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Abstract: Today, chitosan (CS) is probably considered as a biofunctional polysaccharide with
the most notable growth and potential for applications in various fields. The progress in chitin
chemistry and the need to replace additives and non-natural polymers with functional natural-based
polymers have opened many new opportunities for CS and its derivatives. Thanks to the specific
reactive groups of CS and easy chemical modifications, a wide range of physico-chemical and
biological properties can be obtained from this ubiquitous polysaccharide that is composed of
β-(1,4)-2-acetamido-2-deoxy-D-glucose repeating units. This review is presented to share insights into
multiple native/modified CSs and chitooligosaccharides (COS) associated with their functional
properties. An overview will be given on bioadhesive applications, antimicrobial activities,
adsorption, and chelation in the wine industry, as well as developments in medical fields
or biodegradability.

Keywords: chitosan; polysaccharide; functional properties; bioactivity

1. Introduction

Chitosan (CS) is a copolymer of glucosamine and N-acetyl glucosamine branched by β-(1-4)
linkages. It is derived from chitin, which is among the most abundant biopolymers on Earth. The word
“chitin” is derived from the Greek language, meaning “envelope” or “tunic”. Chitin was the first
polysaccharide identified by the French scientist Braconnot in 1811 and was fully described in 1884
as a natural poly-β-(1-4)-N-acetyl-D-glucosamine [1,2]. The unique chemical structures of chitin and
CS led some authors to call them aminopolysaccharides [3]. Chitin is widely abundant as ordered
crystalline microfibrils in several kinds of organisms, such as yeast and fungi (cell walls), crustacean
shells, or insect cuticles, and is also produced by some green microalgae [4]. Two main polymeric
forms of chitin have been described in the literature, namely α- and β-chitins, which are arranged
as monoclinic and orthorhombic cells, respectively [5]. An allomorph γ-chitin is a combination
of these two forms [5]. α-chitin (from yeast cell walls, exoskeleton of crustaceans, and arthropod
cuticles) and β-chitin (from squid pens) correspond to anti-parallel and parallel arrangements of
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polymer chains, respectively. The term “kitosan” (Kite-O-San) was firstly written by Hoppe-Seiler
in 1894, to design deacetylated chitin [6]. Indeed, chitin is not soluble in water or other common
organic solvents, but can be converted in CS after hot alkaline deacetylation in a solid state [2].
The degree of deacetylation (DD), which is the percentage of D-glucosamine units with respect
to the total number of monomers (glucosamine and N-acetyl glucosamine), defines the frontier
between chitin and CS. Conventionally, the DD value of CS is usually higher than 50%. The resulting
CS, which is a polycationic polysaccharide, is soluble in dilute acidic media (2 < pH < 6), on the
contrary to chitin [7]. In industrial processing, CS is mainly extracted from crab, shrimp shells,
squid pens, and crustaceans by acidic treatment to eliminate calcium carbonates, followed by alkaline
deproteinization [5]. The demineralized and deproteinized chitin is then submitted to a second alkaline
treatment at high temperature before an optional decolorization step using hydrogen peroxide, sodium
hypochlorite, or acetone [5]. All these acidic and alkali treatments are extremely hazardous for the
environment and not sustainable. Enzymatic deacetylation is often considered as an ecofriendly
alternative to alkaline deacetylation, but is not really industrially developed at the moment [6]. New
commercial sources of CS from fungi (from Kitozyme company) and insects (from Ynsect company)
have recently appeared on the market to valorize some by-products (mushroom wastes or cuticles
of insects from new protein production chains). They are based on more green processes compared
with those used by traditional CS production chains. The physico-chemical properties of CS depend
on its molecular weight (from approximately 10 to 1000 kDa), DD (in the range of 50–95%), and
sequence of the acetamido and amino groups. It has been used in a large range of applications due
to its unique physicochemical properties, but also its low toxicity, biodegradability, biocompatibility,
high adsorption capacity, and microbe resistance [4,8,9]. Indeed, the different functional groups of this
polycationic polysaccharide can be modified with a wide diversity of ligands. Among them, the amino
group (-NH2) functionality is available for numerous chemical reactions, including reactions with
aldehydes and ketones (Schiff’s base), chelation of metals, alkylation, sulfonation, carboxymethylation,
grafting acetylation, quaternization, etc. [10–12]. The numerous hydroxyl groups (-OH) are also, as for
all polysaccharides, available for chemical modifications, such as sulfonation, carboxymethylation,
phosphorylation, or hydroxyethylation [10–14]. All chemical groups along the backbone can be
cross-linked using specific agents to give “chemical” hydrogels. They can also interact with each other
due to ionic and hydrophobic interactions, molecular entanglements, or hydrogel bonds to generate
physical hydrogels [9]. Moreover, macromolecules of CS can produce self-assembled structures
based on hydrogen-bond networks formation in aqueous solutions, leading to fibers. Conformational
variations of these CS assemblies have been reported to depend on local environmental changes
around CS (e.g., pH, temperature, types of salt, and types of acids). All these reactions offer to
CS a great potential as biosourced materials, biomaterials drug/enzyme delivery vehicles, tissue
engineering scaffolds, adhesives, texturing agents, support for enzyme immobilization, bioactive
agents etc. This review focuses on the fundamental uses of all forms of CSs, i.e., polymer, oligomer,
native, and chemically modified, in a large variety of applications. Thus, bioadhesive applications,
antimicrobial activities, adsorption, and chelation in the wine industry, as well as developments
in medical fields or biodegradability, have been detailed for highlighting the potential of chitosan
and derivatives.

2. Chitosan in Brief

2.1. Extraction and Structure of Chitosan from Natural Sources

Although chitin and CS have been known since the nineteenth century and the work of Henri
Braconnot (1811) [15], research on these compounds really started around 1930 and was intensified
after 1970. The major obstacle to their use lied in the difficulty of solubilizing them. However, research
was encouraged by the fact that resources were abundant. Indeed, chitin is one of the most abundant
polysaccharides on Earth, second only to cellulose [16–18]. It plays an essential structural role in the
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cell wall of fungi and yeasts, and in cuticles of arthropods and insects. Chitin is a natural linear cationic
polysaccharide consisting of β-(1,4) linked N-acetyl-D-glucosamine (GlcNac) (Figure 1). CS is obtained
by the deacetylation of chitin with concentrated NaOH solution, and consists of a heteropolysaccharide
of β-1,4 linked D-glucosamine and N-acetyl-D-glucosamine (Figure 1). Chitin and CS are characterized
by the degree of acetamidation, denoted DA, and expressed as a percentage of acetamide groups
present: it is greater than 50% in chitin and less than 50% in CS [18,19].
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Figure 1. Chemical structure of chitin and chitosan.

In the case of CS, it is often preferred to mention the rate (%) of deacetylation, called DD, which
corresponds to the relative amount of acetyl groups removed from chitin during the preparation of CS.
Another definition considers that it is the solubility of the material in a solution of acetic acid, which
defines the polymer as chitin or CS. In insects, fungi, diatoms, or marine animals, chitin is synthesized
by chitin synthase (E.C. 2.4.1.16) [20]. In these organisms, chitin assembles in three distinct polymorphic
forms named α, β, and γ (parallel, antiparallels, or mixture of both) [1,21]. The form of the chains
is found to depend on the origin, and α-chitin is the most abundant form. Chitin deacetylase (E.C.
3.5.1.41) partially removes acetyl substituents and defines the acetylation degree of the final chitin [22].
CS is rarely found in nature, contrarily to chitin. Extraction of chitin (Figure 2) from fishery wastes
(carapace of crustaceans and shellfish) requires strong chemical treatments, such as deproteinization
with hot alkali (NaOH 1 N, at 60–100 ◦C for several hours) and demineralization with acid (HCl 0.3–2
N at about 100 ◦C for one or two days) to eliminate calcium carbonate, and discoloration [17].

Regarding fungal biomasses, chitin is covalently linked with glucan. The extraction process of
the chitin-glucan is more recent (Figure 2) [23,24]. The extraction method includes hydrolysis steps,
to separate the chitin-glucan from the rest of the mycelium, and lipid elimination by washing and
drying. Then, CS is generally produced by partial deacetylation of chitin-glucan in a concentrated
sodium hydroxide solution, for several hours at 110–115 ◦C, under inert atmosphere (N2), in the
presence of a reducing agent (NaBH4). The deacetylation reaction is rarely complete, to avoid a sharp
reduction in the molecular weight of the polymer. The use of high temperatures generally improves
the reaction rates and yields [25]. Ultrasound and microwave technologies were also proposed to
enhance the extraction and deacetylation steps [26–31]. Furthermore, biological treatments offer an
alternative to such hard chemical reactions: lactic acid bacteria and bacterial protease can be used to
remove proteins and deacetylation can also be performed with enzymes [32,33]. This produces higher
quality products (better control of Mw and DA), but requires longer processes. The product is then
dried and re-dissolved in an organic acid solution, in order to purify it. The CS obtained is in the form
of an amorphous solid. It generally has a DD greater than 70% (between 70% and 80% in general), with
a Mw which may reach 3 × 106 Da, but is generally comprised between 100 and 1000 kDa, with small
amounts of smaller molecules (10–50 kDa). CS preparation mean Mw and polydispersity vary a lot
from one preparation to another. Chitin, CS, and glucan-CS can be hydrolyzed by enzymes (chitinases,
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chitosanases, glucanases) to prepare specific medium and low molecular weight (< 50 kDa) CS families
without the glucan part [1,17].Appl. Sci. 2019, 9, x 4 of 34 
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CS is a weak base, with a pKa of 6.3–6.7. It is partially soluble in acidic aqueous solution when
pH < pKa, and the solubility increases at pH < 5.5. The DD parameter affects (i) the solubility of acidic
CS, due to the protonation of amine groups; (ii) the flexibility of the polysaccharide chains; (iii) the
conformation of the polymer; and (iv) the viscosity of the solutions. The molecular chain length or
mass is also an important property that can be expressed in weight (Mw) or number (Mn). Mn affects
the solubility of the CS and the viscosity of solutions [1]. The CS characteristics (in terms of DD, Mn,
polydispersity, and crystallinity) strongly depend on the extraction method and the source of isolation
and they can vary widely from batch to batch [6,17,19].

2.2. Global Market

CS has several uses in the industry, such as cosmetics, water treatment, and agrochemicals [1,4].
CS application is mainly focused on waste water treatment, due to its biosorbent properties, in order
to remove pollutants such as heavy minerals, oils, and phosphorous, which are responsible for
deterioration of the water quality. Due to industrialization and the rising of the global population,
the global CS market has increased lately, mainly in Asia and especially in Japan, representing 35%
of the global market in 2013. Besides the main waste water treatment application, CS is expected to
expand its use to the cosmetic industry because of its skin moisturizing properties. CS is also more and
more thought of for hair care or dental care treatments, as well as in agriculture for stimulating plant
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growth. The global CS market was valued at 1205 million US$ in 2015 and will reach 2550 million US$
by the end of 2022, with an increase of 10.7% between 2016 and 2022. Generally, ten to the power of
ten tons of chitin are produced annually [1–4,34,35].

3. Chitosan Modification and Functionalization

Due to their exceptional properties and biological activities, CS and its derivatives are having
growing success regarding the number of publications concerning their description and application
in foods, environmental, material, cosmetic, pharmaceutical, and biomedical sectors. However,
their applications are strongly limited by their solubility in many polar solvents and water.
Overcoming this issue is possible by modifying CS through chemical/enzymatic methods to generate
depolymerized and/or new derivatives.

3.1. Chitosan Chemistry

Chemical modifications of CS are well-documented in recent publications for the last few years [4].
Due to the presence of reactive amino (-NH2) and hydroxyl (-OH) groups, CS is very easily modifiable.
These modifications aim to enhance their biological and chemical properties and modify their solubility
as a function of the final applications. The following section underlines the main modifications of CS
described in the literature, i.e., (i) quaternization, (ii) N-alkyl modifications, (iii) N-acyl modifications,
and (iv) C-6 oxidation.

3.1.1. Quaternized Chitosan Derivatives

Many publications [36–40] have shown the possibility to modify the positive (NH3
+) charge of CS

for making it soluble in a large range of pH values, but also in neutral or slightly alkaline medium.
Quaternization is an example of a procedure to enhance the solubility of CS in water. CS is positively
charged at pH under 6.5, whereas quaternized CS is still permanently positively charged at pH above
6.5. A quaternization reaction occurs between alkyl iodide and CS under basic conditions media.
N,N,N-trimethylCS chloride (TMC) is the best known quaternized CS and has been described for
numerous applications [4]. As shown in Figure 3, TMC is obtained after two consecutive reactions,
firstly between methyl iodide CH3I and CS in the presence of N-methyl-2-pyrrolidinone (NMP),
which is used as a solvent in alkaline conditions (NaOH), and secondly by changing iodide ions with
chloride ones thanks to an anionic exchange resin. Various types of quaternized CS can easily be
obtained by modifying the carbon length of alkyl halides.

3.1.2. N-acyl Chitosan Derivatives

N-acylation gives hydrophobic properties to CS by grafting different fatty acids. The reaction is
a specific amidation between -COOH groups from fatty acids and -NH2 groups from CS. Chemical
reagents used for N-acylation are acyl halide or acid anhydride (Figure 3). This acylation is
regularly performed in pyridine, chloroform/pyridine, or methanol/water/acetic acid. Nevertheless,
this reaction can lead to O-alkyl CSs because of two reactive -OH groups on the CS repeating unit.
In order to avoid this O-acylation, many authors advise substituting primary hydroxyl groups of CS
with trityl groups. This enhances the N-Acylation step owing to the formation of a CS chloroacyl [41].
Many types of acid anhydride have been tested to produce N-acyl CSs [42–45].
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3.1.3. Oxy-Chitosan Derivatives

Many scientific publications have explored the production of water-soluble chitouronic acid
sodium (carboxylated chitin or CS) with the use of TEMPO, which is an organic catalyst used for
the oxidation of hydroxyl functions into aldehyde ones in NaOCl and NaBr conditions [46–49].
TEMPO is mainly known for its use for regioselectively oxidizing primary hydroxyl groups of
various polysaccharides. Muzzareli et al. [50] have developed a method using TEMPO to produce
oxy-CS derivatives, namely 6-oxyCS. Chitouronic sodium salts are mainly produced from pretreated
(chemically or enzymatically) fungal or shrimp cell chitin. In their work, Muzarelli et al. [46] also
used fungal biomass from Trichoderma and Aspergillus to produce a new range of carboxylated
CS/chitin with a high degree of biocompatibility on human keratocytes, highlighting their potential
use in drug delivery applications [51]. Pierre et al. [49] have synthesized a new bioactive C6
oxy-CS derivative. This new derivative showed good anti-parasitic properties against Leishmania.
Very recently, an environmentally friendly process has been developed by Botelho da Silva et al.
(2018) [52] for the C6 oxidation of CS through a TEMPO/laccase redox system in order to generate a
water-soluble CS fraction (Figure 4).
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3.1.4. Cross-Linked Chitosan Derivatives

Making cross-linked CS requires the use of specific chemical agents for linking the chains together
and thus creating a three-dimensional macromolecular network [1,2,9]. CS is most often crosslinked by
covalent bonds in the presence of aldehyde derivatives, such as glyoxal, formalin, or glutaraldehyde,
in acid or basic medium to generate CS-based hydrogel [9]. As a rule, the cross-linking reaction
with CS consists of forming a Schiff base (imine) [2,4,9]. Glutaraldehyde (GTA) is the most studied
crosslinking agent. It is synthetic, available, and inexpensive [1,9]. The reaction is a condensation
reaction between the aldehyde function and a primary amine group from the CS chain in the presence
of labile hydrogen [6,9,16]. However, GTA is toxic and natural alternatives to GTA are being studied to
produce CS hydrogel, such as genipin [9], citric acid [53], and inorganic phosphate [54]. For example,
Lusiana et al. [53] reported the use of citric acid as a cross-linking agent for the preparation of a CS/PVA
membrane. This cross-link strategy was generally investigated to produce biomaterial as hemodialysis
membranes. The cross-linking between citric acid and CS was expected to incorporate carboxylate
groups (COO−) into biomaterial in order to increase the bioactive sites on the CS membrane for
transporting biomolecules (urea, creatinine, etc.). Polyvinyl alcohol (PVA) was used to increase the
mechanical efficiency and hydrophobicity of the cross-linked CS membrane [53]. In Figure 5, the main
cross-linking CS strategies are presented.



Appl. Sci. 2019, 9, 1321 8 of 33
Appl. Sci. 2019, 9, x 8 of 34 

 
Figure 5. The mains cross-linking reactions using chitosan. 

 

3.2. Chitooligosaccharide (COS) and Low Molecular Weight (LMW) Chitosan 

High molecular weight CS is very difficult to use in commercial applications due to its high 
viscosity. Reducing the molecular weight of CS is a good way of decreasing viscosity issues and 
enhancing biological properties thanks to the production of chitooligosaccharides (COS) and low 
molecular weight CS (LMW). Generally, oligosaccharides are defined as oligomers with a degree of 
polymerization ranging from 2 and 10, but some higher DPs from 11 up to 30 are described as LMW 
in the literature [55]. The production of COS and LMW CSs is mainly achieved by physical, chemical, 
and enzymatic methods [55]. Table 1 gives an overview of these possible strategies, including the 
associated conditions for efficiently producing LMW CS or COS. The reduction of molecular weight 
by chemical, physical, or enzymatic processes has also been related to improving the solubilization 
of CS in water or acetic acid solutions [4,55]. Depolymerization of CS is principally performed by acid 
chitosanolysis, which is the most reported method for producing COS and LMW CSs [4]. Overall, 
chemical processes include chitosanolysis with HCl [56], HNO2 [57], H2O2 [58], and potassium 
persulfate [59]. 

Physical processes include depolymerization with sonication [26], electromagnetic irradiation, 
gamma irradiation [60,61], microwave irradiation, or a thermal procedure [62]. Finally, enzymatic 
processes use specific enzymes like chitinase [63] and chitosanase [64], but also non-specific enzymes, 
such as pepsin [65], cellulase [66], lipase, pronase, protease [67], lysozyme, papaïn, glucanase, 
hemicellulase, or pectinase. However, the main issues of enzymatic depolymerization are probably 
the cost of making it redhibitory for bulk use in commercial applications and the relative slowness of 
reactions. In contrast, the main drawbacks of chemical methods involve the use of non-green 

Figure 5. The mains cross-linking reactions using chitosan.

3.2. Chitooligosaccharide (COS) and Low Molecular Weight (LMW) Chitosan

High molecular weight CS is very difficult to use in commercial applications due to its high
viscosity. Reducing the molecular weight of CS is a good way of decreasing viscosity issues and
enhancing biological properties thanks to the production of chitooligosaccharides (COS) and low
molecular weight CS (LMW). Generally, oligosaccharides are defined as oligomers with a degree of
polymerization ranging from 2 and 10, but some higher DPs from 11 up to 30 are described as LMW in
the literature [55]. The production of COS and LMW CSs is mainly achieved by physical, chemical, and
enzymatic methods [55]. Table 1 gives an overview of these possible strategies, including the associated
conditions for efficiently producing LMW CS or COS. The reduction of molecular weight by chemical,
physical, or enzymatic processes has also been related to improving the solubilization of CS in water
or acetic acid solutions [4,55]. Depolymerization of CS is principally performed by acid chitosanolysis,
which is the most reported method for producing COS and LMW CSs [4]. Overall, chemical processes
include chitosanolysis with HCl [56], HNO2 [57], H2O2 [58], and potassium persulfate [59].

Physical processes include depolymerization with sonication [26], electromagnetic irradiation,
gamma irradiation [60,61], microwave irradiation, or a thermal procedure [62]. Finally, enzymatic
processes use specific enzymes like chitinase [63] and chitosanase [64], but also non-specific enzymes,
such as pepsin [65], cellulase [66], lipase, pronase, protease [67], lysozyme, papaïn, glucanase,
hemicellulase, or pectinase. However, the main issues of enzymatic depolymerization are probably
the cost of making it redhibitory for bulk use in commercial applications and the relative slowness
of reactions. In contrast, the main drawbacks of chemical methods involve the use of non-green
chemicals, the need of their removal, and the heterogeneity of final products [4]. New methods
for reducing the molecular mass of CS have been described, e.g., high-pressure homogenization
(HPH) [68], plasma [69], or using zeolithes adsorbents [70] to purify acid hydrolysis COS and LMW CS.
Additionally, electrochemical processes have also been developed to efficiently depolymerize CS [71].
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Table 1. Methods reported for producing LMW chitosan or COS.

Type of Method Depolymerization
Methods Conditions Mw(1) DP(2) References

PHYSICAL

High pressure
homogenization

1500 bars 1% CS in 1%
acetic acid 30 kDa [68]

Sonication Sonication at 35.2 W/cm2,
30 min

140–143 kDa [26]

Gamma radiations
2% CS in 2% acetic acid,

200 KGy 3–5 kDa [60]

1% CS, 0.1% Tween 80
irradiation 50 kGy 75–77 kDa [61]

Autoclave 1% CS, 1% acetic acid,
121 ◦C, 60 min, 1 bar 313 kDa [62]

CHEMICAL

Acid hydrolysis

0.5 M HCl, 1% CS, 30 h,
65 ◦C - [56]

2% CS, 1.8 M HCl reflux
100 ◦C, 2 h DP < 40 [70]

0.976% CS, 50 mM HCl,
3.89 mM HNO3, 35 ◦C,

30 min
< 16 kDa [57]

1% CS in HCl 1.8 M,
100 ◦C, 2 h DP > 6 [57]

Free radical
methods

2% CS, 2% acetic acid, 1.5%
H2O2 (final) pH 3.0, 6 h 9.9 kDa [58]

1.5% CS in 2% acetic acid
solution, 1.08 g KPS, 70 ◦C 17.4 kDa [59]

ENZYMATIC

Specific enzymes

Chitosanase from
Aspergillus sp. 5U in 5.5%
CS solution 45–50 ◦C, 68 h

DP < 10 [64]

Chitinase from Aeromonas
hydrophila DP 1 to 5 [63]

Non-specific
enzymes

1% CS in 100 mM sodium
acetate pH 4 with 1:100

Pepsin ratio, 2 h
9–13 kDa [65]

4% CS 1% acetic acid 50 ◦C
E/S protease ratio 1:20 DP 1 to 8 [67]

4.5% CS in 0.5 M acetic
acid bicarbonate pH 5.6,

cellulase, 50 ◦C, 14 h
DP 3 to 8 [66]

(1) Mw: Molecular Weight and (2) DP: Degree of Polymerization.

4. Functional Properties of Chitosan and Derivatives

4.1. Sedimentation and Flocculation in the Wine Industry

Chitin and CS have been allowed by the Codex Alimentarius since 2003 as coaguling/clarifying
agents for fruit juices and nectars. Fungal CS extracted from Aspergillus niger is the only type of CS
allowed in winemaking, since 2009, as specified by the Oenological Codex (OIV-OENO 368-2009).
The process from which CS is obtained from chitin in fungi is protected by a patent [23] and its
origin is guaranteed according to OIV-OENO 368-2009 by the three following properties: (i) residual
glucans have to be lower than 2%; (ii) viscosity in 1% acetic acid has to be higher than 15 Cps; and (iii)
the settled density has to be lower than 0.7 g/cm3. CS is a flexible polymer with several functional
groups (amine, N-acetamide, and hydroxyl groups, as seen in the previous sections), which makes
it a very reactive molecule in wine. Therefore, it has numerous potential applications in oenology,
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and is allowed for fining must or wines (OIV-OENO 336A-2009 and 337A-2009) up to a maximal
dose of 100 g/hL, but also for treating wines to remove the following contaminants (OIV-OENO
338A-2009): (i) ochratoxine A (up to a treatment limit of 500 g/hL) and (ii) iron, lead, cadmium, and
copper (maximum dose: 100 g/hL), and finally to reduce the main wine spoilage yeast populations,
Brettanomyces (maximum dose: 10 g/hL) [72]. Even though most CS is soluble in most organic acid
solutions [73], it is not entirely soluble in wine. The sediment formed after CS treatment should be
removed by racking. CS is described in the literature as being a promising agent to fine white wine in
order to reduce the protein content and hence prevent the protein haze hazard, as an alternative to
the commonly used bentonite [74]. In red wine, CS can be used to clarify wines, but reduces the total
phenol content at high doses [75]. However, given the treatment doses required and the cost of the
CS treatment for fining, this application is currently poorly used. Moreover, other fining agents exist
on the market, even if alternatives to bentonite (which potentially can confer metals to the wine and
whose organoleptic impact is not neutral) or other fining agents (such as the animal-derived gelatins)
are needed. Likewise, CS is still poorly used for metal and ochratoxin A removal in wine. However,
alternative treatments for the replacement of the traditional ferrocyanure potassium treatment used to
remove copper and iron, as well as PVI/PVPP (for cooper as well as other metals), would be useful.
Practically, CS is rather widely used for its antimicrobial properties in wine and more precisely to
control the spoilage yeast Brettanomyces bruxellensis [76,77]. In a context where sulphur addition is more
and more limited and the emergence of sulphur resistant yeast populations has been demonstrated [78],
the use of CS as a curative and preventive agent is increasing among winemakers. Moreover, the
10 g/hL maximal and efficient dose to reduce these spoilage yeast populations is compatible from
both a practical and economical point of view. However, there is little knowledge about the biological
reasons sustaining the anti-microbial activity of CS in wine and investigations still need to determine
the impact of CS on other oenological microorganisms, whether wanted or not in wine. Moreover, the
heterogeneity of CS batches (deacetylation degree and molecular weight for example) and large range
of pH, turbidity, ethanol content, and other chemicals parameters encountered in wines will modulate
the efficiency of CS treatments [79]. Strains of B. bruxellensis are more or less reactive to the same
CS batch according to CS concentration, level of yeast population, and probably other oenological
parameters [76,77,80]. The efficiency of CS is sometimes reinforced in oenological formulations by
the addition other oenological products, such as enzymes or fining agents. With a very active and
increasing market of these formulations, it is quite challenging to enumerate all the products available
on the market.

4.2. Antimicrobial Functions

CS was shown to inhibit the growth of many microbial species bacteria, yeasts, or other fungi:
pathogens, phytopathogens, and spoilage species, for food, medical, or agricultural applications. It
displays a high antiseptic spectrum and a high activity compared to other molecules. As a result, it can
be used to eliminate microbial contaminants in planktonic or biofilm form, or to simply prevent their
multiplication or adhesion in bioactive and antiseptic materials (to wrap foods or seeds, for instance,
to immobilize lytic enzymes, to encapsulate vaccines); in solutions to clean material or teeth; to treat
plants and crops; or thanks to its high biocompatibility, directly in liquid foods such as fruit juices or
wine (Table 2). Depending on the aim of CS employment, the mode and duration of CS treatment, and
the total experiment, the medium of the test and the measured effects vary a lot. Minimal inhibitory or
minimal lethal concentrations (MIC < MLC) are often determined in liquid or solid media, inhibition
diameters are also frequently measured on agar plates, and biofilm prevention or elimination is tested
via microplate assays or even directly on medical material, through microbial sedimentation (Table 2).
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Table 2. Studies on antimicrobial activity of chitosan: diversity of target microbes, test media, and final
aim of the treatment.

Effect Medium/Method Chitosan Form or
Derivative

Microbial
Species

Targeted
References

Microbial growth
inhibition

Liquid model
medium (MIC) Nanoparticles,

many Mw/DA
Many species

[81–93]

Beef slices [93]
Beer, wine [94–96]

Solid agar plates [81,83,92,97,98]

Medical catheter Diverse viscosity K. pneumoniae
E. coli [99]

Liquid media Distinct
concentrations

Microbials
cultures [95,100]

Metabolism modification Liquid medium Distinct
concentrations S cerevisiae [101]

Biofilm inhibition Liquid medium Nanoparticles S. aureus [81,102]

Microbial elimination
Liquid medium,
minimal lethal
concentration

Many Mw/DA Many species [77,83–85,87–89,103]

Biofilm elimination

Elimination of
biofilms, in flow

cells/polystyrene
wells

Nanoparticles S. mutans
S. aureus [102,104]

Floculation/sedimentation Liquid medium Many Mw/DA Distinct species [77,87,101,105–107]

The type of microorganism present (yeast, bacteria, genera, species, and even strain) and their
concentration or way of life (biofilm or planktonic) will greatly change the efficient CS concentration
needed [18,82,87,90,107]. Furthermore, the origin, Mw, and DA of the CS or CS derivatives and
formulations (nanoparticles, gels or grafted CS) used vary a lot and the conclusions drawn are
sometimes conflicting. As a result, the antimicrobial mode of action of CS in liquid media is still highly
hypothetical. Microbial inhibition by CS may be the result of a sequence of molecular mechanisms
which altogether lead to cell inhibition and death [79,86,90,108,109]. Besides, some report that CS
activity is mostly growth inhibitory and resistant subpopulations exist [110]. Most studies agree that
the cationic nature of solubilized CS interferes with the negatively charged residues of the bacterial
surface (Figure 6).

The subsequent (sometimes controversial) reported effects are:

(i) The formation of a physico-chemical barrier (towards oxygen for example) by adhesion to the
cell wall, especially on Gram positive bacteria [18,111]. As a result, the microbial envelope,
which is known to be highly variable depending on the species and strain, particularly with
bacteria, plays an important role in CS initial activity. All the elements, such as teichoic acids
or external polysaccharides, that can be negatively charged will favor the interactions with CS.
However, the exact nature of the surface components that interact with CS has not been accurately
defined [83,103]. Species that contain chitin in their membrane would be less sensitive [82].
The membrane may not be the direct target as liposomes are poorly affected by CS [103,112].
Proteins or elements emerging from the membrane or the wall seem to be more likely to be
recognized. However, the membrane composition and fluidity may influence the subsequent
consequences of CS treatment [97,112];

(ii) Some studies suggest a subsequent separation of the cell wall from the cell membrane, whilst
others only mention a morphological change. Interaction with the membrane leads to altered cell
permeability and may disrupt energy generation pathways [89,108,112–118];

(iii) CS also causes agglutination and precipitation of the undesired microorganisms [77,106]. Indeed,
E. coli was shown to protect itself by forming aggregates in the presence of chitooligosaccharides
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(COS), which only displayed a bacteriostatic effect and the bacteria could rapidly grow after
separation from the CS by membrane filtration [108,119]. In other studies, high Mw and
low DD insoluble CS fractions were shown to act as fining agents, which eliminate such cell
aggregates [105,106];

(iv) The diffusion of low molecular weight CS into the cell and its interaction with DNA, RNA, and
proteins is also suggested to contribute to the global mechanism [120–122];

(v) At sublethal doses, an induction of genes involved in stress regulation, arginine or glucose
metabolism (energy), protein glycosylation, membrane synthesis, ion transport, wall construction,
and autolysis is reported [84,85,110,122–124]. S. cerevisiae cells treated with sub-lethal doses of CS
strengthen their wall and become resistant to beta-glucanase treatment [122,124];

(vi) Disruption of the membrane and release of cellular components are often reported,
especially for Gram negative bacteria and for some yeasts [111], but depending on the
dose used, this can or cannot be observed with some Gram positive bacteria, such as
S. aureus [68,87,88,103,113,119,125–128];

(vii) The chelation and sequestration of metal ions and other nutrients in the broth have also been
proposed [125].

In addition, several studies have focused on the parameters that modulate the antimicrobial
activity of CS. Figure 7 gives an overview of the main parameters modulating the antimicrobial activity
of CS.
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Regarding the intrinsic parameters, the CS Mw and DA are important parameters, more than
the origin of the CS. Regarding the size of the active fractions, no consensus can be reached from the
literature. The optimal active Mw may be species or even strain specific, and the opposite results
are reported for various E. coli strains [83,108,120,129–132]. On the other hand, the antimicrobial
activity is directly proportional to DD and inversely proportional to DA [83,84,129,133]. The activity
is also modulated by the culture medium composition and it is different in laboratory media and
in foods [95,98,134]: lipids, proteins, and divalent metal cations can bind to CS and prevent its
interaction with target microbes [103]. Furthermore, Gylienė et al. (2015) [135] suggest that dissolved
oxygen can strongly increase the antiseptic activity of CS. The medium turbidity should also be
considered, as CS binding to medium particles may render it inactive against microbes [93,95,98,136].
The medium pH is very important and CS loses its activity above pH 7, because of deprotonation and
insolubility [83,120,127,130]. The use of CS derivatives such as carboxymethylCS, gallic acid grafted
CS, or N,N,N-trimethyl CS enables higher antimicrobial activity at a higher pH [12,137–139]. The age
of the microbial cultures, i.e., the physiological state of the microbes, and the nature of the species
present, are also key elements modulating microbial sensitivity to CS [100,101,126,140]. Several studies
mention the importance of CS concentration and time of contact regarding the aggregation and finning
effects. Microbial flocculation seems to be more efficient with high Mw and low DD CSs, but this highly
depends on the microbial species present [105,106]. Racking is essential to eliminate the still alive cell
aggregates [108]. For example, in fruit juices and drinks such as beer or wine, CS is added directly
in the beverage. If efficient racking is performed, CS treatment enables undesired microbes to be
eliminated via two distinct activities: the killing one and the flocculating one [77,95,105,134]. However,
racking is not always performed at the end of the test and the position (top, medium height, bottom,
or whole homogenized medium) of medium sampling for microbial enumeration is not specified. This
can greatly change the residual population measured and the risk of regrowth if live but flocculated
individuals are maintained in the treated liquid [77,107,110].
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4.3. Elicitation and Stimulation of Plants

As largely described in the literature, CS and derivatives also have applications as elicitors of
plant growth defensive and stimulant responses [141–143]. In general, the idea that plant cells could
release chemicals substances during pathogen aggression was issued by the scientific community in
the early 20th century. It was commonly referred to as phytoalexins to designate these plant antibiotics
inducing a defense response against phytopathogens [141,142]. Later, these biomolecules resulting
in the synthesis of phytoalexins were designated by the term “elicitors”. Thus, oligosaccharides
derived from plants (endogens oligosaccharides: oligoxyloglucan and oligogalacturonate) or fungi
(exogens oligosaccharides: oligo-β-glucan and oligochitin/COS) were widely described as active
biological elicitors on biological mechanisms such as growth, cell development, symbiosis, and
defense reactions [143,144]. During the aggression stage of a plant by a phytopathogen, different
eliciting signals are emitted by both partners. First, in the early stages, oligogalacturonates, resulting
from pectocellulosic wall degradation with fungal pectinase activities, set off acquired systemic
resistance (ASR) in plants [145–147]. Several major components [147] can be distinguished to
account for observed behaviors: (i) interaction with pecto-cellulosic walls of the host, (ii) induction
of phytoalexins, (iii) specificity, (iv) hypersensitivity, (v) the action of toxins, (vi) the effect of
ethylene, and (vii) the induction of pathogenesis-related proteins. Thus, ASR begins when all
the different signals are perceived by a specific plant cell membrane receptor. Consequently, the
plant then activates its natural defenses, such as the production of specific enzymes like chitinases,
deacetylases, and β-(1,3)-glucanases, which will degrade the parietal constituents of the fungus to
generate oligochitins, COS, and oligo-β-(1,3)-glucans [148]. Apart from all these oligo-β-(1,3)-glucan,
oligochitins (β-(1,4)-N-acetyl-oligoglucosamines) and their deacetylated analogs (COS) are involved in
the defense processes in many plant species, such as wheat (Tricicum) and rice (Oryza sativa) [149,150].
The heptaoligochitin (DP 7) and octaoligochitin (DP 8) structures were found to be the most active
elicitors [149,150]. Some examples of CS and oligochitin/COS elicitors derivatives are summarized in
Table 3.

Table 3. Oligochitins/COS as biostimulators and elicitors of plants defenses.

Plants Effects References

Rice Induction of phytoalexin [149]
Wheat Increase phenolic compounds [150,155]

Pea phytoalexin production [151]
Tomato Proteinase inhibitor synthesis [152]
Soybean Synthesis of callose [153]
Parsley Synthesis of callose [154]
Potato Enhance tuber size [156]

Strawberry Increase fruits yields [156]
Barley Increase phenolic compounds [156]
Maize Increase seed weight [156]
Rape Increase chlorophyll [156]
Basil Increase phenolic compounds [156]

COS also exhibit activity on pea (Pisum sativum) and tomato (Solanum lycopersicum) leaves defenses,
but at concentrations higher than those described for N-acetylated forms (oligochitins) [151,152]. Some
other COS fractions were described to induce: (i) the synthesis of callose, which is a β-(1,3)-glucans
during the defense responses of plants such as parsley (Petroselinum crispum) and soybean (Glycine
max) [153,154] and (ii) lignin deposition and phenolic acid increasing in leaves of wheat [155].
More, CS and COS were also shown to highly stimulate positive plant effects on Potato (Solanum
tuberosum L.), strawberry (Fragaria ananassa Duch.), basil (Ocimum ciliatum), rape (Brassica rapa L.),
maize (Zea mays L.) and barley (Hordeum vulgare L.) [156]. Generally speaking, these bioelicitor
activities from oligochitins/COS seem to be essentially modulated by ionic interactions between
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these polycationic derivatives and the negatively charged compounds of the plant membrane, such as
phospholipids [141,142].

Moreover, oligochitins/COS and their derivatives have also been extensively described as
molecular messengers strongly involved in establishing the symbiosis between Rhizobia and legumes.
Indeed, the Nodulation Factors (Nod Factors) are bacterial glycolipids involved in the formation of
atmospheric nitrogen (N2) fixing nodules on the roots of legumes. Some Nod factors have already
been purified from culture supernatants of mutant S. meliloti strains [157].

All Nod factors produced by rhizobia have a main chain consisting of several β-(1,4)-linked
N-acetyl-D-glucosamine residues (most commonly four to five residues). In S. meliloti, the Nod factor
is a β-(1,4)-linked D-GlcNAc tetrasaccharide. Three of the four amine functions are substituted with
acetates and one is substituted with a bi-unsaturated C-16 fatty acid (Figure 8). Therefore, we can
usually talk about Lipo-ChitoOligosaccharide (LCO).

Many other Nod factors were subsequently isolated; they differ in the number of glucosamine
residues, degree of acetylation or the presence of a more unsaturated and/or longer chain of fatty acids,
or by different carbohydrate substitutions [158–160]. This work makes it possible to highlight the high
level of specificity and recognition of oligosaccharides by the plant cell. Nod factors play a critical role
in the ability of rhizobia to induce root nodules and many other infection-related responses in the host
plant, at concentrations in the order of 10−7–10−11 M [161–163]. In fact, at low concentrations, the LCOs
induce deformation of the plant’s absorbent hairs, whereas at high concentrations, they induce the
division of the cells of the plant’s internal cortex, thus allowing the formation of the nodule [162,163].
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4.4. Biomedical and Pharmaceutical Functions

Regarding the previous section, CS is a unique cationic biocompatible and biodegradable
(see Section 5) polysaccharide that can be modified, as required, according to the needed end-use
application. This is particularly true for biomedical and pharmaceutical applications ranging from
drug delivery systems [164] to functional biomaterials [165], also considering tissue engineering [166],
cell culturing [167], regenerative scaffolds [168], wound healing [169], smart hydrogels [170], active
nanoparticles [171], anticoagulants [172], gene therapy [173], etc. (Figure 9). This list is obviously
non-exhaustive regarding a short search on Scopus with more than 120 recent documents (2018–2019)
using “biomedical” AND “pharmaceutical” AND “chitosan” AND “derivative” keywords.
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Very recently, Mittal et al. [174] published a deep and comprehensive review that scientist readers
should adress to fully understand the progress of CS chemistry for use in biomedical fields, as well as
the paper of Laroche et al. [4], which highlighted the need for an integral approach to comprehend
all the potential of CS and its derivatives. Additionnaly, Khan et al. [175] detailed in their review the
implications of the molecular diversity of chitin, CS, and some derivatives. The authors suggested
the strong potential of CS-based nanomaterials to enhance nanobiotechnology in the future. Phil et
al. [176] placed an emphasis on various biological activities of chitooligosaccharides (COS). COS with
low DP (< 20) seemed to be the most prefered bases for prospecting biomedical properties due to
their excellent solubility, absorbability, and capacity to cross physiological barriers [177]. Additional
lipophilic groups were described to greatly increase biocompatibilty [178,179]. COS and associated
derivatives were reported for their uses in DNA/drug delivery system, [180], tissue regeneration [177],
anticancer/antitumor [180], anti-HIV(1) [181], anti-hypertensive [180], or Alzheimer’s disease [182].
N,N,N-trimethyl CS (TMC) was reported as a quaternized hydriophilic derivative for assembling new
pharmacaeutical nano-structures [182], but also for applications in tissue engineering [183]. These
authors prepared a multifunctional nanohybrid scaffold able, on one hand, to in vitro load/release
bioactive molecules (e.g., LMW heparin), and on the other hand, to play the role of a platform
for the proliferation of soft tissue, extracellular matrix, and specific cells involved in adipogenesis.
Furthermore, some authors have developed new nanoparticulate formulations with a TMC derivative,
such as Sheng et al. [184], who loaded LMW protamine on TMC-coated nanoparticles for oral
administration. This formulation clearly allowed an increase of intestinal permeability and efficient
effects on the intestinal mucus layer. As another example, TMC micelles can be prepared to overcome
subasorption and solulibitly problems of specific active molecules, such as insoluble alkaloid, osthole,
etc. [185,186]. The use of nanoparticles is not new and current papers deal with specific derivatives such
as carboxymethyl CS (CMCS), which are soluble in both acidic and alkaline solutions, for designing
nanotechnology-bases systems based on stimulus-based, diffusion, swelling, or erosion-controlled
release [187]. Beside, Hakimi et al. [188] recently showed the potential of thiolated methylated
dimethylaminobenzyl CS as a delivery vehicle. This statement was validated on Human Embryonic
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Kidney cells (Hek293) and the results revealed an improvement of solubility and disponibility,
and no significant cytotoxicity. Cross-linking reactions between CS, COS, or CS derivatives
with other polymers, synthetic and/or natural oligo- or polymers, open the way to unlimited
applications, as reported by many authors, with recent examples for pectin [189], poly-γ-glutamic
acid (γ-PGA) [190], Poly(ethylene glycol) (PEG) and cyclodextrin [191,192], C-phycocyanin [193],
or Poly(acrylamide-co-acrylic acid) [194]. Finally, CS users interested in biomedical and pharmaceutical
applications should keep in mind that the possibilities of design are unlimited, obviously maintaining
the essential physicochemical, biocompatibility, biodegradability, and biosolubility properties (in
particular in vivo).

4.5. Adhesive Properties

CS is an interesting candidate for adhesive applications, especially in the wood field. CS has
various DD and a large spectrum of Mw. It has been reported that its adhesive properties increase
when DD and Mw increase [195,196]. The mechanisms of adhesion are multiple [1,197]. However,
the surface tension and the viscosity of the liquid adhesive are important because they influence the
interlocking mechanisms and modify the interactions with the adherent. First, the viscosity of the CS
solution increases with concentration. For example, the viscosity is 90.2 Pa.s for a CS solution of 4%
(w/v) and increases to 7132 Pa.s for a solution of 9% (w/v) [198]. Surface tension needs to be low to
easily spread out upon all types of adherent materials. Surface tension is around of 38 mN.m−1 for a
2% (w/v) CS concentration in 1 at 2% (v/v) acetic acid [199]. Kutnar et al. [200–202] estimated that
the surface tension of viscoelastic thermal compressed wood ranged between 28.6 and 35.5 mN.m−1.
Chain link analogy for an adhesive bond in wood was proposed by Marra [203]. He considered a
succession of links between adhesive and wood, especially in the interface between the boundary layer
and the wood structure. This interface constitutes the adhesion mechanisms: mechanical interlocking,
covalent bounding, and secondary chemical bounds due to the electrostatic forces through the adhesive
penetration in wood cells (Figure 10). The penetration of CS solutions into wood or porous biosourced
materials is discussed by Patel et al. [202] and Mati-Baouche et al. [203]. No penetration is observed
respectively into wood [202] and sunflower [203].Appl. Sci. 2019, 9, x 18 of 34 
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However, for water-based adhesive, water is adsorbed by the wood cell wall and the high
molecular weight polymer molecules are trapped by the pit membrane [204]. For Pizzi et al., secondary
forces appear to be the dominated mechanism for bonding wood [205]. CS carries polar and H-bonding
functional groups. At acidic pH, positively charged CS in wet condition interacts more strongly with
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the negatively charged surface via electrostatic forces, H-bonds, and van der Waals forces between
glucosamine and the hydrated surface of adherend [7]. The bonding strength of CS was evaluated
on three plywood veneer sheets with various amounts of CS before and after water immersion
treatment [206]. Water treatment consisted of immersion for 3 h at 30 ◦C. Specimens were cooled in
water and tested in the wet condition. The dry bond strength increased with increasing CS to 16 g.m−2

and then decreased slightly. Before water immersion, the optimum bond strength was 2.13 MPa for 16
g.m−2 CS and after immersion, the maximum value of the bond strength was 1.7 MPa in the condition
of 32 g.m−2.

Umemura et al. [207] showed that the dry bond strength of CS is in the range 1.1 MPa–1.6 MPa
for Mw varying between 35 and 350 kDa. With glucose addition (70 wt%), the bond strength increased
to 1.75 MPa for low molecular weights CS. In contrast, the bond strength tended to decrease at
greater amounts of added glucose for high molecular weight CS. The Maillard reaction in the above
formulation formed brownish melanoidins, which occurred between the COOH of glucose and NH2

of CS, demonstrating improved adhesive properties of glucose cross-linked low molecular weight CS.
Patel et al. [202] evaluated the potential of CS as wood adhesive using a double lap shear test. Three
formulations were tested: CS 4% (w/v); CS 6% (w/v); and a formulation of CS 6% (w/v), glycerol
1% (v/v), and trisodium citrate dihydrate 5 mmol.L−1. Dry bond strengths were respectively 4.2, 6.1,
and 6.0 MPa. Paiva et al. [208] obtained the same results concerning the influence of the concentration
of CS on cork adhesive performances. They mixed CS with oxidized xanthan gum to increase the
adhesive power. The combination of oxidized xanthan gum with CS had the potential to improve the
adhesion properties due to crosslinking of the aldehydes with the amino groups to form an imine
linkage. To reduce water affinity and to improve the mechanical properties of CS, hydrophilic material
such as stark can be incorporated. It forms intermolecular hydrogen bonds between the amino and
hydroxyl groups of CS and the hydroxyl groups of starch [209]. CS is a basic linear polysaccharide. Its
performance can be improved with the chemical cross-linking technique. For example, glutaralhedyde
converts CS into a network structure for medium-density fiberboard applications [210]. Others authors
have proposed formulating CS with konjar glucomannan [208] or lignin [211]. CS can be used as
an adhesive with other materials, for metal, for example. Patel et al. [212] tested CS adhesive with
aluminum adherents using a double-lap shear configuration. They studied different surface treatments
and showed that aluminum adherents chemically treated with NaOH presented the best bonding
strength. Formulated with glycerol (1% v/v) as plasticizer, CS (7% w/v) in 2% (v/v) acetic acid
obtained a maximum shear strength of 40.8 MPa.

4.6. Other Potential Applications

Owing to the chemical properties earlier described, CS is also a promising adsorbent that is
easily modifiable. Due to its unique polycationic behavior, CS can strongly interact with negatively
charged molecules or ions. These adsorption and chelation properties are pH-dependent and also
depend on CS molecular weight and acetylation degree. These characteristics make CS a polymer of
choice for water pollution issues and controlling the quality of water effluents through the chelation of
metal ions such as copper, zinc, lead, or cadmium [213]. Coagulation and flocculation properties of
CS are also crucial in wastewater treatment plants [214] to reduce chemical oxygen demand (COD),
chlorides, turbidity, and proteins [215]. In order to enhance absorptive properties of CS for metals and
organic textile dyes, many types of derivatives have emerged, non exhaustically: zeolites, EDTA, and
montmorillonite. CS is also being more and more used for creating innovative packaging owing to its
remarkable barrier properties, especially against water vapor, and its low permeability to oxygen [216].
These properties help to maintain product quality thanks to the control of oxidation or moisture. The
same study showed an important resistance to the UV light of CS after modification with an adequate
amount of glycerol. The paper industry is using CS film as a paper finisher to improve paper strength
to moisture. Due to its non toxicity and biocompatibility, this polysaccharide also has numerous food
applications by providing texturing, gelling, and foaming properties and helping the stabilization
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of emulsions. CS is also a super efficient lipid binder and can be used in supplemented food for
obesity or dietary destination [213]. In agriculture, it is used for seed coating and can act as a frost
protective [215]. Finally, promising solid state batteries including modified CS have been reported by
some authors [214,216].

5. Biodegradability of Chitosan Derivatives and Life Cycle Assessment (LCA)

Since the last decade, the biodegradability of CS has been extensively studied, notably to
produce COS, which present varying bioactivities and numerous potential applications in food,
agriculture, biomedicine, pharmaceutics, and cosmetics [217,218]. The combination of chemical
(e.g., acidic depolymerization) and physical processes constitute the well-known way of producing
COS [18,219–221], but these treatments nevertheless yield poorly defined oligosaccharide combinations
varying in their DP, pattern of acetylation (PA), and fraction of acetylation (FA). Alternatively, CS
depolymerization using enzymatic hydrolysis seems to be more relevant for COS production since
it involves a more gentle and controlled procedure (pH, temperature), leading to a better control of
Mw distribution of COS [221] and generation of more defined products [222,223]. However, as the
efficiency of enzymatic hydrolysis of CS remains dependent on PA and FA, the chemical states of CS
used as a substrate may influence the composition of enzymatic products [224,225].

CS has been reported to be susceptible to numerous enzymes, including specific (chitosanases, E.C.
3.2.1.132; chitinases, E.C. 3.2.1.14) and non-specific (glycosidase, lipase, proteases, etc.) CS hydrolyzing
enzymes [226]. Non-specific chitosanolytic enzymes belong to heterogeneous enzyme families such
as cellulase [227], amylase [228], pectinase [229], papain [230], lysozyme [231,232], or lipases [233]
(Table 4). Although chitinases and chitosanases are very effective, the utilization of non-specific
enzymes is more suitable for the low-cost production of COS [234]. Among non-specific enzymes,
cellulases showing bifunctional activities (cellulase-chitosanases) have been well-documented and were
isolated from various organisms, such as Bacillus sp., Trichoderma sp., and Lysobacter sp. [235–239]. With
activities and reaction conditions varying according to the sources, some cellulase lead, by an endo-type
cleavage, to final hydrolysis products distributed from dimers to tetramers [227]. Chitosanolytic activity
associated with bifunctional cellulase may represent 15–40% of cellulase activity [236] and be enhanced
with increasing deacetylation degree [240,241]. Furthermore, chitosanases are generally recognized
as enzymes degrading specifically CS, but not chitin, and have been classified into three subclasses
according to the nature of the cleavage positions: GlcN-GlcN and GlcNAc for subclass I, GlcN-GlcN
for subclass II, and GlcN-GlcNAc for subclass III [222]. These enzymes, belonging to five Glycoside
hydrolase families (GH-5, -8, -46, -75, and -80), degrade CS via an endo-type mechanism. However,
new enzymes with exochitosanase activity have been reported, notably exo-β-D-glucosaminidase able
to cleave CS from non-reducing termini, releasing GlcN residues [242,243]. Recently, the identification
of a carbohydrate binding domain (CBM) for some chitosanases may suggest additional interaction
with the CS polymer, involving a different mode of CS hydrolysis [244,245]. The chitosanases described
are issued from many organisms, including bacteria, cyanobacteria, fungi, and plants [222]. Although
the performance of chitosanases on CS depolymerization is largely dependent on enzyme sources and
reaction conditions, it has the advantage of being able to design a selected enzyme mixture to generate
the controlled production of COS with selected DP or perform the complete CS hydrolysis to GlcN
free [222,239].
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Table 4. Non-exhaustive list of enzymes biodegrading chitosan.

Enzyme/Microorganism Mode of Action on
Chitosan

Distribution of
Reaction Products

Substrate
Specificity References

Cellulase

Bacillus cereus D-11 GlcN-GlcNAc,
GlcNAc-GlcN, GlcN-GlcN

Chitobiose,
chitotriose and

chitobiose
CMC, CS [235]

Bacillus sp. 65 GlcN-GlcN ND CMC, CS [238]

Bacillus cereus S1 GlcN-GlcN Dimer, trimer and
tetramer

CMC, Colloidal
and soluble CS [239]

Lysobacter sp. IB-9374 Endo-type cleavage
Chitobiose,
chitotriose,

chitotetraose

CMC, Colloidal CS,
CS, Glycol CS [236]

Trichoderma reesei GlcN-GlcN Oligomers CMC, Avicel, CS [241]

Trichoderma viride

GlcN-GlcNAc,
GlcNAc-GlcN, GlcN-GlcN

cleavage from the
non-reducing end

Oligomers CMC, CS [227]

Chitosanase

Bacillus circulans WL-12 GlcN-GlcN, GlcN-GlcNAc (GlcN)2, (GlcN)3,
(GlcN)4, oligomers

Lichenan, colloidal
CS [246]

Bacillus subitilis str168 NA (GlcN)2 to (GlcN)6 Low weight CS [247]

Amycolatopsis orientalis Exo-type chitosanase
(Exo-β-D-glucosaminidase) NA CS [248]

Chitinase Ramdom hydrolysis
GlcNAc Oligomers CS [249]

Lipase NA

Mainly (GlcN)2 to
(GlcN)6, complete
hydrolysis (GlcM)
when increasing

reaction time

CS [237]

Papain GlcN-GlcN, GlcN-GlcNAc

GlcN, (GlcN)3,
(GlcN)4 in soluble

fraction, and
oligomers in

insoluble fraction

CS [230]

Pectinase

Aspergillus niger NA
Dimer to hexamer

with predominance
of dimer, oligomers

CS [229,250]

Lysozyme GlcNAc-GlcNAc NA CS film [231,232]

NA: Data not available, CMC: Carboxymethylcellulose, CS: Chitosan.

On the other hand, the biodegradation of CS derivatives relative to chemically modified or
grafted-CS copolymers was also investigated using enzymatic hydrolysis, e.g. C6-oxidized CS [133],
CS phenolic [251], CS/hyaluronan [231], or CS/alginate [252]. As an example, a commercialized
enzymes mixture (Glucanex®, Macerozyme R-10) and crude extract from T. reesei IHEM 4122 have
shown the best performance for C6-oxidized CS degradation, with final hydrolysis yields ranging
from 12.9 to 36.4% (w/w) [245]. In summary, the biodegradation of CS and derivatives has been proved
efficient, mainly thanks to the availability of a large panel of enzymes.

Today, many studies focus on the improvement of these enzymes by genetic engineering, or the
use of microorganisms producing chitosanolytic enzymes for degrading in situ CS bio-based products,
notably in environmental and medical (CS-based systems used for drugs release) applications.

The benefits of CS, including its large availability, low-cost, biocompatibility, and biodegradability,
make it attractive for industrial processing in a context of multiple applications (bio-based material and
adhesives, tissue engineering, . . . ) [253]. In the actual initiative of the establishment of the ecological
impact in industrial processes development, studies of life cycle assessment (LCA) for CS utilization
(from the extraction to the manufacturing product) have emerged for the last year. However, these
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studies remain restricted to a few applications. As an example, Leceta et al. [219,249] has launched
an LCA study to estimate the impact of manufacturing CS from crustacean waste to a bio-based
film. A comparative analysis with propylene-based films (PBF) allowed it to be demonstrated that
PBF had significant disadvantages associated with the polluting nature, the consumption of higher
energy, and the release of carcinogen products. In support of these data, a schematic diagram of
the life cycle for the CS-based adhesive was proposed by Mati-Baouche et al. [1], including the
presentation of the main steps leading to the production of CS-based adhesive from crustacean
waste. In a different context, after demonstrating the potential of grafting phenol and catechin
on a CS polymer to generate a functionalized biopolymer, the relative impact of CS derivatives
was compared with other water-soluble polymers using the framework of LCA. In conclusion,
LCA constitutes an indispensable approach to generating important data on CS manufacturing
environmental impacts and may contribute to strengthening the stimulation/interest of the industrial
sector in CS processing development.

6. Conclusions

CS and their derivatives are bio-based, biodegradable, and biocompatible polysaccharides, having
specific physico-chemical properties that can be exploited in numerous application fields. Indeed, they
can be considered as a backbone rich in -OH and -NH2 groups available for chemical reticulation and
modifications with the objective of giving them specific functional properties. Chemical modification
of CS is the main way to increase its solubility in aqueous solutions or organic solvents, leading to the
formation of CS-based materials. In this context, recent research has focused on the use of this non-toxic
linear polysaccharide on native or modified forms for several applications in the food area (dietary
ingredients, food preservative, and/or techno-functional agent), biomedical applications (wound
healing, gene delivery, tissue engineering, scaffold and hydrogels, pharmaceutical excipient), waste
treatment (adsorption of heavy metal, coagulation of pollutants and bactericide agents), agriculture
(elicitor of plant defense reactions), adhesives (wound bonding), and biotechnology (cells and enzymes
immobilization). The major part of these applications is real, and products are currently on the
market. However, in the future, their development on a large scale should consider the availability
of commercial CS sources, which is constrained and limited by the volumes of raw materials for
its production at an industrial scale. In this context, the development of new CS-producing chains
exploring new and easily accessible sources of chitin has appeared as fundamental to increasing
the volumes of production and proposing to the market low-cost CS. These new sources of CS,
as the traditional ones, should be treated by innovative and ecological processes to avoid the use
of strong acids and bases which are very hazardous for the environment, but also to limit the
water consumption. For that, biological treatments of chitin and CS with enzymes (proteases or
chitin deacetylase) or microorganisms producing them offer an alternative to traditional treatments
combined or not combined with new technology (microwave for example), replacing the conventional
deacetylation at high temperature. The actual research on new sources of proteins, notably exploring
the large-scale production of insects and microalgae, could generate new chitin-rich by-products
available for the industrial community to produce more sustainable and low-cost CS.
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