related to the assignment of ship-to-points to DPs, and DPs to primary
warehouses. The overriding challenge of a two-echelon setting is that the location of such DPs does not only
depend on the trade-off between ship-to-point demand versus DP capacity and the type of outbound routes
that could be designed, but is also influenced by the inbound assignment/replenishment policy and the trade-off
between location versus capacity at the preceding echelon. Furthermore, in view of the demand process, the cost
variability over time, and demand uncertainty, the question is when and how much distribution capacity to add
to the network. We address this related issue by examining the periodic capacity decisions for the distribution
network over a multi-period planning horizon. Figure 1 illustrates a typical 2E-DDP where the network is
partitioned into two capacitated distribution echelons. Each echelon has its own assignment-transportation
schema that must be adapted in response to the uncertainty shaping the business horizon.

Some authors consider such a distribution context by explicitly modeling routes to formulate the two-echelon
location-routing problem (2E-LRP) as an extension of the well-known location-routing problem (LRP) [46]. The
2E-LRP is formally introduced in Boccia et al. [12] in an urban context and is further studied by Contardo et
al. [15]. However, the literature on 2E-LRP is still scarce and considers only a deterministic-static setting [54,
22, 19]. Additionally, 2E-LRP and most LRP modeling approaches implicitly assume that location and routing
decisions are made simultaneously for the planning horizon, without considering the hierarchical structure
of the strategic problem stressed here. Alternatively, some papers use a hierarchical approach to the two-
echelon distribution problem, extending the facility location problem (FLP) [33, 21], to the two-echelon facility
location problem (2E-FLP) introduced in [28]. However, most 2E-FLP studies approximate the transportation
and fulfillment characteristics related to the distribution case, ignoring the capacity decisions, and studying
mostly deterministic versions. Furthermore, we note that most production-distribution problems have implicitly
a two-echelon structure, but with a single distribution echelon. They are relying on FLP formulation and
focusing on functional expansions related to production policies/constraints, and specific manufacturing-linked
transportation issues, rather than the strategic needs of the distribution stressed above (see for instance [67, 6,
7, 27]). Comprehensive reviews on FLPs can be found in [49, 26].

Moreover, given the strategic nature of decisions in 2E-DDP, the network must be designed to last for
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Figure 1: A potential Two-Echelon Distribution Network Design Problem (2E-DDP)

several years, fulfilling future requirements and be efficiently adaptable to changes in the business environment
over time. According to the Tompkins report in (2011) [14], there is a significant trend in practice toward
reducing the planning horizon in strategic studies from 4 years to under 2 years due to business uncertainty and
complexity. Accordingly, the traditional deterministic-static representation of the planning horizon must be
replaced by a more realistic stochastic-multi-period characterization of the planning horizon. More specifically,
the horizon is modeled with a set of planning periods shaping the evolution/uncertainty of random factors (e.g.,
demand, costs, etc.), and promoting the structural adaptability of the distribution network. Such decisional
framework leads to a multi-stage stochastic programming problem as addressed here. Despite the fact that
the multi-stage stochastic programming framework is well established [61, 11], its application to distribution
problems is still in its infancy. Recently, some authors [52, 44, 23] raise the need for such a decisional framework
to tackle complex supply chain problems.

The aim of this paper is thus to first define 2E-DDP under uncertain and time-varying demand, and
time-varying DP opening costs, formulated as a multi-stage stochastic program with recourse. Our modeling
framework considers that the planning horizon is composed of a set of planning periods shaping the evolution
of uncertain ship-to-point demand over time. It also assumes that the number and location of DPs are not fixed
a priori and must be decided at the strategic level along the set of planning periods. Furthermore, it considers
strategic assignment-transportation decisions to calibrate DP throughput capacity based on transportation ca-
pabilities. Our approach looks at a hierarchical strategic-operational decisional framework where the emphasis
is on the network design decisions and their impact on the company’s distribution performance. The opera-
tional decisions related to transportation operations are modeled as origin-destination flows, which correspond
to a sufficiently precise aggregate of daily decisions over several products, transportation means, and working
periods, as discussed in [45]. Second, 2E-DDP is an NP-hard stochastic combinatorial optimization problem
since it inherits several complexities from the FLP and LRP models, in addition to the curse of dimensionality
of its multi-stage stochastic setting. This justifies the development of approximate modeling approaches that
allow handling realistic instances and guarantee the generation of good-quality design solutions. Consequently,
we propose solvable two-stage stochastic versions of the 2E-DDP. These models differ in the modeling of dis-
tribution operations, and we discuss their solvability with respect to the capabilities of current solvers. Our
solution methodology builds on a Benders decomposition [10] and on the sample average approximation (SAA)
method [61] to formulate the deterministic equivalent model with an adequate sample size of scenarios. The
results obtained from the extensive experiments show the trade-off between solvability and the quality of the
designs produced by both models. They also illustrate the importance of tackling the stochastic problem by
evaluating the quality of the stochastic solutions. Several managerial insights are also derived on the behavior
of design decisions under the stochastic-multi-period characterization of the planning horizon.

The remainder of this paper is organized as follows. Section 2 summarizes the related works on distribution
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network design models under deterministic and stochastic settings, and the exact solution methods applied to
such models. Section 3 defines the 2E-DDP, presents the characterization of the uncertainty by scenarios, and
provides a comprehensive multi-stage stochastic formulation. Section 4 discusses the solvability of our model
and introduces two-stage stochastic program approximations of the multi-stage model that make it tractable.
Section 5 presents the solution approaches proposed to solve the problem using Benders decomposition and the
SAA technique. It also introduces an evaluation procedure to assess the quality of the stochastic solutions, and
evaluate the performance of the designs obtained. Section 6 reports our computational results and discusses the
quality of the solutions obtained in conjunction with the solvability effort of the associated models. Section 7
provides conclusions and outlines future research avenues.

2. Related works

2E-DDP is closely related to several classes of problems in the operations research (OR) literature that
we classify according to their modeling options. Table 1 presents the main studies related to 2E-DDP and
classifies the related works in terms of network structure (the echelons involved in the network other than the
ship-to-point level), and provides the main distinguishing features in terms of the distribution operations (routes
(R) versus flows (F)) and capacity planning decisions under single/multi-period (SP vs MP) and deterministic
(D)/stochastic (S) settings. Table 1 also highlights the mathematical modeling and the solution approaches
used to tackle the problem.

As mentioned in Table 1, existing studies include different numbers and types of echelons. The echelons differ
in terms of location decisions as an implicit or explicit decision. Boccia et al. [12] and Sterle [65] formulate a static
two-echelon distribution problem as a 2E-LRP where location decisions involve warehouses and distribution
centers, and distribution operations are modeled by routes. They introduce a two-index and three-index vehicle-
flow formulation, and a set-partitioning formulation. Nguyen et al. [50, 51] study a special case of 2E-LRP in
the urban context including one single main warehouse at the first echelon and several potential distribution
centers. Correia et al. [16] focus on a multi-period two-echelon network with central and regional distribution
centers where distribution decisions are approximated by flows. Supply chain networks have provided suitable
applications of FLPs in the last decades. Ambrosino and Scutellà [5] and Georgiadis et al. [29] address designing
a supply chain network comprising a two-echelon distribution schema in addition to inbound flows (i.e., from
suppliers/plants). Further studies use the two-echelon structure in supply chain network design problems [17,
27, 70], in closed loop supply chains [69], and in production-distribution problems [13, 67], but only considering
a single distribution echelon. These studies are oriented toward functional expansions, such as production
policies and constraints, and specific manufacturing-linked transportation issues, rather than focusing on the
strategic needs of the distribution businesses. In this study, we assume that the two echelons are dedicated to
distribution operations, i.e., responsible for the delivery of finished goods (see for instance [16, 29]).

The complexities of distribution systems in real world applications lead to integrating operational decisions at
the strategic level. More specifically, capacity decisions as strategic/design planning decisions and transportation
and distribution policies as operational planning decisions are included in 2E-DDPs, as well as classic location-
allocation decisions. Moreover, considering a time horizon of multiple periods is of great importance to decision-
makers, since facility location decisions are long-term problems. Ambrosino and Scutellà [5], Georgiadis et al. [29]
and Heckmann et al. [34] limit the multi-period settings to operational decisions, and the strategic decisions
are taken once at the beginning of the planning horizon, whereas Correia et al. [16] and Darvish et al. [20]
consider multi-period settings for strategic decisions. In [43], a single design period is used and coupled with
multiple operational periods. Albareda-Sambola et al. [4] tackle a multi-period LRP where two interconnected
time scales for design and operational decisions are considered.

In addition, considering multiple design periods enables making adjustments to location decisions through
opening (O), closing (C), and/or reopening (Re) facilities [52, 20, 53], and adjustments to facility capacities
through reduction and expansion [16, 1, 70] in each design period due to demand variability over time (see
Table 1). Pimentel et al. [53] focus on the one-echelon stochastic capacity planning and dynamic network
design problem in which warehouses can be opened, closed, and reopened more than once during a planning
horizon. This is more suited to new warehouses that are being rented instead of built, since lower fixed setup
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costs are incurred. Heckmann et al. [34] introduce a single echelon risk-aware FLP in which capacity expansions
with different levels are possible in each facility and the risk is evaluated through customer satisfaction. Capacity
expansion are declared as first-stage decision and the selection of the type of expansion level for every period is
depicted as second-stage decision. Jena et al. [40] introduce the one-echelon dynamic facility location problem
with generalized modular capacities that generalizes existing formulations for the multi-period FLP: the problem
with facility closing and reopening, the problem with capacity expansion and reduction, and their combination.

One-echelon distribution problems under uncertainty are studied in the literature in [57, 34] and [59] where
stochasticity is assumed for demand and facility capacities. Additionally, incorporating a multi-period planning
horizon with uncertainty is investigated in Aghezzaf [1], and Zhuge et al. [70] in the supply chain context
with one distribution echelon to meet the variability of demand uncertainty. Zhuge et al. [70] also consider
an uncertain and time varying budget. Georgiadis et al. [29] combine multiple operational periods with the
stochastic setting in a two-echelon distribution configuration where product demand is uncertain and time
varying.

In the 2E-DDP, distribution operations may take the form of routes (R) or direct flows (F) generalizing the
classic problems in the literature: 2E-LRPs [19] and 2E-FLPs [49, 26], respectively. Table 1 shows that the
majority of papers using routes are studied in a deterministic-static setting, and to the best of our knowledge, no
work has yet addressed the multi-period and stochastic settings simultaneously. However, some papers consider
the multi-period and stochastic settings in 2E-FLPs and supply chain network design, but its application to
the two-echelon distribution configuration is still limited.

Furthermore, Table 1 shows that most studies in the deterministic-static and multi-period setting are for-
mulated with a mixed-integer linear program (MILP)(for instance, [15, 16]). Nevertheless, under uncertainty,
stochastic programming approaches are more appropriate as in [29, 34, 70], where the problem is modeled as
a mixed-integer two-stage stochastic program with recourse (TSSP). Integrating a multi-period setting with
uncertainty in long-term problems leads to multi-stage stochastic programming (MSSP) [36]. This approach is
applied in Nickel et al. [52], Albareda-Sambola et al. [3], and Pimentel et al. [53] for the one-echelon distribution
network, and in Zeballos et al. [69] for the closed-loop supply chain context. Ahmed et al. [2] formulate the
multi-period capacity expansion problem as a MSSP where both the demand and investment costs are uncertain.

The multi-stage modeling approach adds complexity to the problems. Theoretical developments and ap-
proximations are proposed in the literature: Guan et al. [32] present cutting planes for multi-stage stochastic
integer programming enhanced by inequalities that are valid for individual scenarios. When a set of scenarios
is assumed for modeling uncertainty in a multi-stage setting, it is possible to build a scenario tree. However, in
practice, accurate approximations of a complex stochastic process with a modest-sized scenario tree represent a
very difficult problem. Thus, several scenario generation methods and reduction techniques are proposed. We
refer the reader to Heitsch and Römisch [35], Dupačová et al. [24, 25], and Høyland and Wallace [37]. Römisch
and Schultz in [56] explore the scenario tree and propose a path-based alternative modeling framework. Later,
Huang and Ahmed [38] used the same framework to improve the modeling of uncertainties in a MSSP context.

Accordingly, no work addresses the multi-stage stochastic framework for the multi-period stochastic 2E-
DDP. Furthermore, although some works propose tackling mixed-integer multi-stage stochastic programs using
exact and heuristic methods based on decomposition techniques and/or scenario sampling methods [58, 11],
further progress is required to solve realistic two-echelon distribution design problems.
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The aforementioned studies mostly use commercial solvers to solve their mathematical programs as in [16,
29, 12]. Exact solution methods are proposed to solve the two-echelon distribution configuration, such as the
branch-and-cut algorithm in [15]. Lagrangian-based heuristics in [5] are the most popular heuristics used in
this context. Metaheuristics are also proposed to solve the deterministic and static 2E-DDP with routes such
as the Greedy Randomized Adaptive Search Procedure (GRASP) in [50], the Multi-Start Iterated Local Search
(MS-ILS) in [51], and the Adaptive Large Neighborhood Search (ALNS) [15]. Sampling methods [60] such as
sample average approximation (SAA) are used in stochastic models to limit the large number of scenarios. This
is applied in supply chain network design problems with a one distribution echelon in [57, 68, 59, 43]. Santoso
et al. [57] integrate the SAA scheme with an accelerated Benders decomposition algorithm to quickly compute
high quality solutions to large-scale stochastic supply chain design problems with a vast number of scenarios.

3. The two-echelon multi-period distribution network design problem

3.1. Problem definition

We consider the business context of a retail company that sources a range of products from a number of
supply sites (e.g., suppliers, manufacturing plants), and stores them at primary warehouses. Without loss of
generality, these products are aggregated in a single product family in our modeling approach because they are
relatively uniform and share the same handling and storage technology [48]. This is done by taking average
cost and demand information related to the entire product family. Under a make-to-stock policy, the company
operates a set of primary warehouses, formerly designed to centralize inventories and ensure distribution to
demand zones periodically. However, the locations of the company warehouses are not necessarily designed
to provide next day and/or same day delivery. To do so, the company needs to deploy an advanced set of
distribution resources to serve ship-to-points with an adequate service level. Strategic facility-location decisions
concern a new intermediate echelon, dimensioning capacitated DPs used to fulfill orders and deliver finished
goods to ship-to-points. This 2E-DDP is illustrated in Figure 1: strategic decisions concern the location of DPs
at the intermediate level and the capacity of the links between the warehouses and the ship-to-locations.

Ship-to-point orders vary in quantity of product demanded on a daily basis. Once a given set of DPs is
deployed, the company periodically determines the quantity of goods to be allocated to each DP: this translates
into a number of full-load trucks required from warehouses to deliver products to a DP. Then, on a daily basis,
the goods are delivered to ship-to-locations through common or contract carriers for each single ship-to-point.
Thus, while the allocation decisions are modeled as periodic origin-destination quantities from warehouses to
DPs, the transportation decisions are modeled as daily transportation links from DPs to ship-to-points. Our
focus is on strategic capacity allocation decisions made by distribution platforms and their transportation
capabilities. The operational shipping decisions are modeled to capture the running cost of strategic decisions.
To ensure feasibility, a recourse delivery option is allowed if the ship-to-points cannot be satisfied from the
set of deployed DPs on a given day. This recourse comes at a higher shipment cost. Our model considers a
long-term planning horizon T that covers a set of successive design planning periods T “ t1, . . . , T u. Such
periods are defined in accordance with the operational dynamics such that a planning period corresponds to a
year, which is typical in the context of DPs to lease. Each planning period covers a set of operational periods,
represented generally in a discrete way by “typical” business days. Figure 2 illustrates the relationship between
the decision planning periods and operational days, and the hierarchical structure of the decision problem. It
also shows that strategic design decisions (location and capacity decisions) could be adapted periodically at
each design period t to align the distribution network to its business environment, especially when operating
under uncertainty. Worth noting is that the design decisions must be made prior to their deployment period
with partial information on the future business environment. After an implementation period, they will be
available for use as shown by the positioning of the arrows in Figure 2. This assumes information asymmetry
between the design level and the operational level, mainly due to the fact that the decisions are not made at the
same time. Therefore, our model has a multi-stage decision structure. At the beginning of the planning horizon,
the here and now design decisions are made, and are thus considered as the first-stage DP design decisions.
Next, at the beginning of each subsequent period (t ą 1), a new opportunity to adapt the distribution network
structure to its future environment is offered, based on the information available at that time. Decisions made
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Figure 2: Decision time hierarchy for the planning horizon under uncertainty

at the beginning of the period t depend on the design decisions up to that period, as illustrated in Figure 2 and
described mathematically in the stochastic 2E-DDP model below.

3.2. Scenario building and tree representation

Uncertain daily demand of ship-to-points is represented by a random variable, which is estimated by a given
probability distribution. Let dj be the random variable for ship-to-point j demand that follows a distribution
probability Fj with a mean value µj0 estimated from historical data until t “ 0. Under a multi-period planning
horizon setting, the random demand process is time-varying. More specifically, a multi-period plausible future
allows capturing factor transitions (inflation-deflation, population density, market stores, etc.) that perturb the
a priori estimation of demand behavior and could thus impact the design decisions. This means that a trend
function is associated with the random variable and the associated distribution probability Fjt with a mean
value µjt to shape demand realization.

The uncertainty is characterized by a set Ω of plausible future scenarios where a scenario ω encompasses
the demand realization for each period t and for all the ship-to-points during a typical business day. Then, at
the beginning of each period t, the information available is updated according to the additional data revealed
up to t. Let Ωt be the subset of distinct scenarios of Ω that share the same realization up to stage t. Hence,
ΩT “ Ω. Thus, djtω will denote the demand of ship-to-point j at period t under scenario ω P Ωt following
the distribution probability Fjt with the parameters µjt. Given the entire planning horizon, a scenario tree T
should be built to characterize the realization of demand for each planning period. When using such stochastic
process, scenario instances can be generated with Monte Carlo methods. At each stage t, a discrete number
of nodes represent points in time where realizations of the uncertain parameters take place and decisions have
to be made. Each node g of the scenario tree, except the root, is connected to a unique node at stage t ´ 1,
called the ancestor node apgq, and to nodes at stage t ` 1, called the successors. We denote with πapgq,g the
conditional probability of the random process in node g given its history up to the ancestor node apgq. The
path from the root node to a terminal (leaf) node corresponds to a scenario ω, and represents a joint realization
of the problem parameters over all periods 1, . . . , T . Partial paths from the root node to intermediate nodes
correspond to the restricted scenarios up to stage t denoted ωt.

Figure 3(a) illustrates a typical multi-stage scenario tree. The scenario probability is obtained by multiplying
the conditional probabilities through the path. The non-anticipativity principle [55] is implemented by requiring
that the decisions related to scenarios that are identical up to a given stage are the same and can therefore be
represented by a single variable. In the following, we use branches of the scenario tree to define recourse variables
where each branch represents a restricted scenario ωt P Ωt [24]. Accordingly, using restricted scenarios, one can
avoid to write the non-anticipativity constraints explicitly. Further, we should point out that an alternative
node-based formulation is presented by Beltran-Royo et al. [8] and used in some studies as in [3, 53]. This latter
is based on the scenario tree nodes to formulate the multi-stage stochastic program.
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Figure 3: Scenario tree representation and notations

3.3. The multi-stage stochastic formulation

The stochastic 2E-DDP can be modeled as a multi-stage stochastic program with a set of scenarios. As
mentioned above, Ωt represents the set of distinct restricted scenarios up to stage t, for all t “ 1, . . . , T :
Ωt “ tω

t : ω P Ωu. For the sake of simplification, we use ω P Ωt when modeling the problem. We also consider
the following notations:

• Sets

precpωq the set of direct ancestors of scenario ω P Ωt, for all t “ 1, . . . , T ´ 1: precpωq “ tω1 P Ωt´1 :
ωτ pωq “ ωτ pω

1q,@τ ă tu.

P set of primary warehouses.

L set of distribution platforms (DPs).

J set of ship-to-points.

• Parameters

ppωq the probability of each scenario ω P Ωt. Note that
ř

ωPΩt
ppωq “ 1 for all t.

Cp is the maximum throughput capacity of primary warehouse p P P (expressed in flow unit for a given
period).

Cl is the maximum capacity of the DP l P L.

Clp is the maximum capacity of transportation used for flows from warehouse p P P to DP l P L.

cljt is the transportation cost per product unit from a DP l P L to ship-to-point j P J at period t P T .

clpt is the unit transportation cost per flow unit from warehouse p P P to DP l P L at period t P T .

fslt is the cost of opening a DP l P L at period t P T .

fult is the cost of operating a DP l P L at period t P T .

cjt is the shipment cost when recourse delivery is employed to cover a proportion of the demand of a
ship-to-point j P J at period t P T .
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Note that since transportation decisions are made for a typical business day, the operational transportation
costs cljt and cjt are annualized to adequately cover the horizon length in the objective function.
The decision variables are:

zltω “ 1 if DP l P L is opened under scenario ω P Ωt, t “ 1, . . . , T , 0 otherwise.

yltω “ 1 if DP l P L is operating under scenario ω P Ωt, t “ 1, . . . , T , 0 otherwise.

xlptω “ Inbound allocation from warehouse p P P to DP l P L expressed in number of truckload units contracted
to deliver from the warehouse under scenario ω P Ωt, t “ 1, . . . , T .

vljtω “ fraction of demand delivered from DP l P L to ship-to-point j P J under scenario ω P Ωt, t “ 1, . . . , T .

sjtω “ fraction of demand of ship-to-point j P J satisfied from a recourse delivery under scenario ω P Ωt, t “
1, . . . , T (i.e., external shipment, not from DPs).

The deterministic equivalent formulation for the multi-stage stochastic problem takes the form:

(MS-M) min
ÿ

tPT

ÿ

ωPΩt

ppωq

ˆ

ÿ

lPL

“

pfult yltω ` f
s
lt zltωq `

ÿ

pPP
clpt Clpxlptω

‰

`
ÿ

jPJ
djtωr

ÿ

lPL
cljt vljtω ` cjt sjtωs

˙

(1)

S. t.
ÿ

lPL
Clpxlptω ď Cp @p P P, t P T , ω P Ωt (2)

ÿ

pPP
Clpxlptω ď Clyltω @l P L, t P T , ω P Ωt (3)

yltω ´ yltprecpωq ď zltω @l P L, t P T , ω P Ωt (4)
ÿ

jPJ
djtω vljtω ď

ÿ

pPP
Clpxlptω @l P L, t P T , ω P Ωt (5)

ÿ

lPL
vjltω ` sjtω “ 1 @j P J , t P T , ω P Ωt (6)

xlptω P N @l P L, p P P, t P T , ω P Ωt (7)

yltω, zltω P t0, 1u @l P L, t P T , ω P Ωt (8)

vljtω ě 0 @l P L, j P J , t P T , ω P Ωt (9)

sjtω ě 0 @j P J , t P T , ω P Ωt (10)

The objective function (1) seeks to minimize the total expected cost for the design and operational costs
throughout the planning horizon. The first and second terms refer to the design costs that include the operating
and opening costs for DPs, and the inbound allocation cost to DPs from warehouses. The third term represents
the transportation cost in the second echelon (from DPs to ship-to-points) as well as the external delivery
costs. Constraints (2)-(3) express capacity limit on warehouses and DPs, respectively, over stages. In addition,
constraints (3) force that a delivery is possible to a DP only if it is operating. Constraints (4) define the setup
of the DPs over stages. These constraints manage the status of the DPs operating from one stage to the next
and set their opening. Constraints (5) aim to cover the demand of ship-to-points from the operating DPs
without exceeding their inbound allocation from warehouses. Constraints (6) ensure that a ship-to-point is
either satisfied through the opened set of DPs or through a recourse delivery. All the other constraints (7)-(10)
define the decision variables of the problem. Observe that |Ω1| “ 1 and therefore decisions px, y, zq at the first
stage represent here and now decisions concerning the design. Their counterpart at later periods represents
recourse on the design in this multi-stage process. On the other hand, allocation decisions pv, sq allow evaluating
the operational cost of the distribution system given design px, y, zq that is fixed in each period.

4. Two-stage stochastic program approximations

The above multi-stage stochastic formulation of the 2E-DDP highlights the hierarchical structure of the
problem and the scenario-based relation between the different decisions. For realistic size problems, explicitly
tackling such multi-stage stochastic programs using exact and heuristic methods is beyond the scope of current
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technologies [58, 11]. We build here on the reduction [42, 63] and relaxation [62] approaches recently applied to
transform the multi-stage stochastic program to a two-stage stochastic program, and transform the multi-stage
stochastic program (1)-(10) into a two-stage stochastic program that is sufficiently accurate to capture the
essence of the problem while being solvable in practice.

Accordingly, one modeling approach consists in transferring from the MS-M model all the design decisions
of the T periods (location and capacity-allocation) to the first-stage in order to be set at the beginning of the
horizon. In this case, only first-stage design decisions (t “ 1) are made here and now, but subsequent design
decisions (t ą 1) (see Figure 2) are essentially used as an evaluation mechanism. These latter design decisions
for periods (t ą 1) are deferrable in time according to their deployment period. Therefore, the obtained model
offers an approach to set the design decisions for (t “ 1) with an optimistic evaluation at the beginning of
the horizon of subsequent design decisions without losing its hedging capabilities. This approach gives rise
to the two-stage stochastic location capacity-allocation model. This model is challenging to solve due to the
combinatorial difficulty of its mixed-integer program and the high number of scenarios. Another modeling
approach consists in transferring from the MS-M only the T periods’ design decisions related to the location
decisions to the first-stage, and relaxing the capacity-allocation decisions to the second-stage for all periods.
These latter capacity-allocation decisions now become part of the recourse problem and thus scenario-dependent
(see Figure 2). This approach gives rise to the two-stage stochastic flow-based location-allocation model.

The discussion above impacts the scenario building approach: for stages t ě 2, the scenario tree construction
algorithm can reduce the number of nodes to a fan of individual scenarios that prescribes the random parameter
value for the full time horizon with a probability ppωq, ω P Ωt. This is illustrated in Figure 3(b) where scenarios
are independent of the number of periods, as discussed in [24]. Thus, the scenario representation fan of the
planning horizon fits well with our two-stage stochastic programming and clearly simplifies the generation of
scenarios. The rest of the section provides the formulation of these two design models for the 2E-DDP.

4.1. Location and capacity-allocation model (LCA)

In this two-stage model, the design decisions for (t ą 1) can be taken at the beginning of the planning
horizon and do not depend on the history up to period t. In this case, the first-stage decisions consist in
deciding the DPs to open and to operate as well as the capacities assigned to DPs from warehouses (i.e., the
first echelon of the network) during T periods. In complement, the second-stage decisions look forward to the
distribution operations in the second echelon of the network (i.e., from DPs to ship-to-points) and the recourse
deliveries. This formulation is referred to as the location and capacity-allocation model (LCA).

The decision variables are defined below:

xlpt “ the number of full truckloads assigned from warehouse p P P to DP l P L at period t P T .

ylt “ 1 if DP l P L is operating at period t P T .

zlt “ 1 if DP l P L is opened at period t P T .

vljωt “ fraction of demand delivered from DP l P L to ship-to-point j P J under demand scenario ω P Ωt.

sjωt “ fraction of demand of ship-to-point j P J satisfied through external delivery under scenario ω P Ωt of
period t (i.e., that ship-to-point is not delivered to from DPs).

We denote the set of feasible combinations of first-stage decisions ylt with y, zlt with z and xlpt with x.
Then, the LCA is formulated as a mixed-integer two-stage stochastic linear program:
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(LCA) min
x,y,z,v,s

EΩhpx, y, z, ωq “ min
ÿ

tPT

ÿ

lPL
pfult ylt ` f

s
lt zltq `

ÿ

tPT

ÿ

lPL

ÿ

pPP
clpt Clpxlpt `

ÿ

tPT
EΩt rQtpx, ωqs (11)

S. t.
ÿ

lPL
Clpxlpt ď Cp @p P P, t P T (12)

ÿ

pPP
Clpxlpt ď Cl ylt @l P L, t P T (13)

ylt ´ ylt´1 ď zlt @l P L, t P T (14)

xlpt P N @l P L, p P P, t P T (15)

ylt, zlt P t0, 1u @l P L, t P T (16)

where Qtpx, ωq is the solution of the second-stage problem:

Qtpx, ωq “ min
v,s

ÿ

jPJ
djωtr

ÿ

lPL
cljt vljωt ` cjωt sjωts (17)

S. t.
ÿ

jPJ
djωt vljωt ď

ÿ

pPP
Clpxlpt @l P L (18)

ÿ

lPL
vjlωt ` sjωt “ 1 @j P J (19)

vljωt ě 0 @l P L, j P J (20)

sjωt ě 0 @j P J (21)

The objective function (11) is the sum of the first-stage costs and the expected second-stage costs. The
first-stage costs represent the opening DP cost, the operating DP cost, as well as the capacity cost induced by
the number of truckloads associated with DPs from warehouses. The objective function of the second stage (17)
consists in minimizing the cost of the total flow delivered from DPs to ship-to-points and the cost of the recourse
when the ship-to-point is satisfied partially or totally through an extra delivery. Constraints (12) ensure that
the quantity delivered from a warehouse do not exceed its capacity. Constraints (13) guarantee the capacity
restriction at an operating DP. Constraints (14) define the location setup. To use a DP, opening decisions
must be activated in the same period, unless set as active in a preceding period. Constraints (15)-(16) describe
the feasible set for the first-stage variables. Constraints (18) aim to cover the ship-to-point demand from the
opened DPs. Constraints (19) ensure that a ship-to-point is either satisfied totally or partially through the
designed network or from the extra delivery option. Constraints (20)-(21) are the non-negativity constraints
for the second-stage variables.

In the LCA model presented above, the first-stage decisions are projected out in the recourse problem through
the capacity assignment variables xlpt, as expressed in constraints (18). However, the inclusion of assignment-
transportation xlpt as integer first-stage decision variables may complicate its resolution, particularly for large
size instances.

4.2. Flow-based location-allocation model (LAF)

As mentioned, the first echelon (warehouses-DPs) distribution operations are represented by a through-
put capacity based on the transportation capabilities in the LCA model. Such modeling option necessitates
the inclusion of capacity assignment-transportation as the integer first-stage decision variables xlpt, and may
complicate its resolution. A common alternative modeling approach is to consider continuous flows as capacity-
allocation variables, which are part of the second-stage and thus scenario-dependent variables. In such case, the
first echelon distribution operations are represented by a set of origin-destination links, xlptω, and refer to the
proportion of truckloads assigned from warehouse p to DP l under scenario ω at period t. With such modeling
approach, a two-stage stochastic program is obtained where location decisions (opening and operating DPs) are
first-stage decisions, and the flow-based transportation decisions in both echelons are second-stage decisions,
denoted as the flow-based location-allocation model (LAF). Given the LCA program, constraints (12), (13),
and (15) should be adjusted to be part of the recourse problem, and thus replaced by (24), (25), and (28),
respectively. Constraint (18) is also substituted by (26). The LAF can then be written as:
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(LAF) min
y,z,x,v,s

EΩhpy, z, ωq “ min
ÿ

tPT

ÿ

lPL
pfult ylt ` f

s
lt zltq `

ÿ

tPT
EΩt rQtpy, ωqs (22)

S. t. (14) and (16)

where Qtpy, ωq is the solution of the second-stage problem of the LAF formulation:

Qtpy, ωq “ min
x,v,s

ÿ

lPL

ÿ

pPP
clpt Clpxlptω `

ÿ

jPJ
djωtr

ÿ

lPL
cljt vljωt ` cjωt sjωts (23)

S. t.
ÿ

lPL
Clpxlptω ď Cp @p P P (24)

ÿ

pPP
Clpxlptω ď Cl ylt @l P L (25)

ÿ

jPJ
djωt vljωt ´

ÿ

pPP
Clpxlptω ď 0 @l P L (26)

ÿ

lPL
vjlωt ` sjωt “ 1 @j P J (27)

xlptω ě 0 @l P L, p P P (28)

vljωt ě 0 @l P L, j P J (29)

sjωt ě 0 @j P J (30)

In the LAF model, the recourse problem is linked to the problem by constraints (25), where first-stage
decisions are projected out through the operating DP variables (ylt). Given the LCA and LAF models, the
next section proposes a solution methodology to solve these two-stage multi-period stochastic versions of the
2E-DDP. Hereafter, we denote for each model o P tLCA, LAFu, the design vector Xpoq with XpLCAq “ tx, y, zu
and XpLAFq “ ty, zu, respectively.

5. Solution methodology

For real-scale instances of the aforementioned models, one would have to manage the inherent combinatorial
complexity and the extremely large set of multi-period demand scenarios of the 2E-DDP under uncertainty.
Therefore, our solution approach combines a scenario sampling method and a decomposition schema for stochas-
tic models to find the best solution quality-solvability trade-offs. The sample average approximation (SAA)
technique is used to handle the large set of scenarios and sample the most adequate sample size [62]. This
approach has been applied to stochastic network design problems in [57, 59, 43]. The detailed adaptation of
the technique to our stochastic models is provided in Appendix A.1. Thus, the SAA technique gives a SAA
program for each proposed model. Next, we propose a reformulation of both models based on the Benders
decomposition scheme [10, 9], adapted to the two-stage and multi-period setting of the stochastic programs
produced. Furthermore, the value of the stochastic solution (VSS), the loss using the skeleton solution (LUSS),
and the loss of upgrading the deterministic solution (LUDS), proposed in [47], are assessed as indicators of the
quality of the stochastic solutions produced. The reformulation of these models and the mathematical functions
to measure these indicators are detailed in Appendix A.4. Finally, a scenario-based evaluation procedure is in-
troduced to post-evaluate the alternative design solution produced by the LCA and the LAF models on various
problem-instances, and thus discuss their design structure and the quality of the stochastic solutions obtained.

5.1. The Benders decomposition

Given the combinatorial complexity of the stochastic 2E-DDP, cutting plane algorithms such as Benders
decomposition could be suitable to enhance its solvability. The Benders decomposition is a well-known partition-
ing method applicable to mixed-integer programs [10, 9]. In the Benders decomposition, the original problem
is separated into a master problem and a number of sub-problems, which are typically easier to solve than the
original problem. By using linear programming duality, all sub-problem variables are projected out, and the
master problem contains the remaining variables and an artificial variable representing the lower bound on the
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cost of each sub-problem. The resulting model is solved by a cutting plane algorithm. In each iteration, the
values of the master problem variables are first determined, and the sub-problems are solved with these variables
fixed. An optimal solution of the master problem provides a lower bound, and this solution is transmitted to
the sub-problems to construct new ones. If the sub-problems are feasible and bounded, an optimality cut is
added to the master problem, otherwise a feasibility cut is added. The solution of the feasible sub-problems
provides the valid upper bound. By adding the new Benders cuts, the master problem is resolved, and the
Benders decomposition algorithm is repeated continuously until the difference between the lower bound and
the upper bound is small enough or zero.

In this paper, we introduce a Benders decomposition algorithm to solve the two SAA programs related
to the LCA and LAF models based on a set of sampled scenarios ΩN . In this subsection, we present the
Benders reformulation developed for the (LCA(ΩN )) program and keeping the reformulation for the (LAF(ΩN ))
in Appendix A.2. In the (LCA(ΩN )) program, integer variables are first-stage decisions, while continuous
variables belong to the second-stage. If the first-stage decisions are fixed, the resulting sub-problem can be
decomposed into |T | ˆ |ΩN | sub-problems, one for each period t P T and each scenario ω P ΩN . This is
inspired by the original idea of applying Benders decomposition to stochastic integer programs, also known as
the L-shaped method [64, 11]. Given XpLCA(ΩN )q “ tx, y, zu, the fixed vector related to the (LCA(ΩN )),
the expected total cost of the second-stage decisions, denoted with φpx, y, zq can be calculated as φpx, y, zq “
1
N

ř

tPT
ř

ωPΩNt
φtωpx, y, zq, where φtωpx, y, zq is the total second-stage cost for each period t and each scenario

ω. This cost is obtained through solving the following primal sub-problem (PSωt):

(PSωt) φtωpx, y, zq “ Qtpx, ωq “ min
ÿ

jPJ
djωtr

ÿ

lPL
cljt vljωt ` cjωt sjωts (31)

S. t. (18)´ (21)

The (PSωt) is always feasible because the demand can be satisfied from an extra delivery option, i.e., sjωt,
which is uncapacitated. We denote with αl and βj the dual variables associated with constraints (18) and (19),
respectively. Accordingly, the dual of (PSωt) for each t and ω, called the dual sub-problem (DSωt), can be
formulated as:

(DSωt) φtωpx, y, zq “ max
ÿ

lPL

ÿ

pPP
Clp xlpt αl `

ÿ

jPJ
βj (32)

S. t. djωt αl ` βj ď djωt cljt @l P L, j P J (33)

βj ď djωt cjωt @j P J (34)

αl ď 0 @l P L (35)

βj P R @j P J (36)

We define as ∆tω the polyhedron under the constraints (33) and (34) of (DSωt). Let P∆tω be the set
of extreme points of ∆ “ Ytω∆tω. We introduce an additional variable utω representing the total expected
second-stage decision cost per t and ω. Thus, the Benders master problem is written as:

(BMP) min
ÿ

tPT

ÿ

lPL
pfult ylt ` f

s
lt zltq `

ÿ

tPT

ÿ

pPP

ÿ

lPL
clptClpxlpt `

1

N

ÿ

tPT

ÿ

ωPΩN
t

utω (37)

S. t. (12)´ (16)

utω ´
ÿ

lPL

ÿ

pPP
Clp xlpt αl ě

ÿ

jPJ
βj @t P T , ω P ΩNt , pαl, βjq P P∆tω (38)

utw ě 0 @t P T , ω P ΩNt (39)

Constraints (38) represent the Benders optimality cuts.
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5.2. Evaluation procedure

When using a sampling approach, the assessment of the design solutions produced by the two models
presented in Section 4 is restricted to the set of scenarios considered. To better appreciate the performance of
the produced design solutions, we develop a complementary evaluation procedure. This relies on the fact that
the higher the evaluation sample size, the more precise the assessment of the design solution. It also builds
on the ability of this post-optimization phase to introduce additional performance measures to appreciate
the robustness of the solution, which were not part of the optimized model. In practice, a design solution
evaluation procedure would be as close as possible to the company’s real operational problem. Hereafter, we
consider the second-stage formulation of the LCA and LAF models as an evaluation model that practically
refers to operational-level decisions. In addition, we base the evaluation on a much larger sample of Monte
Carlo scenarios, N e " N (N e “ |ΩNe

t |), than those used to generate the candidate designs. Thus, for a given
design vector pXtpoq at period t obtained from the SAA program o P tLCA(ΩN ), LAF(ΩN )u, we compute
the cost value for each scenario ω P ΩNe

t , Qtp pXtpoq, ωq, using the respective sub-model. More specifically,
in the (LCA(ΩN )) program, the design vector is pXt(LCA(ΩN ))=tx̂t, ŷt, ẑtu, and the Qtp pXt(LCA(ΩN )), ωq is
evaluated by (17)-(21). On the other hand, for (LAF(ΩN )), the design vector is pXt(LAF(ΩN ))=tŷt, ẑtu, and the
Qtp pXt(LAF(ΩN )), ωq is evaluated by (23)-(30). We notice that the evaluation model is separable per scenario
since the design decisions are fixed. This then allows considering a much larger scenarios sample.

First, a measure of the expected value Vet poq for each design period t is computed using the evaluation
sample ΩNe

. Second, a downside risk measure is computed to assess the variability of each design at period t.
More specifically, the variability measure is the upper semi-deviation from the mean, MSDtpoq, for each model
o P tLCA(ΩN ), LAF(ΩN )u, and is formulated as:

MSDtpoq “
1

N e

ÿ

ω“1,...,Ne

max

ˆ

0;Qtp pXtpoq, ωq ´ EΩNe rQtp
pXtpoq, ωqs

˙

This measure was introduced by Shapiro et al. in [62], and helps assess the penalization of an excess of a
realization ω over its mean. The evaluation procedure is detailed in the algorithms 1 and 2 for LCA(ΩN )and
LAF(ΩN ), respectively.

Algorithm 1 Evaluation procedure LCA(ΩN ) model

1: for all t “ 1, . . . , T do
2: for all ω “ 1, . . . , Ne do
3: Evaluate Qtp pXtpLCApΩ

N
qq, ωq using the program (17)-(21)

4: end for
5: Evaluate Vet pLCApΩN qq “

ÿ

lPL
pfult ŷlt ` f

s
lt ẑltq `

ÿ

lPL

ÿ

pPP
clpt Clpx̂lpt ` EΩNe

t
rQtp pXtpLCApΩ

N
qq, ωqs

6: Evaluate MSDtpLCApΩ
N
qq

7: end for

Algorithm 2 Evaluation procedure for LAF(ΩN ) model

1: for all t “ 1, . . . , T do
2: for all ω “ 1, . . . , Ne do
3: Evaluate Qtp pXtpLAF pΩ

N
q, ωq using the program (23)-(30)

4: end for
5: Evaluate Vet pLAF pΩN qq “

ÿ

lPL
pfult ŷlt ` f

s
lt ẑltq ` EΩNe

t
rQtp pXtpLAF pΩ

N
qq, ωqs

6: Evaluate MSDtpLAF pΩ
N
qq

7: end for

6. Computational results

In this section, we describe the experimental study carried out and the related results. First, we present the
data instances used in the experiments. Second, we provide the calibration of the design models using the SAA
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method. Then, we discuss the results in terms of the solvability of the stochastic models and the value of the
stochastic solutions. Third, we summarize the obtained results and evaluate the different designs produced by
the two models in terms of design structure and design value. All experiments were run using a cluster Haswell
Intel Xeon E5-2680 v3 2.50 GHz of two processors with 12 Cores each and 128 Go of memory. We used CPLEX
12.7 to solve the linear programs.

6.1. Test data

In our experiments, we generated several 2E-DDP instances based on the following factors: the problem
size, the network characteristics, and the demand processes. The tested size problems are shown in Table 2.
The network incorporates several possible configurations depending on the number of different DP locations
(# DPs) and the number of different capacity configurations per DP location (# capacity configurations).
Thus, multiplying these two parameters gives the number of potential DPs, |L|. In the case of several capacity
configurations, the second configuration has a higher capacity. Ship-to-points are realistically scattered in the
geographic area covered (160000km2). The number of warehouses (|P|) is also given. A 5-year planning horizon
is considered in this context, which is partitioned into 5 design periods in the tests (i.e., |T | “ T “ 5).

Table 2: Test problems size

Problem instance (P) |J | |P| # DPs # capacity con-
figurations

|L|

P1 50 2 4 1 4
P2 50 3 8 1 8
P3 50 4 8 2 16

P4 75 3 8 1 8
P5 75 4 8 2 16

P6 100 3 8 1 8
P7 100 4 8 2 16

We consider simple and compound demand processes. The simple process refers to a normally distributed
demand level per ship-to-point j and per period t. The compound process refers to a Bernoulli-normal distri-
bution, where the Bernoulli process shapes the demand occurrence for a given ship-to-point j at period t with
a probability pjt, j P J , t P T . In both processes, the normal distribution refers to the demand quantity with
a mean value µjt and a standard deviation σjt, j P J , t P T . In addition, we consider a network including
large-size (L) and medium/small-size (S) ship-to-points reflected by the historical mean value µLj0 and µSj0 for a
given ship-to-point j, respectively. We set large-size ship-to-points that represent 20% of the network with an
associated demand occurrence rate of pLjt “ 0.95 (in contrast to a rate of pSjt “ 0.8 for small-size ship-to-points).
Moreover, we assume that each ship-to-point mean demand µjt depends on a time varying trend, based on
a factor δj and on the historical mean µj0. The coefficient of variation (

σjt
µjt

) is a fixed parameter for each

ship-to-point over periods. Two alternative time-varying trends are tested here with respect to the two demand
processes to obtain the three problem instances shown in Table 3. The normal distribution with a regular trend
(NRT) refers to a ship-to-point mean value that is related to the historical mean at t “ 0, and following a
regular inflating factor δj over the periods of the planning horizon. The same regular trend is applied with
the compound Bernoulli-normal distribution and is denoted with CRT. Finally, the normal distribution with
a dynamic trend (NDT) refers to the case where each ship-to-point mean demand varies dynamically over pe-
riods according to a perturbation factor δjt linked to the preceding period. The values and ranges for all the
parameters with regard to the demand process are given in Table 3.

Warehouse and DP capacities are uniformly generated with respect to the demand level of the problem
instance in the unit intervals r25k, 32ks and r7k, 11ks, respectively. The truckload capacities between warehouses
and DPs are estimated in the interval r1700, 2500s. High and low levels of fixed costs are defined and denoted
with LL and HL, respectively. The fixed costs for each DP are generated per period t, respectively in the ranges
r100k, 150ks and r3500, 6500s, proportionally to its maximum capacity. An inflation factor is also considered to
reflect the increase of the cost of capital on a periodic basis with r “ 0.005. All the locations of the network
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Table 3: Demand processes

Normal distribution
NRT µjt “ µj0p1` δj ˆ tq δj P r0, 0.1s
NDT µjt “ µjt´1p1` δjtq δjt P t0.15,´0.2, 0u

Compound Bernoulli-Normal distribution CRT µjt “ µj0p1` δj ˆ tq δj P r0, 0.1s

µLj0 P r300; 400s, µSj0 P r150; 220s,
σjt
µjt

“ 0.25, pLjt “ 0.95 and pSjt “ 0.8

´100 0 100 200 300

´100

0

100

200

300

400

(a) Dispersed ship-to-points instance (Dis)

´100 0 100 200 300

0

200

400 Warehouses

DPs

Ship-to-points

(b) Concentric ship-to-points instance (Con)

Figure 4: Ship-to-points scattering in the space for P6

(warehouses, DPs, ship-to-points) are normally scattered in a given space as shown in the instances of Figure 4.
As illustrated, we separate in the instances two possible configurations according to the disposition of the ship-
to-points: dispersed (Dis) or concentric (Con). The transportation costs between the network nodes correspond
to the Euclidean distances, multiplied by a unit load cost per distance unit and the inflation factor r. The
unit load cost per distance unit is different in each echelon to reflect the different loading factors. The external
delivery cost cjt is calibrated to be higher than internal distribution costs with cjt P r2200; 3000s). To apply
the SAA technique, we used in our experiments M “ 6 samples, a reference sample N 1 “ 2000, and running
N P t100, 200, 500u generated scenarios. We refer to s P ts1, s2, . . . , s6u as the sample used, and denote with s̄
the average value over the 6 samples. We considered an evaluation sample size N e “ 2000.

Combining all the elements above yielded 84 problem instances. Each instance type is a combination of
pa, b, c, dq, a P tDis,Conu, b P tP1, P2, P3, P4, P5, P6, P7u, c P tLL,HLu, d P tNRT,NDT,CRT u. Each
instance problem is denoted by the ship-to-points configuration a, the problem size b, the cost level c, the
demand process d, the sample size N , and its references s. It has the format a-b-c-dNs (for example, Dis-P1-
LL-NRT-500s1).

6.2. Results

6.2.1. Models’ solvability analysis

The first solution quality-seeking step for stochastic models is the calibration of the number N of scenarios to
include in the optimization phase. Such calibration is carried out using the SAA algorithm 3 in Appendix A.1,
and the quality of the obtained solutions is evaluated using the statistical optimality gap. Table 4 summarizes
the average optimality gap values for the sample size N “ 500 for the medium and large problem instances (P4
to P7). The optimality gap is expressed as a percentage of the objective function value of the best design found
for a given instance. The results for N P t100, 200u and for P1 to P3 are given in Table B.11 of Appendix B.

We can see in this table that (LCA(ΩN )) provides satisfactory results, generally less than 1% for most
instances starting from N “ 500, for all the demand processes investigated. Our experiments show that the
optimality gap value improves as the sample size N grows and converges to 0%, as illustrated in Table B.11
of Appendix B. Moreover, we note that the design solutions produced with alternative samples (M “ 6) of 500
scenarios provide the same location decisions. In the same way, regarding the (LAF(ΩN )) model, the results
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Table 4: Average statistical optimality gap values for P4-P7

gap500,2000 (%)

LCA(ΩN) LAF(ΩN)

P4-NRT-LL-500s̄ 0.05 0.02
P4-NDT-LL-500s̄ 0.01 0.01
P4-CRT-LL-500s̄ 0.28 -0.04

P5-NRT-LL-500s̄ 0.08 0
P5-NDT-LL-500s̄ 0.16 0.01
P5-CRT-LL-500s̄ 0.31 -0.04

P6-NRT-LL-500s̄ 0.14 0
P6-NDT-LL-500s̄ 0.12 -0.01
P6-CRT-LL-500s̄ 0.29 -0.01

P7-NRT-LL-500s̄ 0.18 0
P7-NDT-LL-500s̄ 0.01 0.01
P7-CRT-LL-500s̄ 0.16 -0.01

Table 5: Evaluation of the stochastic solution

P2- P4- P6-

Indicators LCA(ΩN ) LAF(ΩN ) LCA(ΩN ) LAF(ΩN ) LCA(ΩN ) LAF(ΩN )

LL-NRT-500s̄
zV SSp%q 22.82 8.13 45.47 0.6 95.98 0
{LUSSp%q 13.67 8.13 0 0.6 26.3 0
{LUDSp%q 4.13 0.51 0 0.16 1.2 0

LL-NDT-500s̄
zV SSp%q 3.85 0 93.63 0 101.42 0
{LUSSp%q 2.33 0 28.6 0 0.87 0
{LUDSp%q 0.95 0 3.38 0 1.0 0

LL-CRT-500s̄
zV SSp%q 89.49 0 57.08 0 222.01 0.04
{LUSSp%q 11.26 0 11.7 0 0.09 0.04
{LUDSp%q 0.59 0 1.62 0 0.4 0.04

show a very low gap, almost less than 0.1%, which underlines the sufficiency of this sample size. Accordingly,
the sample size of N “ 500 scenarios is considered satisfactory in terms of solvability and solution quality, and
retained for the rest of the experiments with both models (LCA(ΩN )) and (LAF(ΩN )).

With this in mind, we next propose exploring the deterministic counterparts of both models and evaluate the
difference between the deterministic and the stochastic solutions using the indicators proposed in [47]. These
indicators are detailed in Appendix A.4. Table 5 provides an evaluation of the estimated value of stochastic
solution (zV SS), the estimated loss using the skeleton solution ( {LUSS), and the estimated value of loss of

upgrading the deterministic solution ( {LUDS) as a percentage of the expected value of the recourse problem

(yRP ) for problem sizes P2, P4, and P6 with both models.

Table 5 highlights a large value for the zV SS compared to yRP in the (LCA(ΩN )) program, and a lower value
in the (LAF(ΩN )) program: it can reach 96% in the (LCA(ΩN )) with problem size (P6), and 8% in (LAF(ΩN ))

with (P4), under the NRT demand process. The large zV SS values obtained in some cases with (LCA(ΩN ))
are partly due to the high variability of the objective function value for these instances. This variability is
due to the information assumed when the capacity-allocation decisions of all the periods are anticipated at
the first-stage. Conversely, this effect is attenuated in the case of (LAF(ΩN )) because the capacity-allocation
decisions are scenario-dependent and thus part of the recourse problem.

Regarding the skeleton solution from the deterministic model, we obtain {ESSV equal to or higher than
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Table 6: The average computational time (CPU)

LCA(ΩN) LAF(ΩN)

P Variables
Constraints

CPU Variables
Constraints

CPU

Binary Integer Continuous DEF BD Binary Continuous DEF BD

P1 40 80 625000 135050 23m7s 2m54s 40 645000 150020 9m49s 2m29s
P2 80 120 1125000 145095 9h10m 47m49s 80 1185000 172540 2h11m 10m23s
P3 160 320 2125000 145180 35h20m 13h3m 160 2285000 285080 21h30m 1h17s
P4 80 120 1687500 187595 10h38m 1h5m43s 80 1747500 235040 4h 14m41s
P5 160 320 3187500 187180 - 15h15m 160 3347500 347580 - 2h53m
P6 80 120 2250000 270095 39h42m 2h15m 80 2310000 297540 8h26m 20m45s
P7 160 320 4250000 270180 - 40h40m 160 4410000 410080 - 5h

-: Not solved within time limit 48 hours

yRP in the (LCA(ΩN )) model. This leads to a {LUSS greater than zero, but remains less than the zV SS

(i.e., 0 ă {LUSS ď zV SS). The positive {LUSS obtained in our evaluation of the (LCA(ΩN )) model means
that the deterministic solution tends to open non-optimal DPs, and sub-optimally allocate DP capacity from
warehouses. The same statement is observed with (LAF(ΩN )) where the variability reaches 8% under the NRT
demand process. In addition, for many problem instances with the (LAF(ΩN )) program, the perfect skeleton
solution is captured. The last measure evaluates the upgradability of the deterministic solution to the stochastic
solution. The table indicates that (LCA(ΩN )) presents a small and non-zero {LUDS value (about 4% and 1%
for P2 and P6, respectively, in (LCA(ΩN )) and less than 0.5% for P2 in (LAF(ΩN )). This confirms the non-
upgradability of the deterministic solution for problem sizes P2 and P6. The results using the NDT and the
CRT demand processes also validate the high value of the stochastic solution compared to the deterministic
counterpart for (LCA(ΩN )). In this case, the zV SS value increases as the demand variability grows, and reaches

200% of the yRP for the CRT demand process. On the other hand, the (LAF(ΩN )) model shows a low variability
of the stochastic solutions with the NDT and CRT demand processes. These primary results show the value of
investigating the stochastic formulations of the 2E-DDP. One may also conclude that (LCA(ΩN )) is much more
sensitive to demand uncertainty due to the anticipation of the capacity-allocation decisions at the first stage.

Finally, solvability is a crucial issue that needs to be taken into consideration given the complexity of
stochastic programming models. Table 6 provides the average computational time (CPU) for the two proposed
models. It compares the running time of the deterministic equivalent formulation (DEF) when solving with a
commercial solver (Cplex) and when applying the Benders decomposition (BD). The results show the efficiency
of the BD approach in considerably reducing the running time. The BD running time is 4 to 18 times less
than using Cplex for DEF for (LCA(CΩN )) where the higher difference (18 times faster) is observed for P6.
In the case of (LAF(ΩN )), the efficiency of BD is also significant, namely, 25 times faster for P6. Moreover,
the table indicates that the CPU(s) grows as the problem size increases, clearly a further complexity with P3,
P5, and P7 where two capacity configurations are considered. We also observe that (DEF) cannot be solved to
optimality for problem instance (P5) and (P7) within the time limit of 48 hours. Nevertheless, the (P7) problem
instance is solved to optimality with the BD approach within 40 hours and 5 hours for the (LCA(ΩN )) and the
(LAF(ΩN )) model, respectively. Further, Table 6 confirms the huge discrepancy between the solved models in
terms of complexity and consequently running times. The (LAF(ΩN )) program seems easier to tackle, where
the CPU(s) is 3 to 12 times less than in (LCA(ΩN )). The high computational time observed in (LCA(ΩN ))
is mainly due to the complexity of the integer capacity variables, and thus the combinatorial nature in the
problem, which makes it intractable for larger instances. These results also confirm the importance of the
development of the Benders decomposition approach to solve a large scale 2E-DDP.

6.2.2. Design solutions analysis

In this subsection, we provide an analysis of the design solutions produced by the two models proposed to
deal with the stochastic 2E-DDP. Three facets are relevant: 1) the global performance of the design solutions
in terms of the expected value and the expected mean semi-deviation (MSD) value, 2) the sensitivity of DP
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location decisions to uncertainty under various problem attributes, and 3) the behavior of the capacity-allocation
decision in a multi-period and uncertain setting. These analyses are based on the numerical results of the 84
problem instances described above. We recall that the evaluation is based on the procedures given in 1 and 2
for the LCA and LAF models, respectively, with a large evaluation sample of N e “ 2000 scenarios.

Design solutions performance

To start, Table 7 describes relative deviations to the best value recorded on the expected value, and the
MSD for the (LCA(ΩN )) model using large-size problems (P6 and P7) contrasted with the NRT, NDT, and
CRT demand processes. When looking at the solutions’ performance in terms of expected value, we observe
that the designs produced by the alternative samples present a small deviation, often less than 0.5%, which
clearly indicates the stability of the design structure over the samples. Verter and Dincer in [66] show that
location decisions tend to be highly driven by the network topology, as is the case in our results. The highest
deviations observed are 0.48% for P6-CRT and 1.87% for P7-NDT, deriving from the slightest sensitivity of
the capacity-allocation decisions to the optimization sample. When inspecting the MSD measure, we observe a
higher deviation between the design solutions, which is due to the relatively small mean semi-deviation values
(about 8k). Also, we underline that for a given problem instance, the design solution presenting the lowest MSD
is generally different from that providing the lowest expected value. This offers distribution network designers
a better insight with regard to Pareto optimality. As illustrated in Table 7, these observations are still valid
under all the demand processes and network typologies. For problem sizes P2 to P5, the results led to similar
conclusions and are detailed in Tables B.12 and B.13 in Appendix B. In the case of the (LAF(ΩN )) model,
the mean value and MSD deviation results indicate a pronounced similarity in the design structure, since all
the samples lead to the same design value. This is clearly due to modeling the capacity decisions as scenario-
dependent in the second stage in (LAF(ΩN ), which bases the design evaluation only on the location decisions.
Therefore, one can conclude that the DP location is well stabilized, but the capacity-allocation decisions are
sensitive to the demand scenarios. These results are congruent with the insights derived from the statistical
gaps, and confirm the good quality solutions produced by both design models.

Table 7: Mean value and MSD deviations for (LCA(ΩN )) under (P6,P7)-LL-500 attributes

P6-LL-500 P7-LL-500

NDT NRT CRT NDT NRT CRT

% Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD

Dis-

s1 0.14 0 0 1.06 0.48 15.37 0.13 3.93 0.02 0 0.31 38.2
s2 0.19 28.50 0.11 12.97 0.05 0 0.11 11.5 0 6.88 0.02 0
s3 0 5.15 0 1.06 0 6.09 0.09 17.52 0.07 13.36 0 8.04
s4 0.11 15.65 0.02 3.21 0.1 11.99 0.15 15.45 0.42 79.87 0.02 2.73
s5 0.15 33.6 0 1.06 0.2 1.3 0 0 0.06 12.27 0.01 0.48
s6 0.21 49.19 0.04 0 0.05 0.77 0.04 4.01 0.16 24.72 0.51 42.26

Con-

s1 0.06 3.87 0.31 69.10 0.05 6.09 0 94.33 0.49 107.16 0 6.89
s2 0 6.10 0 19.82 0.11 7.99 0 94.33 0.45 3.84 0.52 36.24
s3 0.15 27.67 0.03 9.43 0 0 1.87 0 0.48 0 0.16 8.71
s4 0.20 47.90 0 19.82 0.10 13.38 0 94.33 0.19 4.73 0.04 1.33
s5 0 6.10 0.21 0 0.40 30.02 0 94.33 0 19.17 0.12 14.27
s6 0.05 0 0 19.82 0.11 7.99 0.32 87.98 0.15 6.56 0.22 0

Location decisions sensitivity

Next, we look closely at the design decisions produced by both models presented in Tables 8 and 9 for
medium- and large-size problems (P4 to P7) with (LCA(ΩN )) and (LAF(ΩN )), respectively. We note that
the represented design corresponds to the best solution in terms of expected value based on Table 7. For
each demand process, these tables provide DP opening decisions and their capacity configuration, where value
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Table 8: Best location decisions for (LCA(ΩN ))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P4-LL 1 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1 1
P5-LL 1 1 1 1 1 1 1 1 1 2
P5-HL 1 2 2 1 1 1 1 1 2
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 1 2 1 1 1 1 1 1
P7-HL 1 1 1 2 2 1 1 1

Concentric ship-to-points (Con)
P4-LL 1 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1
P5-LL 1 2 2 1 1 1 1 1 1
P5-HL 1 2 2 1 1 1 1 1 1
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 2 1 2 2 1 1 1
P7-HL 1 2 1 2 2 1 1 1

1 corresponds to an opened DP with a low capacity configuration, 2 refers to a high capacity configuration,
and blanks refer to DPs kept closed. The third row corresponds to the list of potential DPs and the first
column lists the instance labels in terms of problem size and cost structure. The first part of the tables is
dedicated to instances with dispersed ship-to-points, and the second part depicts instances with concentric
ship-to-points. First, Tables 8 and 9 show that the opened DP number is quite stable in the instances, but the
location of DPs and the capacity level are correlated with the demand process, the ship-to-point dispersion,
and the DP fixed cost. In almost all the instances, DP locations 6 and/or 7 are opened, because they benefit
from a centralization effect due to their positioning in the grid (see Figure 4) and the importance of inbound
and outbound transportation costs. Table 8 also reveals the impact of the opening DP costs on the strategic
location decisions where in several cases the design structure varies between high and low DP opening costs.
For instance, we observe in Table 8 that with P5-LL-Dis-NRT the network design opens four DPs at capacity
level 1, whereas with P5-HL-Dis-NRT, only three DPs are opened, but two at capacity level 2. Additionally, the
results point out the impact of ship-to-point dispersion (i.e., Dis vs Con) on the DP location decisions, mainly
under LL attributes. For instance, DPs 7 and 8 are opened with P7-HL-Dis-NDT instead of DPs 3 and 4 with
P7-HL-Con-NDT. In the same way, Table 9 reports different design solutions for all P7 instances and several
P5 instances for the LAF(ΩN ) model, which are the problems considering two capacity levels, and thus offer
more distribution capabilities to deal with demand uncertainty.

Moreover, a key finding is the sensitivity of the network design in terms of the opened DPs and their location
with respect to demand uncertainty. First, essential to mention is that all the opening decisions depicted in
these figures are fixed from the first design period and no further opening are made at periods two to five.
This behavior is explained by the fact that the DP opening costs follow an increasing trend function along the
planning horizon. It is thus more efficient to anticipate future DP openings, if any, at design period one. This
anticipation effect is only possible with the explicit modeling of a multi-period design setting, as is the case in
this work, in contrast to a static modeling approach to design decisions. In addition, these results reveal that
the number of opened DPs under the three demand processes is in general the same for a given problem size.
However, for some instances, the number of DPs under NRT is higher than the two other demand processes.
Considering instance P4-LL-Dis, four DPs are opened under NRT, whereas only three DPs are opened with
NDT and CRT. This behavior is observed for both the LCA and LAF models’ solutions. It can be seen as the
flexibility hedging of both models to avoid opening additional DPs when uncertainty increases. We also note a
high variability in the location of opened DPs when comparing solutions from the different demand processes.
To emphasize this result, one can closely observe the instance P4-LL-Dis, where we obtain 66.7% identical DPs
for NDT vs CRT, 50% for NRT vs NDT, and 75% for NRT vs CRT, when the LCA model is solved. Similarly,
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Table 9: Best location decisions for (LAF(ΩN ))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P4-LL 1 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1
P5-LL 2 1 1 1 1 1 1 1 1
P5-HL 2 1 1 1 1 1 1 1 1
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 1 1 1 1 1 1 1 1
P7-HL 1 1 1 1 1 1 1 1 1

Concentric ship-to-points (Con)
P4-LL 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1
P5-LL 1 1 1 1 1 1 1 1 1
P5-HL 1 1 1 1 1 1 1 1 1
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 1 1 2 2 1 1 1
P7-HL 1 1 1 1 1 1 1 1 1

Table 10: The impact of capacity configuration on the location decisions

P2-LL vs P3-LL P4-LL vs P5-LL P6-LL vs P7-LL

%loc %cap %loc %cap %loc %cap

NRT 75% 79.17% 75% 62.5% 75% 75%
CRT 70.83% 45.83% 100% 100% 83.33% 58.33%
NDT 70.83% 41.67% 79.17% 64.58% 97.22% 100%

when the LAF model is solved, we obtain 50% of identical DPs for both NRT vs NDT, and NRT vs CRT, and
100% for CRT vs NDT. The worst case is observed for instance P6-HL-Con with only 33.3% identical DPs for
NDT vs CRT, and 66.7% for NRT vs NDT, and for NRT vs CRT with the LCA model. These results confirm
that the stochastic multi-period demand process is adequately captured by both the two-stage reformulations
of the multi-stage problem.

In complement to the above analysis, Table 10 provides similarity statistics on DPs opening and their
capacity level for several pairs of instances when LCA is solved. In general, we observe a very high similarity
in the DPs’ location, over 70% identical positions, but a much lower similarity in the capacity configuration
(about 40%). Looking closely at instance P7-LL-Con, we see that CRT and NDT give two identical DPs location
out of three, but these identical DPs are not opened at the same capacity configuration level. Therefore, the
results confirm the high variability in solutions in terms of location when capacity levels are considered, and
the sensitivity of the two-echelon capacitated distribution network to uncertainty.

Capacity-allocation decision behavior

Furthermore, we discuss the behavior of the capacity-allocation decisions in a multi-period and uncertain
setting. Figure 5 examine in depth the capacity decisions modeled in the LCA model and contrast it to the
evolution of each demand process along the planning horizon. This figure provides the results of the instance
P6-LL-Dis for the three demand processes, which for all cases produced a design solution with three opened DPs.
Each solid line corresponds to the capacity level allocated to an opened DP (i.e.,

ř

pClpxlpt) for each design
period t, and each dashed line its related predetermined capacity Cl (each color distinguishes a separate opened
DP). Figure 5 clearly illustrates the impact of the multi-period modeling approach where the capacity-allocation
decisions for each opened DP are clearly adapted periodically. Even if for the three demand processes of this
instance the LCA model produces the same DP location decisions, the capacity-allocation decisions behave
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Figure 5: Capacity-allocation decisions versus the a priori capacity Cl for Dis-P6-LL-500 in (LCA(ΩN ))
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Figure 6: Capacity decisions versus demand for Dis-P6-LL-500 in (LCA(ΩN ))

differently under each demand process to follow the time-varying demand process. This means that the two-
stage LCA mimics the dynamic capacity model with the inclusion of multi-period capacity-allocation decisions.

Figure 6 completes the analysis, with the same instance under the three demand processes: it aggregates
the capacity-allocation

ř

l

ř

pClpxlpt over all the opened DPs at each period t (solid line in black) and the
capacity limit

ř

l Cl (dashed line). The figure contrasts the global network capacity with the average demand
scenario, the maximum demand scenario, and the minimum demand scenario. It also illustrates the relation
between these typical scenarios and the effective demand covered by the opened DPs with a dotted line (i.e.,
ř

j“1..|J | djωt
ř

l“1..|L| vljω1t, at each t, as formulated in constraint (13). The main insight here is that the
capacity-allocation decisions follow the periodic demand under the regular, and most importantly, the dynamic
demand setting. This insight is accentuated by the observation that the capacity-allocation decisions follow in
all cases the maximum demand scenario. This means that this first-stage decision takes into account the worst
case demand (highest demand scenario) and provides the necessary capacity to hedge against it. Clearly, this
latter point means that the capacity available at DPs at each period precedes the minimum and the expected
demand scenarios. Therefore, one can conclude that the modeling framework employed in the LCA model
provides a capacity hedging approach under uncertain demand with a stationary or non-stationary process. For
further illustration, the example of the instance P6-HL-Con is reported in Figures B.8 and B.9 in Appendix B.

For the LAF model, Figure 7 shows that capacity follows demand for each typical scenario. This means that
the scenario-dependent flows are adjusted to each scenario, and that the demand covered by the designed network
is superposed with the demand scenario. This indicates that the LAF model converges to a solution driven by
the expected value criterion, but does not anticipate any capacity hedging. It seems that LAF solutions are
prone to greater efficiency in terms of capacity-allocation, but this comes at the price of no flexibility. Finally,
to further underline is that in the 2E-DDP, the demand is covered with respect to the inbound allocation to DPs
from warehouses, and not the DPs’ predefined capacity. This is in accordance with the flow balance constraints
at DPs, and emphasizes the impact of the two-echelon context considered in this work.
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Figure 7: Capacity decisions versus demand for Dis-P6-LL-500 in (LAF(ΩN ))

7. Conclusion

In this paper, we introduce a comprehensive methodology for the stochastic multi-period two-echelon distri-
bution network design problem (2E-DDP) where products are directed from primary warehouses to distribution
platforms (DPs) before being transported to ship-to-points. The problem is characterized by a temporal hier-
archy between the design level dealing with DP location decisions and capacity decisions, and the operational
level involving transportation decisions as origin-destination flows. A stochastic multi-period scenario-based
characterization of the planning horizon is considered, shaping the evolution of the uncertain ship-to-point
demand. This problem is initially formulated as a multi-stage stochastic program, and we propose alternative
two-stage multi-period modeling approaches to capture the essence of the problem, while providing judicious
accuracy-solvability trade-offs. Consequently, the two models proposed are: the two-stage stochastic location
and capacity-allocation model (LCA) in which DP location decisions and capacity decisions are first-stage de-
cisions, and the two-stage stochastic flow-based location-allocation model (LAF) where capacity decisions are
transformed into continuous scenario-dependent origin-destination links within the second-stage. To solve these
models, we develop a Benders decomposition approach integrated with the sample average approximation (SAA)
method. We also examine the value of the stochastic solution and compare it to the deterministic solution.
Extensive computational experiments are run to validate the modeling and the solution approaches.

The computational experiments lead to several key findings. The findings underline the importance of
integrating the strategic decisions when designing a two-echelon structure of a distribution network. In all
the instances, the DPs location opening are driven by the inbound assignment-capacity from the primary
warehouses, and not only by outbound operations. In addition, the results validate our proposed two-stage
stochastic decisional models to capture the essence of the dynamic setting in the 2E-DDP. The LCA model
tends to hedge against all scenarios which enhances its flexibility in terms of DPs opening and provides a
dynamic management of capacity in time. The LAF model is scenario-driven and produces efficient solutions in
terms of capacity-allocation, but this comes at the price of less flexibility in terms of DPs capability. Further, the
computational experiments highlight the importance of modeling uncertainty on the 2E-DDP, and the limited
quality of solutions produced by the deterministic formulation of the problem. Finally, the results show the
limitation of basic commercial solvers and stochastic programming tools, such as SAA, to solve medium- and
large-sized instances. As shown, these latter instances of the 2E-DDP necessitate the development of Benders
approach to guarantee their resolution.

Although the Benders decomposition provides good-quality solutions, its performance is limited for large-
scale instances in terms of solution time (more than 40 hours). It might be worthwhile improving the considered
algorithm by introducing an initial good solution and an upper bound on the problem that are generated heuris-
tically to reduce the runtime. In addition, adding Pareto-optimal cut helps to enhance its performance. Further,
we believe that our framework provides ample opportunities for additional research. Future works could de-
velop efficient heuristics to solve larger problem instances. Another interesting research direction could consider
stochastic multi-period two-echelon distribution network design problems with more complex features where the
location decisions of the two echelons (warehouses and DPs) are questioned, and where operational decisions
are modeled by multi-drop routes, and/or multiple product families need to be distinguished. Additionally, it
would be interesting to add financial risk measures to the objective function, such as mean semi-deviation and
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conditional value at risk, or supply chain risk measures as discussed in [34]. Another extension of this work
consists in tackling the multi-stage stochastic program, and further proposing performance measures on the
quality of the obtained solutions compared to two-stage stochastic models. However, this remains a challenging
task, given the curse of dimensionality of multi-stage problems.
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Appendix A. Solution methodology

Appendix A.1. Sample Average Approximation (SAA)

Under a scenario-based optimization approach, building scenarios ω P Ω and assessing their probabilities
ppωq could entail a tremendous effort. Moreover, generating the adequate sample of scenarios |Ω|, Ω “ YtPTΩt,
could be complex due to the large number of scenarios required under a high degree of uncertainty and the
enumeration issue induced by continuous probability distributions [62]. The combination of the Monte Carlo
sampling methods [60] and the SAA technique [62] helps in finding a good trade-off in terms of the scenar-
ios’ probability estimation and the sufficient number of scenarios to consider in the design model. The ap-
proach is to generate, outside the optimization procedure, an independent sample of N equiprobable scenarios
tω1, . . . , ωNu “ ΩN

t Ă Ωt from the initial probability distribution, which also eliminates the need to explicitly
compute the scenario probabilities ppωq. Then, the SAA program is built and the adequacy of the sample size
validated by optimization. Hereafter, for instance, the SAA program related to the LCA model is provided,
denoted with (LCA(ΩN )):

(LCA(ΩN )) VN “ min
ÿ

tPT

ÿ

lPL
pfult ylt ` f

s
lt zltq `

ÿ

tPT

ÿ

lPL

ÿ

pPP
clpt Clpxlpt`

1

N

ÿ

tPT

ÿ

ωPΩN
t

ÿ

jPJ
djωtr

ÿ

lPL
cljt vljωt ` cjωt sjωts (A.1)

S. t. (12)´ (16)
ÿ

j

djωt vljωt ď
ÿ

p

Clpxlpt @l P L, t P T , ω P ΩNt (A.2)

ÿ

l

vjlωt ` sjωt “1 @j P J , t P T , ω P ΩNt (A.3)

vljωt, sjωt ě0 @l P L, j P J , ω P ΩNt , t P T (A.4)

It is well established that the optimal value VN poq of the optimal design vector pXN poq of each SAA program
o P tLCA(ΩN ), LAF(ΩN )u converges to optimality as the sample size increases [62]. This suggests that the
quality of the SAA models improves as the size of the sample employed grows. However, one would in practice
choose N , taking into account the trade-off between the quality of the obtained design for each SAA program
o and the computational effort needed to solve it ([45]). In such case, solving the SAA program with M
independent samples repeatedly can be more insightful than increasing the sample size N . This leads to
calculating a statistical optimality gap for each obtained design vector pXN poq by estimating the lower and
upper bounds. The SAA-based procedure employed to calibrate the samples-size for both the LCA and LAF
models is given in 3.

Worth noting is that the upper bound VN 1p pXN
m poqq proposed in step 4 for each model o is computed as

follows: in the case of the (LCA(ΩN )) model,

VN
1

p pXN
m pLCA(ΩN )qq “

ÿ

tPT

ÿ

lPL
pfult ŷlt ` f

s
lt ẑltq `

ÿ

tPT

ÿ

lPL

ÿ

pPP
clpt Clpx̂lpt `

1

N 1

ÿ

tPT

ÿ

ωPΩN1
t

Qtpx̂
N
m, ωq
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Algorithm 3 The SAA method to give model o

1: Generate M independent samples ΩNm, m “ 1, . . . ,M of N scenarios and solve the SAA program for each sample.
Let VNm poq and pXN

m poq be the corresponding optimal value and the optimal design solution, respectively.
2: Compute the statistical lower bound:

sVNM poq “
1

M

ÿ

m“1..M

VNm poq

3: Choose a feasible solution pXN
m poq

4: Estimate the upper bound using a reference sample N 1 " N , VN
1

p pXN
m poqq

5: Compute an estimate of the statistical optimality gap of solution pXN
m poq:

gapN,N
1

M p pXN
m poqq “ VN

1

p pXN
m poqq ´ sVNM poq

An estimate of the average gap for the sample of size N is given by:

gapN,N
1

poq “
1

M

ÿ

m“1..M

gapN,N
1

M p pXN
m poqq

6: if acceptablepgapq then

7: return gapN,N
1

8: else
9: Repeat step 1-5 using larger N and/or M .

10: end if

and in the case of (LAF(ΩN )),

VN
1

p pXN
m pLAF(ΩN )qq “

ÿ

tPT

ÿ

lPL
pfult ŷlt ` f

s
lt ẑltq `

1

N 1

ÿ

tPT

ÿ

ωPΩN1
t

Qtpŷ
N
m, ωq

Appendix A.2. The Benders reformulation for (LAF(ΩN ))

The primal sub-problem for each ω and t is:

(PSωt) φtωpy, zq “ min
ÿ

lPL

ÿ

pPP
clpt Clpxlptω `

ÿ

j

djωtr
ÿ

l

cljt vljωt ` cjωt sjωts (A.5)

S. t.
ÿ

lPL
Clpxlptω ď Cp @p P P (A.6)

ÿ

pPP
Clpxlptω ď Cl ylt @l P L (A.7)

ÿ

j

djωt vljωt ´
ÿ

p

Clpxlptω ď 0 @l (A.8)

ÿ

l

vljωt ` sjωt “ 1 @j (A.9)

xlptω ě 0 @l, p (A.10)

vljωt ě 0 @l, j (A.11)

sjωt ě 0 @j (A.12)

Its dual is :

(DSωt) φtωpy, zq “ max
ÿ

p

Cpθp `
ÿ

l

Cl ylt γl `
ÿ

j

βj (A.13)

S. t. Clpθp ` Clpγl ´ Clpαl ď clptClp @l, p (A.14)

djωt αl `
ÿ

j

βj ď djωt cljt @l, j (A.15)

βj ď djωt cjωt @j (A.16)

θp ď 0 @p (A.17)

γl, αl ď 0 @l (A.18)

βj P R @j (A.19)

30



Then, the master problem is as follows:

(MastP) min
ÿ

lt

pfult ylt ` f
s
lt zltq `

1

N

ÿ

tω

utω (A.20)

S. t. (14) and (16)

utω ´
ÿ

l

Cl ylt γl ě
ÿ

j

βj `
ÿ

p

Cp θp @t, ω, pθp, γl, αl, βjq P P∆tω (A.21)

utw ě 0 @t, ω (A.22)

Appendix A.3. The deterministic model (EV)

(EV) min
ÿ

lPL

ÿ

tPT
pfult ylt ` f

s
lt zltq `

ÿ

lPL

ÿ

pPP

ÿ

tPT
clpt Clpxlpt `

ÿ

tPT

ÿ

jPJ
µjtr

ÿ

lPL
cljt vljt ` cjt sjts (A.23)

S. t.
ÿ

lPL
Clpxlpt ď Cp @p P P, t P T (A.24)

ÿ

pPP
Clpxlpt ď Cl ylt @l P L, t P T (A.25)

ylt ´ ylt´1 ď zlt @l P L, t P T (A.26)
ÿ

j

µjt vljt ď
ÿ

p

Clpxlpt @l P L, t P T (A.27)

ÿ

l

vjlt ` sjt “ 1 @j P J , t P T (A.28)

xlpt P N @l P L, p P P, t P T (A.29)

ylt, zlt P t0, 1u @l P L, t P T (A.30)

vljt ě 0 @l P L, j P J , t P T (A.31)

sjt ě 0 @j P J , t P T (A.32)

Appendix A.4. Quality of the stochastic solution

To characterize stochastic solutions, several indicators can be computed [11, 47]. The first is the statistical
optimality gap estimate of the best solution identified by the SAA method for different sample sizes N as
described in subsection Appendix A.1. Furthermore, the value of the stochastic solution (VSS), the loss using
the skeleton solution (LUSS), and the loss of upgrading the deterministic solution (LUDS) proposed in [47]
are also assessed as indicators of the quality of the stochastic solutions produced. Let X˚poq be the optimal
solution obtained from the model o P tLCA, LAFu, the here and now solution, under all ω P Ω, and let RP
be the optimal value of the associated objective function. More specifically, RP is computed by (A.33). Under
a sampling approach, ΩN Ă Ω, pXpoq represents the near-optimal solution obtained from the SAA program
o P tLCA(ΩN ), LAF(ΩN )u. A good estimate of RP is given by (A.34).

RP “ EΩrhpX
˚
poq,Ωqs (A.33)

yRP “ VN “ EΩN rhp pXpoq,Ω
N
qs (A.34)

A common approach in the literature is to consider the expected value problem, where all the random
variables are replaced by their expected value ω̄ “ Epωq, solving the deterministic model (EV ) as given in (A.35).
Let sXpoq be the optimal solution to (A.35), referred to as the expected value solution. The evaluation of its
expected value (EEV ) is computed as given in (A.36). Thus, the estimate of the value of the stochastic solution
VSS is defined by formula (A.37), and measures the expected gain from solving a stochastic model rather than
its deterministic counterpart.
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EV “ minhpXpoq, ω̄q (A.35)

{EEV “ EΩN rhp sXpoq,Ω
N
qs (A.36)

zV SS “ {EEV ´yRP (A.37)

The expected value solution sXpoq may behave very badly in a stochastic environment. We here propose
investigating how the expected value solution relates to its stochastic counterpart. For this purpose, we compute
the loss using the skeleton solution (LUSS) and the loss of upgrading the deterministic solution (LUDS), which
provide deeper information than the VSS on the structure of the problem [47]. To calculate the LUSS, we fix at
zero all first-stage variables, which are at zero in the expected value solution sXpoq, and solve the SAA stochastic
program o P tLCA(ΩN ), LAF(ΩN )u with these additional constraints. Considering the program (LCA(ΩN )),
the additional constraints are:

xlpt “ 0 @l, p, t P Kpx̄, 0q (A.38)

ylt “ 0 @l, t P Kpȳ, 0q (A.39)

zlt “ 0 @l, t P Kpz̄, 0q (A.40)

where Kpx̄, 0q, Kpȳ, 0q and Kpz̄, 0q are sets of indices for which the components of the expected value
solution sX “ tx̄, ȳ, z̄} are at zero. In the (LAF(ΩN )), only constraints (A.39)-(A.40) are added. The solution
of this program gives the near-optimal solution qXpoq. Thus, an estimate of the expected skeleton solution

value (ESSV) is computed with (A.41). Comparing it to the yRP estimate leads to an estimate of the LUSS
as computed in (A.42). This test allows investigating why a deterministic solution may behave badly. In the

case of {LUSS “ 0, this corresponds to the perfect skeleton solution in which the stochastic solution takes the
deterministic solution values. Otherwise, in case of 0 ă {LUSS ď zV SS, it means that alternative decision
variables are chosen for the expected solution, thus providing alternative solution values.

{ESSV “ EΩN rhp qXpoq,Ω
N
qs (A.41)

{LUSS “ {ESSV ´yRP (A.42)

The last indicator considers the expected value solution sXpoq as a starting point (input) to the stochastic
program o P tLCA(ΩN ), LAF(ΩN )u, and compares, in terms of objective functions, the same program without
such input. This helps test whether the expected value solution sXpoq is upgradeable to become good (if not
optimal) in the stochastic setting. To do so, one needs to solve the program o with additional constraints
that ensure the expected value solution sXpoq as a starting solution, thus obtaining the solution rXpoq. More
specifically, for the (LCA(ΩN )) program, additional constraints are:

xlpt ě x̄lpt @l, p, t (A.43)

ylt ě ȳlt @l, t (A.44)

zlt ě z̄lt @l, t (A.45)

However, the (LAF(ΩN )) program considers only constraints (A.44)-(A.45). The expected input value is
then computed with with (A.41), and this value is used to provide an estimate of the LUDS with formula (A.41).

Worth noting is that {LUDS “ 0 corresponds to perfect upgradability of the deterministic solution, whereas
0 ă {LUDS ď zV SS leads to no upgradability.

zEIV “ EΩN rhp rXpoq,Ω
N
qs (A.46)

{LUDS “ zEIV ´yRP (A.47)
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Appendix B. Results

Table B.11: Average statistical optimality gap values

gapN,2000 (%)

LCA(ΩN) LAF(ΩN)

Sample size N 100 200 500 200 500

Instance

P1-NRT-LL-Ns̄ 0.26 0.26 0.21 0.01 -0.01
P1-NDT-LL-Ns̄ 0.03 0.01 -0.01 0 -0.02
P1-CRT-LL-Ns̄ 0.80 0.31 0.07 -0.05 -0.02

P2-NRT-LL-Ns̄ 0.61 0.23 0.08 0.06 0
P2-NDT-LL-Ns̄ 0.28 0.12 -0.01 0 -0.02
P2-CRT-LL-Ns̄ 0.60 0.24 0.06 -0.04 -0.02

P3-NRT-LL-Ns̄ 0.17 0.01
P3-NDT-LL-Ns̄ -0.04 -0.04
P3-CRT-LL-Ns̄ 0.1 -0.02

P4-NRT-LL-Ns̄ 0.22 0.09 0.05 0.02 0.02
P4-NDT-LL-Ns̄ 0.15 0.01 0.01 0 0.01
P4-CRT-LL-Ns̄ 0.97 0.42 0.28 -0.04 -0.04

Table B.12: Mean value and MSD deviations for (LCA(ΩN )) for problem sizes P4 and P5

P4-LL-500 P5-LL-500

NDT NRT CRT NDT NRT CRT

% Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD

Dis-

s1 0 0 0 0 0.14 42.15 0.34 67.77 0.03 0 0.02 15.18
s2 0 0 0 0 0 0 0.01 1.27 0 9.16 0.02 8.30
s3 0 0 0 0 0.14 42.15 0.05 31.11 0 9.16 0 0
s4 0 0 0 0 1.20 78.42 0.07 30.91 0.03 0.05 0.02 15.18
s5 0 0 0 0 0 0 0 12.45 0 9.16 0.02 15.18
s6 0 0 0 0 0.14 42.15 0 0 0 9.05 0.02 15.18

Con-

s1 0 0 0 1.29 0 1.42 0.04 10.07 0.08 0 0.01 12.36
s2 0 0 0 1.29 0.09 0 0 0 0.08 0 0.06 9.40
s3 0 0 0 1.29 0 1.42 0.04 10.07 0 42.32 0 0
s4 0 0 0.11 0 0 1.42 0.04 10.07 0 42.32 0.01 12.36
s5 0 0 0 1.29 0.21 14.22 0.04 10.07 0.08 0 0 0
s6 0 0 0 1.29 0.12 15.63 0.04 10.07 0.08 0 0.01 12.36
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Figure B.8: Capacity allocation decisions versus the a priori capacity for Con-P6-HL-500 in (LCA(ΩN ))
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Table B.13: Mean value and MSD deviations for (LCA(ΩN )) for problem sizes P2 and P3

P2-LL-500 P3-LL-500

NDT NRT CRT NDT NRT CRT

% Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD % Ve % MSD

Dis-

s1 0 4.71 0.07 3.74 0.28 0 0 1.09 0.15 7.62 0.48 29.32
s2 0.05 0 0.02 1.38 0.03 3.39 0 1.09 0.03 0 0 1.47
s3 0.13 14.77 0 0 0 4.56 0 1.09 0.01 10.19 0.01 0
s4 0.01 3.61 0.02 1.38 0.04 6.70 0.04 0 0.01 12.06 0.01 0
s5 0.04 9.18 0 0 0.12 2.31 0 1.09 0 2.77 0.01 0
s6 0.06 7.01 0.09 3.26 0.09 2.56 0 1.09 0.22 20.56 0.01 0

Con-

s1 0.02 2.84 0 0 0.03 3.56 0 0 0 12.11 0 0
s2 0 0 0 0 0.06 5.28 0 0 0 12.11 0.16 12.68
s3 0 0.07 0.06 20.49 0.06 5.28 0 0 0.08 0 0.21 7.83
s4 0.03 4.08 0 0 0.01 1.55 0 0 0 12.11 0 0
s5 0.01 1.91 0 0 0 0 0 0 0.08 0 0 0
s6 0 0.67 0 0 0.04 6.02 0 0 0.08 0 0 0

Table B.14: Best location decisions for (LCA(ΩN ))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1
P3-LL 2 1 1 2 1 1 2 2 1
P3-HL 1 1 1 2 1 1 2 2 1

Concentric ship-to-points (Con)
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1 1
P3-LL 2 1 1 1 2 1 2 2 1 1
P3-HL 2 2 1 1 1 2 1 1 1

1 and 2 refer to the Capacity configuration

Table B.15: Best location decisions for (LAF(ΩN ))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1
P3-LL 1 1 1 1 1 1 1 1 1
P3-HL 1 1 1 2 2 1 1 1

Concentric ship-to-points (Con)
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1
P3-LL 2 1 1 1 1 1 1 1 1
P3-HL 2 1 1 1 1 1 1 1 1

1 and 2 refer to the Capacity configuration
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Figure B.9: Capacity decisions versus demand for Con-P6-HL-500 in (LCA(ΩN ))
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Figure B.10: Capacity decisions versus demand for Con-P6-HL-500 in (LAF(ΩN ))

35


	Introduction
	Related works
	The two-echelon multi-period distribution network design problem
	Problem definition
	Scenario building and tree representation
	The multi-stage stochastic formulation

	Two-stage stochastic program approximations
	Location and capacity-allocation model (LCA)
	Flow-based location-allocation model (LAF)

	Solution methodology
	The Benders decomposition
	Evaluation procedure

	Computational results
	Test data
	Results
	Models' solvability analysis
	Design solutions analysis


	Conclusion
	Solution methodology
	Appendix
	Sample Average Approximation (SAA)
	The Benders reformulation for (LAF(N))
	The deterministic model (EV)
	Quality of the stochastic solution

	Results

	Appendix


