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rBAN: retro-biosynthetic analysis 
of nonribosomal peptides
Emma Ricart1,2* , Valérie Leclère3, Areski Flissi4,5, Markus Mueller6, Maude Pupin4,5 and Frédérique Lisacek1,2,7 

Abstract 

Proteinogenic and non-proteinogenic amino acids, fatty acids or glycans are some of the main building blocks of non-
ribsosomal peptides (NRPs) and as such may give insight into the origin, biosynthesis and bioactivities of their consti-
tutive peptides. Hence, the structural representation of NRPs using monomers provides a biologically interesting skel-
eton of these secondary metabolites. Databases dedicated to NRPs such as Norine, already integrate monomer-based 
annotations in order to facilitate the development of structural analysis tools. In this paper, we present rBAN (retro-
biosynthetic analysis of nonribosomal peptides), a new computational tool designed to predict the monomeric graph 
of NRPs from their atomic structure in SMILES format. This prediction is achieved through the “in silico” fragmentation 
of a chemical structure and matching the resulting fragments against the monomers of Norine for identification. 
Structures containing monomers not yet recorded in Norine, are processed in a “discovery mode” that uses the RESTful 
service from PubChem to search the unidentified substructures and suggest new monomers. rBAN was integrated in 
a pipeline for the curation of Norine data in which it was used to check the correspondence between the monomeric 
graphs annotated in Norine and SMILES-predicted graphs. The process concluded with the validation of the 97.26% of 
the records in Norine, a two-fold extension of its SMILES data and the introduction of 11 new monomers suggested in 
the discovery mode. The accuracy, robustness and high-performance of rBAN were demonstrated in benchmarking it 
against other tools with the same functionality: Smiles2Monomers and GRAPE.

Keywords: Peptide, Monomer, Retro-biosynthesis, Fragmentation, Structure analysis, Natural product, Curation, 
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Introduction
Natural products are a well-recognized source for drug 
discovery due to their wide range of antibiotic, antitu-
mor or immunosuppressant activities. Indeed, 26% of 
the drugs approved by the US FDA from 1981 to 2014 
were natural products or natural products derivatives [1]. 
An important part of those are nonribosomal peptides 
(NRPs) considered as secondary metabolites and found in 
bacteria and fungi. In these organisms, NRPs are assem-
bled by large enzymatic systems into complex structures 
from building blocks such as non-proteinogenic amino 
acids, fatty acids or carbohydrates. Significant por-
tions of the bacterial and fungal genome are devoted to 

the production of these compounds. Therefore, genome 
mining tools such as GARLIC [2] and antiSMASH [3] 
have been developed to automatically identify second-
ary metabolite biosynthesis gene clusters. However, 
these tools are not able to distinguish between clusters of 
already known compounds and clusters uncovering new 
natural products. A possible approach to solve this prob-
lem is to perform the retro-biosynthesis of these com-
pounds obtaining their constituent monomers and align 
them with the monomers of the predicted clusters [2, 4, 
5]. A few methods predicting the retrosynthesis of a com-
pound from its chemical structure have been described. 
To begin with, CHUCKLES [6] can convert a chemical 
structure into a monomer-based sequence by match-
ing a set of monomers against the target structure. The 
monomers are previously sorted by descending size and 
the matching is done sequentially. The main limitations 
of this method are: (i) larger monomers are given the 
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priority and (ii) monomers with more than three external 
connections are not handled. This approach is efficient 
with regular peptides, but not for NRPs. Other methods 
such as RECAP (Retrosynthetic Combinatorial Analysis 
Procedure) [7], BRICS (Breaking retrosynthetically inter-
esting chemical substructures) [8] or molBLOCKS [9] use 
fragmentation rules to obtain drug-like chemical entities. 
However, these methods are focused on the discovery 
of structural motifs for drug design and they make no 
attempt to annotate the target compounds by identifying 
the resulting fragments. Moreover, their fragmentation 
rules are derived from common chemical reactions, lack-
ing specificity for particular compounds such as NRPs.

In recent years, two new tools specifically designed to 
target NRPs have been published. The first one, Smiles-
2Monomers (s2m) [10] maps the monomers of a database 
within an atomic structure and selects the best combina-
tion (tiling) that covers the whole molecule with non-
overlapping monomers. This approach is algorithmically 
elegant but computationally expensive. As a result, the 
best tiling is obtained as an approximate solution and the 
optimal mapping is not always found, sometimes leading 
to uncovered regions in the molecule. A second solution 
is implemented in GRAPE (Generalized Retro-biosyn-
thetic Assembly Prediction Engine) [2] as the theoretical 
deconstruction of NRPs and Polyketides (PKs) by apply-
ing specific retro-biosynthetic reactions. The obtained 
fragments are then matched against a monomer library 
integrated in the software. A sequence of monomers is 
given as a result, but the original monomer linkages are 
lost. Both, GRAPE and s2m rely on their monomer data-
base, which is a limitation for the analysis of peptides 
containing new monomers.

Part of the interest in developing retro-biosynthesis 
tools arises from the benefit of a monomeric representa-
tion. Chemical structure databases dedicate an important 
part of their resources in data curation, analysis and visu-
alization. The complex structure of NRPs often results in 
too dense and unclear atomic representations. A mono-
meric format, as with peptide sequence annotation, 
reduces the complexity of the layout providing the same 
information in a more intelligible way and facilitates the 
implementation of substructure and similarity search 
algorithms [11, 12]. Furthermore, this format is biologi-
cally meaningful as the monomers provide direct insights 
into the peptide activity and origin [11, 13, 14]. These 
substructures bring essential information to understand 
the biosynthesis of the peptide and, given their bioac-
tivities, they are interesting data for structure-based drug 
design studies.

The convenience of the monomeric method is reflected 
in the emergence of new monomer-based notation for-
mats. Examples of that are the recent languages named 

HELM (Hierarchical Editing Language for Macromol-
ecules) [15, 16] and SCSR (Self-Contained Sequence Rep-
resentation) [17], which provide concise annotation of 
complex biopolymers in a component-based approach. 
Some databases devoted to bioactive peptides have also 
chosen this format to represent their data. This is the 
case of Norine [18, 19], which is entirely dedicated to 
NRPs and uses monomer graphs for structure depic-
tion and analysis. Indeed, all the structural analysis 
tools integrated in Norine are monomer-based [10–12, 
14], proving the advantages of the approach. Another 
example is the BIRD (Biologically Interesting molecule 
Reference Dictionary) [20] project from PDB (Protein 
Data Bank) [21]. Here, the peptide-like inhibitor and 
antibiotic molecules are represented as polymers with 
sequence information or as single components. BIRD is 
the result of a remediation work in which part of the PDB 
entries were reviewed in order to improve their repre-
sentation and facilitate their identification and analysis. 
This kind of processes require a long and tedious effort 
that could be accelerated using bioinformatics tools. 
Hence, the usage of retro-biosynthesis software is deci-
sive to improve these curation tasks by providing auto-
matic annotation and assuring conciseness between the 
atomic and monomeric annotations. Additionally, the “in 
silico” retro-biosynthesis can also be applied to validate 
already annotated entries by checking the correspond-
ence between the existing and the predicted annotations. 
A practice that would also spot potentially erroneous 
entries.

In this article, we introduce rBAN, a new tool simu-
lating the retro-biosynthesis of NRPs. The main strat-
egy of the software is to perform the fragmentation of a 
molecule by breaking it through a set of pattern bonds 
and matching the resulting fragments to a monomer 
database (Fig.  1). The matching process was specifically 
designed to allow tautomer’s identification, a feature that 
was already presented in the s2m tool and named light 
matching. However, the two approaches are slightly dif-
ferent: the light matching of s2m omits all the implicit 
hydrogens and bond orders to match the monomer, while 
rBAN only omits the position of the double/triple bonds, 
making the method more restrictive and decreasing the 
likelihood of obtaining false positives. rBAN also intro-
duces the “discovery mode” option that is applied when a 
monomer cannot be matched in the custom database. In 
this mode, missing substructure(s) can be automatically 
searched in PubChem [22] to suggest a new monomer. 
This feature reduces the dependence to the database, 
providing more flexibility than the retro-biosynthetic 
approaches previously presented. Finally, the results are 
presented in a directed graph format that includes the 
bond types linking the monomers. To our knowledge, no 
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other tool provides the bond type annotation though it 
can be highly relevant for its integration into structural 
analysis pipelines. rBAN is presented in two formats, 

as an executable jar and as a web application, the latter 
being a simplified version of the software. We used rBAN 

Fig. 1 Example of Vancomycin processing. A First, the primary bonds mapping searches the most common bonds between NRP monomers 
within the molecule. This process results in the mapping of two pairs of adjacent bonds that cannot be targeted simultaneously since it would 
isolate some atoms. To avoid that all the possible combinations only including one of the neighboring bonds are computed. B Then, rBAN 
retrieves the substructures resulting from each combination and it matches them against the monomer database. A coverage score is given to 
each combination based on the number of atoms that could be annotated. C In this case, any of the results has a full coverage, so the algorithm 
proceeds to the secondary bonds search of the structure with the highest score. D The breakage of a carbon-carbon bond results in the full 
mapping of the peptide



Page 4 of 14Ricart et al. J Cheminform           (2019) 11:13 

for the curation of the Norine database and benchmarked 
it against s2m and GRAPE.

Methods
rBAN was developed in Java using the Chemistry Devel-
opment Kit (CDK) library. Given an input file with chem-
ical structures in SMILES (Simplified molecular-input 
line-entry system) [23], the tool uses CDK to map the tar-
get bonds by substructure search and Norine monomer 
database to identify the corresponding monomers. The 
overall process of the software architecture is described 
in the Fig. 2.

Data preprocessing
NRPs monomer data
Norine is dedicated to NRPs and was used to retrieve 
the monomer dataset in order to guarantee consistency 
between the target compounds and their building blocks. 
This dataset consists of 534 manually-annotated mono-
mers extracted from the compositions of the NRPs in the 
database. Hence, the dataset is limited to the monomers 
present in Norine peptides and it may not be sufficient 
when used for the identification of fragments of new 
NRPs. To solve this issue, we developed an algorithm that 
suggests new monomers by adding modifications to the 
existing ones. In order to add a biological value to the 
predicted structures, the modifications were selected in 
accordance to some of the enzymatic reactions occur-
ring in the NRP biosynthesis [24, 25] (see Additional 
file 1: Table S1). For instance, a methyl group is added in 
the amino side of each monomer in order to mimic the 
action of the methyltransferase (MT) domain. Finally, 
preprocessing is also used to identify monomers with 
identical chemical graphs (isomers) and group them as a 
single entry (the tool does not include isomer discrimi-
nation). The PubChem PUG-REST service is used to 
include the PubChem IDs of the monomers.

Software architecture

1. Primary bond search NRP monomers are usually 
connected through certain types of bonds, the most 
common being amino and ester. Therefore, map-
ping these bonds is the first step of monomer iden-
tification. We rely on a graph isomorphism algorithm 
provided by CDK to search the substructures of the 
bonds within the chemical graph of the target com-
pound. The complete list of bond types included in 
the search (Fig. 1A) was manually constructed based 
on observations and literature [25–27]. Smiles Arbi-
trary Target Specification (SMARTS) [28] is the 
language used to describe the molecular patterns 
of the bonds since it provides higher flexibility than 

Fig. 2 Software architecture workflow. This flowchart describes the 
series of steps for processing structures with rBAN
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SMILES. During this step, all the bonds matching the 
target patterns will be selected unless they are posi-
tioned on terminal branches of the chemical struc-
ture (ultimate or penultimate positions). These bonds 
are excluded in order to avoid single atom isolation. 
Bonds pertaining to cycles of less than six atoms are 
also removed, although they will be evaluated later in 
the pipeline. The only exception to that rule are the 
oxazole and thiazole heterocycles, as they are highly 
abundant in NRPs [29].

 Once mapped, the bonds between adjacent posi-
tions cannot be simultaneously targeted (single atom 
isolation problem). This issue is solved by comput-
ing multiple combinations, each combination only 
including one of the neighboring bonds. To do so, 
the adjacent bonds are grouped in different sets and a 
recursive algorithm computes the Cartesian product 
of these sets to generate all possible permutations. 
Note that to reduce the number of combinations and 
maximize the number of targeted bonds not all the 
adjacent bonds are included in this calculation, but 
only those whose simultaneous breakage implies the 
isolation of single atoms or pairs (Fig. 3). In a similar 
way, the presence of an amino or an ester bond in the 
set also limits combinatorics as they are prioritized 
due to their predominance as NRP links.

2. Fragmentation and identification The bonds mapped 
in the primary search are used as breaking points to 
obtain the fragments of the molecule. This is done 
using a breadth-first search algorithm to iterate 
through the chemical graph and compute the result-
ing fragments from those breakages. This action 
is performed for each permutation of bonds pro-

vided, producing several sets of fragments that will 
be matched against the monomer database. Prior to 
this matching, the fragments are slightly modified in 
order to compute their expected structure outside 
the molecule –when not linked- thereby generating 
structures equivalent to those stored in the monomer 
database. The modifications applied are in accord-
ance with the linkage patterns observed for each type 
of bond. For instance, a hydroxyl group is added to 
the formyl-ended fragment derived from a peptide 
bond breakage in order to obtain the “original” car-
boxyl-terminus structure of the monomer (see Addi-
tional file 1: Table S2). Once these modifications are 
applied, the monomers are matched against the data-
base in order to identify them. Two different match-
ing attempts are sequentially executed: the strict and 
the light matching. The strict matching will be only 
successful if the graph of the fragment is identical to 
the graph from the database. It checks the atom con-
nectivities, the atom types and the bond orders. If a 
structure cannot be “strictly” matched, rBAN pro-
ceeds to light matching, which allows changes in the 
position of the double/triple bonds facilitating tau-
tomer identification. Failure to match fragments can 
be due to the fragmentation of inner bonds in a mon-
omer. Hence, when a fragment is not identified, the 
algorithm repeats the matching process by removing 
each of its linking bonds consecutively (Fig. 4). This 
process is limited to small-medium fragments (less 
than 8 atoms) because of their higher chances of 
being part of a monomer; such restriction also avoids 
an excessive amount of combinations. When a whole 
set of fragments has been matched, it is assigned with 
a score indicating the number of annotated atoms 

Fig. 3 Adjacent bonds breakage. Our fragmentation algorithm avoids atom isolation, which restricts the simultaneous cut of some adjacent bonds, 
requiring the computation of further combinations
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versus the total number of atoms in the molecule 
(coverage). The next steps in the pipeline depend on 
these scores. If any of the fragment sets has a score 
of 1, ergo all the monomers have been identified, the 
algorithm proceeds to the monomer graph creation. 
Otherwise, the secondary bonds search is applied to 
the sets with the highest score (Fig. 1B).

3. Secondary bond search Some bond types such as the 
carbon-carbon linkages are not common as a bridge 
between NRP monomers and breaking them in the 
initial step would lead to unnecessary and exces-
sive fragmentation. This is why they are considered 
as secondary bonds and their mapping is restricted 
to the fragments that have not been identified. The 
secondary bond collection comprises less common 
bonds and non-specific heterocycles (Fig.  1C). Spe-
cific heterocycles such as the oxazoles and thiazoles 
are covered in the primary search, since their cyclisa-
tion patterns are well-known [27, 30]. Yet the exist-
ence of a wide range of cyclisation forms complicates 
the individual targeting of the remaining heterocy-
cles. For this reason, we use a general approach that 
provides several breakage possibilities instead of a 
single solution. The algorithm performing this task 
implements substructure search to identify the het-
erocycles and combinatorics to return the permuta-
tions of cycle bonds that break the fragment without 
leaving isolated atoms. After the secondary bond 
search, the fragmentation and identification step is 
repeated. If the full score is still not reached and the 
monomer discovery mode is activated, rBAN moves 
to the next step.

4. Monomer discovery The unidentified substructures 
may represent missing monomers in the database. 
In these cases, the CDK library is used to generate 
the SMILES of the unknown chemical structure that 
serves as a parameter for an automatic PubChem 
search. The substructures successfully identified 
are annotated using their PubChem name and sug-
gested in the results as new monomers for the Nor-
ine database. The information is presented in a JSON 
file where the compounds containing the suggested 
monomer are also listed. Graphical results are also 
provided. For each new monomer, rBAN creates a 
folder with the depictions of the peptides where the 
substructure occurs.

5. Monomer graph serialization The monomeric struc-
ture consists of a directed graph with a set of nodes 
represented by the predicted fragments and a set 
of edges symbolizing their linking bonds. To build 
this graph, the monomers are reconnected using 
the association between the broken bonds and the 
resulting fragments. The edges are labeled specify-

Fig. 4 Identification of monomers containing inner bonds. Some 
monomer bonds are sometimes fragmented by the algorithm. To 
handle these cases, when a small region cannot be identified, rBAN 
repeats the matching process after removing the bond linked to the 
unidentified substructure (example with Theonellapeptolide Ie)
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ing the type of bond and their direction is chosen 
based on the type of atoms in the bond. The mono-
mer associated with the carbon atom of the bond is 
set as the source while the monomer containing the 
heteroatom is set as the target. For instance, in case 
of a peptide bond, the monomer with the carboxylic 
side would be the source while the monomer with 
the amino side, the target. The graph is serialized in 
a JSON file also containing the atomic graph of the 
peptide that associates each atom with the monomer 
containing it (see Additional file 2). If the theoretical 
annotation (Norine graph) is given as an input, the 
output graph will also contain a “correctness” value. 
This value results from the division of the number 
of correctly annotated atoms (associated with the 
expected monomer) by the total number of atoms in 
the molecule. The graphical depiction of the chemi-
cal structures with the labeled monomers is also 
implemented as an option.

Results and discussion
The Norine database provides structural data of NRPs 
in both atomic and monomeric formats. The monomer 
annotation is essential to obtain the correctness of rBAN 
predictions and for this reason Norine was chosen as the 
main resource to evaluate the software.

Norine Database Curation and Extension
In Norine, the SMILES (atomic structure) and the 
monomer graphs (monomeric structure) are some-
times extracted from different resources. To guarantee 
the conciseness between the two representations and 
thereby validating the SMILES from Norine, rBAN was 
run to compare the SMILES-predicted monomeric graph 
with the Norine annotated graph. When the theoretical 
and the predicted graphs are identical, then the result is 
considered as correct and the corresponding SMILES is 
validated. From the 256 peptides that are described in 
SMILES, rBAN could validate 249 (97.26%) (Fig.  5a1). 
The non-validated peptides were manually inspected and 
errors in their SMILES were identified. Hence, the lack 
of validation was attributed to wrong input data and not 
to a wrong mapping of the software. In fact, the software 
helped to spot these wrong SMILES that were later cor-
rected/removed from the database. An example is Enni-
atin F, whose monomeric annotation did not match the 
structure given by the SMILES (Fig. 5b).

As already mentioned, in the previous version of Nor-
ine only 256 entries (21.56% of the total) contained the 
structural information in the SMILES format. In order to 
increase this count, we used the PubChem PUG-REST 

Service to perform automatic searches, retrieve the miss-
ing SMILES and validate them using rBAN. The only 
available parameters for the PubChem searches were 
the name of the compound, which lacks specificity, and 
the PubChem link provided by Norine, that is rarely pre-
sent and occasionally wrong. Hence, the validation step 
becomes essential to reduce the uncertainty of the search 
and provide more reliable results. From the 403 SMILES 
retrieved from PubChem, 242 were validated using rBAN 
(Fig.  5a2). These SMILES were added to the database 
generating a two-fold increase in Norine SMILES data. 
The non-validated entries were considered as false posi-
tives due to the uncertainty of the search.

Monomers discovery
As already mentioned, the non-validated entries can be 
due to a wrong annotation either in the SMILES or in the 
monomeric graph. In the latter case, peptides may con-
tain monomers not present or wrongly annotated in Nor-
ine. Thus, rBAN was run in discovery mode to identify 
new monomers. The software suggested 61 new building 
blocks. Some of these predictions could be wrong due 
to mistakes in the input SMILES or wrong mapping of 
the software. Hence, a manual inspection was required 
before their addition into the database. To increase con-
fidence, only the monomers present in more than one 
compound were evaluated.

From the 18 monomers examined, eleven were cor-
rect suggestions (Table 1). N-Formyl-Lysine was the most 
commonly found monomer, missing in Norine because 
CO is currently defined as a monomer in the database 
and occurs in several NRP graphs. In contrast, rBAN 
considers CO as formylation and not a monomer there-
fore suggested a new formylated monomer. Most of the 
other new entities correspond to monomers that were 
not properly annotated in the monomeric graph. Such 
is the case of the ”C4:1(3)–OH(2)” monomer that should 
be beta-Vinyllactic acid (C5:1(4)–OH(2)) (see Additional 
file 1: Fig. S1). Other cases encompass a missing mono-
mer in the monomeric graph or an incorrect SMILES of 
the known monomer. All the corrections were made in 
accordance to the literature associated with the corre-
sponding compounds.

Seven of the monomers suggested by rBAN were 
rejected (find them in Additional file 1: Fig. S3) because 
the manual inspection of their corresponding peptides 
revealed that their SMILES rather than their mono-
meric graph created the problem. The peptidic structures 
(SMILES) of these records contained errors or did not 
even correspond to the right molecule due to the ambig-
uous PubChem searches previously performed.

The eleven new monomers were added in the Nor-
ine database along with the correction of the wrong 
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annotations, either in the monomeric graphs or in the 
SMILES of the compounds (find examples in Additional 
file 1: Fig. S1). This step was essential for evaluating the 
increase of the validated data. In the end, 11 added new 
monomers along with the correction of wrong annota-
tions boosted the count from 492 to 526 validated entries.

Benchmarking
rBAN was compared against two tools with similar func-
tionality: s2m and GRAPE. The benchmarking was per-
formed on a PC computer with an Intel/Core i5-5300U 
CPU at 2.3 GHz with 4 GB of RAM allocated to the Java 
Virtual Machine.
rBAN vs s2m
Within the retro-biosynthetic tools targeting NRPs, s2m 
is the closest to rBAN as it produces the same output: a 
monomeric graph. Yet the two approaches substantially 

differ in their features and algorithmic approaches set to 
handle the issues raised by mapping the molecules. These 
involve among others, the monomer search, the light 
matching or the heterocycles treatment (see Table 2). In 
order to compare both tools, we analyzed their results, 
their robustness and their computational performance. 
The benchmark in the following sections was performed 
running s2m in the light matching mode to allow tau-
tomer identification and obtain results comparable to 
those of rBAN.

Results comparison s2m was run to validate the same 
SMILES data previously used in the curation protocol of 
the Norine database. Out of the 659 peptidic structures 
retrieved from Norine and PubChem, s2m validated 445. 
Although the same process with rBAN resulted in a higher 
amount of validations (492), the comparison singled out 

Fig. 5 Norine curation. a The curation involves two main steps: (1) Automatic verification and correction of the SMILES in Norine. rBAN validated 
249 (97.26%) SMILES and identified seven potential erroneous SMILES. Retrieving the PubChem SMILES from the non-validated entries enabled 
the correction of the SMILES of Motuporin (NOR00825). The manual inspection of the remaining entries concluded with the confirmation of six 
wrong SMILES. (2) Automatic addition of SMILES retrieved from PubChem. From the 403 SMILES retrieved from PubChem, 242 were validated using 
rBAN. The 161 not validated are likely to be false positives due to the ambiguity of the PubChem searches performed. b Enniatin F belongs to the 
set of non-validated peptides. rBAN failed to validate this peptide due to differences between the molecular and monomeric annotations. The 
monomeric graph is circular and contains N-Methyl-Isoleucine while the SMILES encodes a linear structure with dehydro-N-Methyl-Isoleucine(1). 
Additionally, rBAN could not identify what is supposed to be a N-Methyl-Leucine because it misses a hydroxyl group (2)
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five entries that were only verified by s2m (Fig. 6a). These 
entries were reviewed to identify the reasons why rBAN 
could not validate them . However, manual inspection 
only confirmed the validity of a single record, as the rest 
was not properly matching their monomeric counter-
parts and turned out to be false positives of s2m. Among 
these structures, Ennitatin F (Fig. 5b) that was reported 
earlier as cyclic and containing NMe-Leucine and NMe-
Isoleucine. s2m maps these monomers in the structure 
yet the NMe-Leucine is missing a hydroxyl group while 
the NMe-Isoleucine has an additional double bond. These 
artefacts are related to the method of precomputation and 

light matching in s2m. Prior to the analysis, the precom-
putation of s2m generates for each monomer all the pos-
sible residues that may occur due to the loss of functional 
groups during the linkage with other monomers. These 
residues are the substructures that will be mapped by the 
software to identify the monomers. This strategy loses 
the association between the linkage and the loss of the 
functional group. That leads to wrong matches when the 
implicit hydrogens are not considered (as set in the light 
matching mode). This is the case of NMe-Leucine that is 
matched although it misses the hydroxyl group of the car-
boxyl end, which would be the expected structure if it was 

Table 1 Monomers correctly suggested by rBAN

Among the suggested monomers, N-Formyl-Lysine is the most abundant. rBAN considers CO as a formylation, therefore suggests a new formylated monomer instead 
of using the “CO” monomer currently present in Norine. A second new entity present in five compounds is D-3OMe-Ala. In this case the monomer name is correct 
but not the SMILES associated with it. Most of the other suggestions are due to the monomers wrongly annotated in the graph that should be substituted with a 
new substructure. There is also one case (N-Suc) where the monomer was directly missing in the graph. All these corrections were manually evaluated to confirm the 
agreement with the literature

Norine code PubChemID IUPAC name Structure Compounds Reason of the missing 
monomer

Refs.

NFo-Lys 12679627 6-amino-2-formami-
dohexanoic acid

NOR00261, NOR00262, 
NOR00263, NOR00264 
NOR00266, NOR00267, 
NOR00269, NOR00270 
NOR00271, NOR00272, 
NOR00274, NOR00275 
NOR00276, NOR00277, 
NOR00278, NOR00580

“CO” monomer in graphs [32]

D-3OMe-Ala 97963 2-amino-3-methoxypro-
panoic acid

NOR00422, NOR00423, 
NOR00424, NOR00425 
NOR00588

Wrong SMILES of 
D-3OMe-Ala monomer

[33]

C5:1(4)-OH(2) 172026 2-hydroxypent-4-enoic 
acid

NOR00064, NOR00066, 
NOR00068, NOR00071 
NOR00073

Wrong monomer in 
graphs: C4:1(3)-OH(2) 
-> C5:1(4)-OH(2)

[34]

N-Suc 12522 4-amino-4-oxobutanoic 
acid

NOR00160,NOR00166, 
NOR00903

Missing monomer in 
graphs

[35, 36]

C5:0-OH(2)-Ep(4) 54305979 2-hydroxy-3-(oxiran-2-yl)
propanoic acid

NOR00086, NOR00087 Wrong monomer in 
graphs: C4:0-OH(2)-
Ep(3) -> C5:0-OH(2)-
Ep(4)

[34]

Gen 3469 2,5-dihydroxybenzoic 
acid

NOR00489, NOR00598 Wrong monomer in 
graphs: 2,3-diOH-Bz 
-> Gen

[37, 38]

C10:0-OH(2)-NH2(3) 57484230 3-amino-2-hydroxydeca-
noic acid

NOR01134, NOR01135 Wrong monomer in 
graphs: Adda -> C10:0-
OH(2)-NH2(3)

[39]

iC6:0-OH(2.4) 55300467 2,4-dihydroxy-4-methyl-
pentanoic acid

NOR00078, NOR00077 Wrong monomer in 
graphs: iC5:0-OH(2.3) 
-> iC6:0-OH(2.4)

[34]

Isovaleric_acid 10430 3-methylbutanoic acid NOR00477 Wrong monomer 
in graph: Hiv -> 
Isovaleric_acid

[40]

D-Cl-Trp 65259 2-amino-3-(6-chloro-1H-
indol-3-yl)propanoic 
acid

NOR00554 Wrong SMILES of D-Cl-
Trp monomer

[41]
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linked to another monomer, but is wrong when it is ter-
minal in the molecule (see Additional file 1: Fig. S2). The 
three other false positives of s2m show similar problems. 
The fifth entry is Kermamide K, the only true positive in 
the set. It was not validated by rBAN because this soft-
ware does not consider CO as a monomer.

The manual evaluation of the 52 peptides uniquely vali-
dated by rBAN confirmed their validity and uncovered 
some structural patterns that were optimally handled by 
rBAN and not by s2m. The fragmentation model imple-
mented in rBAN properly annotated large peptide struc-
tures whose monomeric composition was not revealed by 
the tiling algorithm of s2m. Similarly, the annotation of 
NRPs containing thiazoles and oxazole heterocycles was 
successfully carried out using rBAN, while the results of 
s2m did not match the monomer graph. Another pattern 
also observed in the rBAN-validated entries was the pres-
ence of monomers whose hydrated and dehydrated forms 
coexist in the monomer database. The restrictive light 
matching of rBAN succeeded in distinguishing them, 
while the light matching approach of s2m led to wrong 
monomer assignments. Finally, to complete the picture of 
correctness, we computed the distribution of correctness 
values from each software (Fig. 6b). Both tools showed a 
similar distribution though slightly shifted. rBAN gener-
ates more highly scored peptides (0.9–1) and less with 
correctness close to 0.

Robustness comparison The existence of several com-
binations of monomers mapping the same peptide sub-
structure increases the complexity of the problem. Hence, 
the extension of the monomer database can easily influ-
ence the mapping of a molecule and could lead to the 
appearance of wrong annotations that were previously 
correct. The robustness of the two software was tested 

while extending the monomer database and evaluating 
its impact on the results. An additional set of monomers 
was obtained using the PubChem Classification browser 
to retrieve the chemical entities defined as non-proteino-
genic amino acids (ChEBI Ontology). Components with a 
molecular mass higher than 450 g/mol were discarded, as 
they greatly exceeded the average monomer size. Chemi-
cal structures already present in the monomer database 
were also discarded to avoid repetitions. A total of 550 
monomers were sequentially added in order to test the 
response of both software to different extensions of the 
database (Fig.  6c). rBAN correctly annotated the same 
amount of entries (492) for all the database sizes. Note 
that the number of correct annotations could not be 
improved because the Norine graphs were not modified 
to include the new monomers so maintaining the same 
correctness was the best that could be expected, proving 
the robustness of the software. On the other hand, s2m 
correct results dropped from 445 to 435 with the addition 
of 100 new monomers, although the rest of the extensions 
was steadily handled, only dropping by two in the exten-
sion to 450 monomers.

Computational performance comparison For the evalu-
ation of the computational performance, the timing was 
limited to the analysis and did not account for the gen-
eration of images. We registered the performance of each 
software varying the number of input peptides from 100 
to 600. To obtain the average performance each meas-
urement was repeated five times. rBAN was significantly 
faster than s2m (Fig.  6d). As expected, computing time 
increased with the number of peptides and the differ-
ence between the two software remained 4 and 5-fold. 
Although this trend is likely to be confirmed, these meas-
urements may change with a different set of peptides, as 

Table 2 Comparison rBAN versus s2m

a) To map the monomers rBAN fragments the molecule and matches the results against the monomer database. S2m computes the combinations of monomers that 
fit in the molecule. b) To enable tautomer identification during the matching process rBAN omits the positions of the double bonds in the monomer, but it keeps 
considering those, becoming more restrictive than its analog mode in s2m, in which neither the implicit hydrogens nor the bonds order are taken into account. 
c) Characteristic NRP structural patterns such as heterocycles are specifically targeted in rBAN but not in s2m. d) When a region cannot be matched because of 
the absence of the monomer in the database, rBAN leaves the whole region unannotated (with the option of recurring to the discovery mode), while s2m tries to 
match the most similar monomer even if this is a wrong match and it implies leaving unannotated atoms. e) The monomers graph from rBAN has the edges labeled 
specifying the type of bond and its direction. s2m does not provide bond labels

rBAN Smiles2Monomers

a) Monomers mapping Based on molecule fragmentation through common 
monomer linking bonds

Based on mapping of monomers and selection of best 
tiling

b) Light matching Positions of double/triple bonds are ignored Implicit hydrogens and bond order are ignored

c) Heterocycles treatment Accounts for NRP cyclisation patterns initiating oxazoles 
and thiasoles formation

Does not include any rule/pattern for heterocycles

d) Presence of new monomers Unmatched regions left unannotated and potentially 
identified in discovery mode

Matches the most similar monomers in a given database 
and leaves out uncovered atoms

e) Graph serialization Labelled edges with bond type and directed in accord-
ance to functional groups in each side

Unlabelled edges
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computing time depends on the complexity of the chemi-
cal structures analyzed. Note that with rBAN, using the 
discovery mode feature would also change the perfor-
mance results as the computation time increases due to 
the RESTful HTTP requests performed to retrieve data 
from PubChem.

rBAN vs GRAPE
As already mentioned, GRAPE is another tool for the 
retro-biosynthesis of NRPs and polyketides (PKs). How-
ever, the annotations provided by this software differ 
from those of rBAN as (1) they are based on a different 
monomer library and (2) the modifications are annotated 
separately from the monomers. These differences make 
the comparison of correctness difficult and that explains 
why the benchmark was limited to the analysis of cover-
age (ratio between annotated atoms and total number of 

atoms in the molecule). The same set of SMILES  with-
out the wrong entries  previously identified   was used 
to test GRAPE. Out of 653 peptide structures, GRAPE 
fully annotated 468, while rBAN reaches 560 annotated 
entries, 492 of them being correct. In fact, from these 
results it is possible to indirectly compare the correctness 
of the two software. Only the peptides with a full cover-
age can have full correctness. Hence, assuming that all 
the annotations from GRAPE are correct (468), the result 
is still lower than the number of correctly annotated pep-
tides from rBAN (492). The whole distribution of cover-
age shows how GRAPE tends to leave less peptides with 
low coverage (Fig.  7). Nevertheless, the annotations of 
the 18 peptides with zero coverage in rBAN were manu-
ally checked for GRAPE. As it turned out, their mono-
mer fragments were categorized as “unknown”. Finally, 
the computational performance was evaluated using the 

Fig. 6 Benchmarking rBAN versus s2m. a Both software were used to validate the SMILES data by comparing the Norine monomer graphs with 
the SMILES-based predicted graphs. rBAN could validate more peptides than s2m and four of the entries uniquely validated by s2m turned out 
to be false positives of the software. The manual examination of the entries uniquely validated by rBAN revealed a better capacity of the tool to 
annotate large structures and peptides containing heterocycles and tautomers. b The global distribution of the correctness do not show substantial 
differences between the two software but it proves that rBAN does not only have more correct peptides, but also less peptides with correctness 
values close to zero. c The monomer database was extended with new chemical entities to evaluate its effects on the peptide mapping. The results 
of rBAN remained unchanged proving its robustness, while the extension of the monomer database affected mapping in s2m. d The computational 
performance was evaluated with different amounts of input peptides. In all cases rBAN outperformed s2m, being between four and five times faster
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same data. rBAN analysed the 653 peptides in an aver-
age time of 26.94 s, while the same process with GRAPE 
resulted in an average time of 81.34 min.

Web implementation A web application interface was 
designed and integrated into Norine as an additional tool 
for the database curation. With the aim of providing a 
simple and user-friendly interface, the online version of 
rBAN is limited to the analysis of a single peptide. It only 
requires an input SMILES and it automatically depicts the 
peptide structure with the labeled monomers. Optionally, 
the Norine graph annotation can be introduced in order 
to obtain the graph correctness. The generated image can 
be downloaded in svg or png formats. Apart from the vis-
ual results, the serialized monomer graph is also provided 
as a json file. The discovery mode is still not available in 
the current web service version.

Conclusions
The usage of rBAN for Norine curation ended with the 
validation of 97% of the entries and the introduction of 
242 SMILES and 11 monomers in the database. These 
results prove the ability of the algorithm to deduce effec-
tively the monomeric graph of an NRP from its SMILES. 
The comparison with s2m  and GRAPE clearly favored 
rBAN, which annotates more entries and with a higher 
perfomance. We also demonstrated the efficacy of the 
monomer discovery mode for the correction/addition of 
monomers. Furthermore, rBAN automatically  produces 

graphs where the edges are labeled with the bond types 
linking the monomers. The current monomeric graphs in 
Norine do not contain this information, which is useful 
for the development of automatic substructure search. In 
the end, rBAN was integrated in Norine as a complemen-
tary tool for the future curation of the database. rBAN is 
accessible as a web service in Norine (http://bioin fo.crist 
al.univ-lille .fr/rban) and ExPASy (https ://web.expas y.org/
rban). The jar is publicly available on bitbucket (https ://
bitbu cket.org/sib-pig/rban/downl oads/).

Limitations and perspectives
The main limitation of the method is its dependence to 
the defined fragmentation rules. Hence, it fails mapping 
natural products following different patterns such as Pol-
yketides (PKs). The introduction of new rules based on 
PK biosynthesis patterns would solve this issue and would 
extend the range of secondary metabolites covered. The 
software currently provides the results in a JSON format 
but returning the graphs in specific annotation formats 
such as HELM or SCSR is planned in order to improve 
the usability of the tool. Finally, the current slow perfor-
mance of the discovery mode will be addressed by trying 
alternative programmatic access to PubChem data or by 
downloading a part of the PubChem database to our local 
server. In future versions of the software it would also be 
interesting to include a modification database and imple-
ment an optional mapping where the monomers and 
their modifications are annotated independently.

Fig. 7 Benchmarking rBAN versus GRAPE. The coverage of the annotations given by each software was compared. The distribution shows that 
rBAN fully annotated more peptides than GRAPE

http://bioinfo.cristal.univ-lille.fr/rban
http://bioinfo.cristal.univ-lille.fr/rban
https://web.expasy.org/rban
https://web.expasy.org/rban
https://bitbucket.org/sib-pig/rban/downloads/
https://bitbucket.org/sib-pig/rban/downloads/
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Additional files

Additional file 1. The file contains further details of the rBAN implemen-
tation and additional information of the analysis performed in the paper.

Additional file 2. Monomeric graph of Vancomycin. Example of a mono-
meric graph provided by rBAN.
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