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Abstract

We study the behavior of the Gaussian concentration bound (GCB)
under stochastic time evolution. More precisely, in the context of a
diffusion process on Rd we prove in various settings that if we start
the process from an initial probability measure satisfying GCB, then
at later times GCB holds, and estimates for the constant are provided.
Under additional conditions, we show that GCB holds for the unique
invariant measure. This yields a semigroup interpolation method to
prove Gaussian concentration for measures which are not available in
explicit form. We also consider diffusions “coming down from infinity”
for which we show that, from any starting measure, at positive times,
GCB holds.
Keywords: Gaussian concentration bound, diffusion processes, Ornstein-
Uhlenbeck process, non Markovian diffusion, nonlinear semigroup,
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1 Introduction

Concentration inequalities are a well studied subject in probability and statis-
tics and are very useful in the study of fluctuations of possibly complicated
and indirectly defined functions of random variables, such as the Kantorovich
distance between the empirical distribution and the true distribution, and
various properties of random graphs. See, e.g., [2, 10] and references therein.
Initially mostly studied in the i.i.d. context, many efforts have been done to
extend concentration inequalities to the context of dependent random vari-
ables, and more generally dependent random fields. E.g. in the context of
models of statistical mechanics, where the dependence is naturally encoded
in the interaction potential, the relation between the Dobrushin uniqueness
condition (high-temperature) and the Gaussian concentration inequality has
been obtained in [9, 4, 3], whereas at low temperature weaker concentration
inequalities are proved in [4].
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In this paper we are interested in the behaviour of concentration inequal-
ities under stochastic time-evolution. There are several motivations to be
interested in this problem. First, in the context of non-equilibrium sys-
tems, non-equilibrium stationary states, or transient non-equilibrium states
are usually characterized rather implicitly via an underlying dynamics. If we
are interested in concentration properties of such measures, we are naturally
lead to the question of time-evolution of measures satisfying a concentration
inequality. It is also used in various contexts that a Markovian semigroup
interpolates between different measures [1], [10, Section 2.3], and therefore it
is of interest whether this interpolation conserves concentration properties.
Notice that in the context of Gibbs measures, stochastic time-evolution (even
high-temperature dynamics) can destroy the Gibbs property [6], therefore it
is interesting to understand whether such measures -though not Gibbs- still
enjoy concentration properties, or whether there can be phase transitions in
the concentration behavior of a measure, e.g., from Gaussian concentration
bound to weaker concentration bound in a dynamics leading from high to
low-temperature regime.

As we will see later, in the study of these questions, an object popping
up naturally is the so-called nonlinear semigroup Vtf = logSt ef where St is
the Markov semigroup of the process under consideration, and its associated
nonlinear generator Hf = e−f L(ef ) where L is the Markov generator.

In this paper, for the stochastic dynamics, we restrict to diffusion pro-
cesses. In this setting, the nonlinear generator is a sum of a linear and a
quadratic part, and this quadratic part coincides with the “carré du champ”
operator. This implies that one can use general results on strong gradient
bounds from [1]. Our paper is organized as follows. In section 2 we define
the basic setting and define the problem of time-evolution of the Gaussian
concentration bound. We also give a simple but enlightening example of the
Ornstein-Uhlenbeck process, where starting from a normal distribution, we
can explicitly see the time-evolution of the constant in the Gaussian concen-
tration bound. In section 3 we use the method of the non-linear semigroup,
which as we see in section 3.2, enters naturally in our context. The main
problem is then to understand the evolution of the Lipschitz constant under
the non-linear semigroup. In section 3, we control this via the method and
framework of [1], using the strong gradient bound. This method applies in
the reversible context. In section 4, we use a different approach based on
coupling which can also be used in the non-reversible context. We give ex-
amples from non-equilibrium steady states, and non-gradient perturbations
of reversible diffusions. In section 4, we use a third approach based on the
exponential moment of the square distance function. With this technique,
we give a class of examples where, starting from any initial measure, we have
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the Gaussian concentration bound at any positive time, and we also apply
the technique for a time-dependent Markovian diffusion with confining drift
condition. This applies for instance to the “noisy” Lorenz system. Finally,
in section 6 we treat non-Markovian diffusions with linear drift, which can
be studied using martingale moment inequalities. In the appendices we give
a new proof of Gaussian concentration from the existence of an exponential
moment of the square distance function, and provide a general approxima-
tion lemma, showing that in the context of a separable Banach space, the
Gaussian concentration bound for smooth functions with bounded support
implies the Gaussian concentration bound for general Lipschitz functions.

2 Setting and basic questions

2.1 Gaussian concentration bounds

We denote by Cb(R
d,R) the space of bounded continuous functions from Rd

to R. For a probability measure µ on (the Borel σ-field of) Rd and f ∈
Cb(R

d,R), we denote by µ(f) =
∫
f dµ the µ expectation of f . Lip(Rd,R)

denotes the set of real-valued Lipschitz functions. We further denote for
f ∈ Lip(Rd,R)

lip(f) := sup
x,y

|f(x)− f(y)|
‖x− y‖

the Lipschitz constant of f , where ‖·‖ denotes the Euclidean norm in Rd. A
Lipschitz function is almost surely differentiable by Rademacher’s theorem
[11, p. 101], and the supremum norm of the gradient coincides with the
Lipschitz constant. For f : Rd → R we denote by ∇f the gradient of f ,
which we view as a column vector. We denote

‖∇f‖2∞ := ess sup
x∈Rd

‖∇f(x)‖2 .

We can now define the notion of Gaussian concentration bound.

DEFINITION 2.1. Let µ be a probability measure on (the Borel σ-field of) Rd.

a) We say that µ satisfies the smooth Gaussian concentration bound with
constant D if we have

log µ
(
ef−µ(f)

)
≤ D lip(f)2 .

for all smooth compactly supported f . We abbreviate this property by
GCBS(D).
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b) We say that µ satisfies the Gaussian concentration bound with constant
D if we have

log µ
(
ef−µ(f)

)
≤ D lip(f)2 .

for all Lipschitz functions f ∈ Lip(Rd,R). We abbreviate this property
by GCB(D).

In appendix B we prove in a much more general setting, i.e., in the context
of a separable Banach space, that GCBS(·) and GCB(·) are equivalent. More
precisely we prove that GCBS(D) implies GCB(D) (in general, we have to
replace compact support by bounded support). Therefore, for the rest of the
paper, we concentrate on the time evolution of GCBS(·) rather than GCB(·).

2.2 Time evolved Gaussian concentration bound

Let {Xt, t ≥ 0} denote a Markov diffusion process on Rd, i.e., a process
solving a SDE of the form

dXt = b(Xt) dt+
√

2a(Xt) dWt (1)

where b : Rd → Rd, and a : Rd → M+
d where M+

d denotes the set of d × d
symmetric positive definite matrices, and where {Wt, t ≥ 0} is standard
Brownian motion on Rd. The questions which we study in this paper are the
following.

1. If µ satisfies GCBS(D) then does the same hold for µt, the distribution
at time t of the process {Xt, t ≥ 0} when started initially from X0

distributed according to µ.

2. Does the stationary measure (or stationary measures) of {Xt : t ≥ 0}
satisfy GCBS(Dt) for some constant Dt? Can we estimate Dt?

2.3 Ornstein-Uhlenbeck process

A simple but inspiring example is given by the one-dimensional Ornstein-
Uhlenbeck process, i.e., the process {Xt, t ≥ 0} solving the SDE

dXt = −κXt dt+ σ dWt (2)

where σ > 0, and {Wt, t ≥ 0} is a standard Brownian motion. Let us denote
Xx
t the solution starting from X0 = x. Then we have

Xx
t = e−κt x+ σ

∫ t

0

e−κ(t−s) dWs .
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If we start from X0 normally distributed with expectation zero and variance
θ2 (notation N (0, θ2)) then, at time t > 0, Xt is normally distributed with
expectation zero and variance

σ2
t = θ2 e−2κt +

σ2

2κ

(
1− e−2κt

)
.

Because the normal distribution N (0, a2) satisfies GCBS(D) with D = D0 =
1
2
a2 we conclude that for this example, with µ = N (0, θ2), µt satisfies

GCBS(Dt) with
Dt = D∞ + (D0 −D∞) e−2κt

with D∞ = σ2

2κ
. Hence, µt satisfies GCBS(Dt) with a constant Dt interpolat-

ing smoothly between the initial constant D0 and the constant D∞ associated
to the stationary normal distribution.

In case κ = 0 the process is σBt, and we find

σ2
t = θ2 + σ2t

which implies that the constant of the Gaussian concentration bound evolves
as

Dt = D0 + σ2t.

3 Nonlinear semigroup approach

In this section we develop an abstract approach based on the so-called non-
linear semigroup, combined with the Bakry-Emery Γ2 criterion. We show
that if the strong gradient bound is satisfied, then the Gaussian concentration
bound is conserved in the course of the time-evolution, and in the limit
t→∞.

3.1 The nonlinear semigroup

Let {Xt : t ≥ 0} be a Markov diffusion process on Rd as defined in (1) and
denote by St its semigroup acting on Cb(R

d,R). As usual, the generator is
denoted by

Lf(x) = lim
t→0+

Stf(x)− f(x)

t
.

on its domain D(L) of functions f such that Stf(x)−f(x)
t

converges uniformly
in x when t→ 0+. The non-linear semigroup is denoted by

Vt(f) = log St(e
f ) .
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This is indeed a semigroup:

Vt+sf = logSt+s ef = log(St(Ss(e
f )) = logSt(log eVsf ) = Vt(Vsf) .

We denote by H its generator, i.e.,

Hf(x) = lim
t→0

Vtf(x)− f(x)

t
=
(
e−f L(ef )

)
(x) (3)

defined on the domain D(H) where the defining limit in (3) converges uni-
formly. The relation between H and Vt is more subtle than the relation
between L and St, i.e., we assume that we are in a context where there is a
core where the right-hand side is well-defined and the closure of H defined
on this core generates Vt. In the context of diffusion processes, e.g., this
core consists of asymptotically constant smooth functions. In general, we
call elements of this core “smooth functions”. In general, whether H indeed
generates the semigroup Vt is not obvious: to write down the expression(
e−f L(ef )

)
one already needs some extra condition on the domain D(L). In

all the cases below we will be in such a context where the domain of the
contains a core that is closed under the map f 7→ eaf for any a ∈ R, and H
is effectively the generator of Vt. We refer the reader to [12] for more details.
In particular we have, for all f smooth (in the sense clarified above)

dVtf

dt
= HVtf .

Notice that, unlike in the case of the linear semigroup St, we do not have
commutation of the semigroup with the generator, i.e., in general HVtf 6=
VtHf .

3.2 Some preparatory computations

In order to start answering the questions of Section 2.2 we show here how
the non-linear semigroup enters naturally into these questions. Indeed, for
all t ≥ 0, we have

µt
(
ef−µt(f)

)
= µ

(
St(e

f )
)

e−µ(Stf)

= µ
(
eVtf−µ(Vtf)

)
eµ(Vtf−Stf) . (4)

Therefore, if µ satisfies GCBS(D), then we can estimate the first factor in
the r.h.s. of (4)

µ
(
eVtf−µ(Vtf)

)
≤ eD lip(Vtf)2 (5)
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and so we have to estimate lip(Vtf), which in the case of diffusion processes
will boil down to estimating ∇Vtf . Concerning the second factor in (4) we
define first the “truly non-linear” part of the non-linear generator as follows

Hnl(f) = H(f)− L(f) .

In the case of diffusion processes, this operator exactly contains the quadratic
term of H, which coincides in turn with the carré du champ operator (see
section 3.3 below ). We can then proceed as follows

d(Vtf − Stf)

dt
= HVtf − LStf = HVtf − LVtf + L(Vtf − Stf)

= Hnl(Vtf) + L(Vtf − Stf) .

As a consequence, we obtain, by the variation of constant method,

Vtf − Stf =

∫ t

0

St−sHnl(Vsf) ds

and because St is a Markov semigroup, it is a contraction semigroup in the
supremum norm and because µ is a probability measure, we obtain the in-
equality

µ(|Vtf − Stf |) ≤ ‖Vtf − Stf‖∞ ≤
∫ t

0

‖Hnl(Vsf)‖∞ ds . (6)

As a consequence of (5) and (6), we first aim at obtaining estimates for
lip(Vtf), or ∇Vtf , and next use these estimates to further estimate the in-
tegral in the r.h.s. of (6). In particular, in the case of diffusion processes,
Hnlg is of the form (∇g)2, and hence if we have a uniform estimate for
∇(Vtf), we can plug it in immediately. Summarizing, assuming that µ sat-
isfies GCBS(D), when we combine (4), (5) and (6), we obtain, for all t ≥ 0,

µt
(
ef−µt(f)

)
≤ exp

(
D lip(Vtf)2 +

∫ t

0

‖Hnl(Vsf)‖∞ ds

)
. (7)

3.3 Abstract gradient bound approach

In this subsection we study the questions formulated in Section 2.2 in the
context of Markovian diffusion triples, in the sense of [1], i.e., reversible
diffusion processes for which we have the integration by parts formula relating
the Dirichlet form and the carré du champ bilinear form. Let {Xt, t ≥ 0}
be a Markov diffusion, i.e., a solution of the SDE of the form (1). Moreover,
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we will assume in this subsection that the covariance matrix a(x) is not
degenerate and bounded, uniformly in x, v ∈ Rd, i.e., for some C1, C2 > 0,

C−21 ‖v‖2 ≤ 〈v, a(x)v〉 ≤ C2
2‖v‖2 (8)

where 〈·, ·〉 denotes Euclidean inner product.
The generator of the process {Xt, t ≥ 0} solving the SDE (1), acting on

a smooth compactly supported functions f : Rd → R is then given by

Lf(x) =
∑
i=1

bi(x) ∂if(x) +
∑
i,j

aij(x) ∂i∂jf(x) (9)

where ∂i denotes partial derivative w.r.t. xi.
To the generator L is associated the carré du champ bilinear form

Γ(f, g) =
1

2
(L(fg)− gL(f)− fL(g)) = 〈∇f, a · ∇g〉 .

Notice that Γ satisfies the so-called diffusive condition, i.e., for all smooth
functions ψ : R→ R

Γ(ψ(f), ψ(g))(x) = (ψ′)2(x) Γ(f, g)(x) .

We will further assume that there exists a reversible measure ν such that the
integration by parts formula∫

f(−Lg) dν =

∫
Γ(f, g) dν

holds. The triple (Rd,Γ, ν) is then a Markov diffusion triple in the sense of
[1, section 3.1.7].

The second order carré du champ bilinear form is given by

Γ2(f, g) =
1

2
(LΓ(f, f)− Γ(Lf, g)− Γ(f,Lg)) .

In what follows, we abbreviate, as usual, Γ(f, f) =: Γ(f), Γ2(f, f) = Γ2(f).
An important example is when b = −∇W and a = I, in which case the
second order the carré du champ bilinear form is given by

Γ2(f, f) = ‖∇∇f‖2 + 〈∇f,∇∇W (∇f)〉

where ∇∇W denotes the Hessian of W , i.e., the matrix of the second deriva-
tives. By the non-degeneracy and boundedness condition (8), we have, for
all x ∈ Rd

C−21 ‖∇f(x)‖2 ≤ Γ(f)(x) ≤ C2
2‖∇f(x)‖2 .
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Following [1] we say that the strong gradient bound is satisfied with constant
ρ ∈ R if for all t ∈ R+ √

Γ(Stf) ≤ e−ρt St
(√

Γ(f)
)
. (10)

This condition is fulfilled when, e.g., the Bakry-Emery curvature bound,

Γ2(f) ≥ ρΓ(f)

is satisfied. We refer to [1, Chapter 3] for the proof and more background on
this formalism. We then have the following general result.

THEOREM 3.1. Let {Xt, t ≥ 0} be a reversible diffusion process such that
(10) is fulfilled. Assume that µ satisfies GCBS(D). Then, for every t ≥ 0,
µt satisfies GCBS(Dt) with

Dt = DC2
1C

2
2 e−2ρt +

C2
1C

4
2

2ρ

(
1− e−2ρt

)
· (11)

In particular, if ρ > 0, then the unique reversible measure ν satisfies GCBS(D∞)

with D∞ =
C4

2C
2
1

2ρ
.

PROOF. Using (10) we start by estimating ‖∇Vtf‖ for f : Rd → R smooth

‖∇Vtf‖ =
‖∇(St(e

f ))‖
St(ef )

≤ C1

√
Γ(St(ef ))

St(ef )

≤ C1 e−ρt
St
(√

(Γ(ef )
)

St(ef )
= C1 e−ρt

St
(

ef
√

Γ(f)
)

St(ef )

≤ C1 e−ρt ‖
√

Γ(f)‖∞ ≤ C1C2 e−ρt ‖∇f‖∞ .

As a consequence we obtain the estimate

lip(Vtf) = ‖∇Vtf‖∞ ≤ C1C2 e−ρt ‖∇f‖∞ . (12)

Now we recall that what we called the “truly non-linear part” of the non-
linear generator Hnl coincides here with the carré du champ bilinear form,
i.e.,

Hnlf = Γ(f) ≤ C2
2 ‖∇f‖2∞ . (13)

As a consequence, starting from (6), we further estimate

‖Vtf − Stf‖∞ ≤ C2
2

∫ t

0

‖∇Vsf‖2∞ ds ≤ C2
1C

2
4 ‖∇f‖2∞

∫ t

0

e−2ρs ds . (14)
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Combining (12), (14) with (7) we obtain that µt satisfies GCBS(Dt) with

Dt = DC2
1C

2
2 e−2ρt +C2

1C
4
2

∫ t

0

e−2ρs ds

which is the claim of the theorem.

REMARK 3.1.

a) In case Γ(f) = c2‖∇f‖2, we have C1 = a−2, C2 = a2, so Dt in t = 0
equals D. In general, C2

1C
2
2 > 1, which means that at time t = 0 we do

not recover the constant D, but a larger constant. This is an artefact
of the method where we estimate the norm of the gradient via the carré
du champ.

b) In case we have an exact commutation relation of the type

∇Stf = e−ρt St∇f

such as is the case for the Ornstein-Uhlenbeck process, we obtain di-
rectly

|∇Vtf‖ ≤ e−ρt ‖∇f‖∞
i.e., without using the bilinear form Γ.

4 Coupling approach

4.1 Coupling and the nonlinear semigroup

In the previous section, the essential input coming from the strong gradient
bound is the estimate (12) which implies that for all x, y ∈ Rd and all t ∈ R+

‖Vtf(x)− Vtf(y)‖ ≤ Ct ‖∇f‖∞ ‖x− y‖ e−ρt . (15)

Once we have the bound (15), we can use it to further estimate the r.h.s. of
(6), provided we have a control onHnl. Instead of starting from the curvature
bound, in this subsection we start from a coupling point of view. This has
the advantage that reversibility is no longer necessary. We denote by Xx

t the
process {Xt, t ≥ 0} started at X0 = x.

As an important example to keep in mind, consider the Ornstein-Uhlenbeck
process on Rd, with generator

−〈Ax,∇〉+ ∆

11



where ∆ denotes the Laplacian in Rd, and where A is a d×d matrix. In that
case we have

Xx
t = e−At x+

∫ t

0

e−2A(t−s) dWs (16)

which depends deterministically, and in fact linearly, on x.

DEFINITION 4.1. Let γ : [0,∞)→ [0,∞) be a measurable function such that
γ(0) = 1. We say that the process {Xt, t ≥ 0} can be coupled at rate γ if for
all x, y ∈ Rd there exists a coupling of {Xx

t , t ≥ 0} and {Xy
t , t ≥ 0} such that

almost surely in this coupling

d(Xx
t , X

y
t ) ≤ d(x, y) γ(t) . (17)

In the case of the Ornstein-Uhlenbeck process in Rd, we have from (16)
(which implicitly defines a coupling, because we use (16) for all x with the
same Brownian realization)

‖Xx
t −X

y
t ‖ ≤ ‖ e−At ‖ ‖x− y‖

hence γ(t) = ‖ e−At ‖. Notice that γ(t) can be “expanding” or “contracting”,
depending on the spectrum of A. More precisely, γ will be eventually con-
tracting if the numerical range of A lies in the half plane of complex numbers
with non-positive real part.

We have the following result. LetW1 be the space of probability measures
µ such that

∫
d(0, x) dµ(x) <∞ equipped with the distance

dW1(µ, ν) = sup

{∫
f dµ−

∫
f dν : lip(f) ≤ 1

}
= inf

{∫
d(x, y) dP : P coupling of µ, ν

}
.

THEOREM 4.1. Assume that {Xt, t ≥ 0} can be coupled at rate γ. Assume
that µ satisfies GCBS(D), then for all t > 0, for f smooth we have the
estimate

log µt(e
f−µt(f)) ≤ D lip(f)2γ(t)2 + C2

2 lip(f)2
∫ t

0

γ(s)2 ds (18)

where C2 is defined in (8). As a consequence, µt satisfies GCBS(Dt) with

Dt = Dγ(t)2 + C2
2

∫ t

0

γ(s)2 ds . (19)
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In particular, if
∫∞
0
γ(s)2 ds <∞, then every weak limit point of {µt, t ≥ 0}

satisfies GCBS(D∞) with

D∞ = C2
2

∫ ∞
0

γ(s)2 ds .

Moreover, the unique invariant probability measure ν ∈ W1 satisfies GCBS(D∞).

PROOF. We start with a lemma which gives a general estimate on the
variation of Vtf .

LEMMA 4.1. Let f be Lipschitz and assume that {Xt, t ≥ 0} can be coupled
at rate γ. Then for all t ≥ 0 and x, y ∈ Rd we have

Vtf(x)− Vtf(y) ≤ lip(f) γ(t) d(x, y) .

As a consequence, for all t ≥ 0,

lip(Vtf) ≤ lip(f) γ(t) .

PROOF. Let us denote by Ê expectation in the coupling of {Xx
t , t ≥ 0} and

{Xy
t , t ≥ 0} for which (17) holds (which exists by assumption). Then we

have

exp(Vtf(x)− Vtf(y)) =
Ê
(
ef(X

x
t )
)

Ê
(
ef(X

y
t )
) =

Ê
(
ef(X

y
t )(ef(X

x
t )−f(X

y
t ))
)

Ê
(
ef(X

y
t )
)

≤
Ê
(
ef(X

y
t ) elip(f) d(X

x
t ,X

y
t )
)

Ê
(
ef(X

y
t )
)

≤
Ê
(
ef(X

y
t ) elip(f) d(x,y)γ(t)

)
Ê
(
ef(X

y
t )
) = elip(f)d(x,y)γ(t)

where in the last inequality we used (17).

Notice that in lemma 4.1 it is not required that γ(t)→ 0 as t→∞, i.e.,
the coupling does not have to be successful. However if one wants to pass to
the limit t→∞ then it is important that γ(t)→ 0 as t→∞. This in turn
implies, as we see in the next lemma that among all probability measures in
the Wasserstein spaceW1, there is a unique invariant probability measure ν,
and for all µ ∈ W1, µt → ν weakly as t→∞.

LEMMA 4.2. Assume that {Xt, t ≥ 0} can be coupled at rate γ and γ(t)→ 0
as t→∞. Then there exists a unique invariant probability measure ν in W1.
Moreover, for all µ ∈ W1, µt → ν as t→∞.

13



PROOF. Let µ, ν be elements of W1 and let f be a Lipschitz function with
lip(f) ≤ 1. Because µ, ν are elements of W1, there exists a coupling P such
that ∫

d(x, y) dP = dW1(µ, ν) <∞ .

Then ∫
f dµt −

∫
f dνt =

∫
Ê(f(Xx

t )− f(Xy
t )) dP (x, y)

≤
∫
Ê(d(Xx

t , X
y
t )) dP (x, y)

≤ γ(t) dW1(µ, ν) .

This shows that for all µ, ν ∈ W1, and for all t ≥ 0,

dW1(µt, νt) ≤ γ(t) dW1(µ, ν) . (20)

Existence of an invariant measure ν ∈ W1 now follows via a standard con-
traction argument. If µ, ν ∈ W1 are both invariant then (20) gives, after
taking t→∞: dW1(µ, ν) = 0, which shows uniqueness of the invariant mea-
sure ν ∈ W1. The fact µ ∈ W1, µt → ν as t → ∞ then also follows from
(20).

To finish the proof of the theorem, we use (13)

Hnlf = Γ(f) ≤ C2
2 ‖∇f‖2 ≤ C2

2 lip(f)2 .

Combining with (6) and (5) and lemma 4.2 this yields the result of the
theorem.

As an application we have the following result on Markovian diffusions
with covariance matrix a not depending on the location x.

THEOREM 4.2. Let Xt denote a diffusion process on Rd with generator of
type (9), and where the covariance matrix a does not depend on location x,
and is such that there exists C2 > 0

〈u, au〉 ≤ C2
2‖u‖2

for all u ∈ Rd. Assume furthermore that the function b : Rd → Rd is
continuously differentiable and the differential Dxb satisfies the estimate

〈Dxb(x)(u), u〉 ≤ −κ ‖u‖2 (21)

14



for all x, u ∈ Rd and some κ ∈ R. Let µ satisfy GCBS(D), then, for all
t > 0, µt satisfies GCBS(Dt) with

Dt = D e−2κt +
C2

2

2κ
(1− e−2κt) . (22)

Moreover, if κ > 0, then µt → ν as t → ∞ where ν is the unique in-
variant probability measure, which satisfies GCB(C2

2/2κ). In particular, if
b = −∇W , where the potential W : Rd → R is C 2, then (21) reduces to the
convexity condition

〈∇∇W,u, u〉 ≥ κ‖u‖2 .

PROOF. We have ‖Hnlf‖ = Γ(f) ≤ C2
2(∇f)2. Therefore by Theorem 4.1 it

suffices to see that we have a coupling rate γ(t) = e−κt. We couple Xx
t , X

y
t by

using the same realization of the underlying Brownian motion {Wt, t ≥ 0},
and as a consequence, because a does not depend on x, the difference Xx

t −X
y
t

is evolving according to

d(Xx
t −X

y
t )

dt
= b(Xx

t )− b(Xy
t ) .

By the mean-value theorem b(Xx
t ) − b(Xy

t ) = Dxb(ξ)(X
x
t − Xy

t ) for some
ξ ∈ Rd. As a consequence,

d(‖Xx
t −X

y
t ‖2)

dt
= 2〈Xx

t −X
y
t , Dxb(ξ)(X

x
t −X

y
t )〉 ≤ −2κ ‖Xx

t −X
y
t ‖2

which gives
‖Xx

t −X
y
t ‖ ≤ e−κt ‖x− y‖

for all x, y ∈ Rd and for all t ∈ R+.

REMARK 4.1.

a) Notice that in the approach based on the strong gradient bound, we
needed non-degeneracy of the covariance matrix a in (1), cf. condition
(8). In the coupling setting, we allow the matrix a to be degenerate, but
not depending on x, and the condition is only on the drift b.

b) Unlike the time dependent constant Dt, given via the strong gradient
bound (11), the bound (22) yields the correct constant D at time zero.
Remark that the constant of the limiting stationary distribution, i.e.,
C2

2/2κ is invariant under linear rescaling of time, as it should. More
precisely, if we multiply the generator with a factor α, C2

2 is multiplied
by this same factor α, and so is the constant κ.
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c) With the same proof, we can cover the case where we have the condition

〈b(x)− b(y), x− y〉 ≤ −κ‖x− y‖2

for all x, y.

4.2 Examples

Example 1: Ornstein-Uhlenbeck process and Brownian mo-
tion. Coming back to the simple example of the Ornstein-Uhlenbeck
process (2), we have coupling rate

γ(t) = e−κt

and we find (18), i.e., the time evolution of the constant in the Gaussian
concentration bound is the same in general as for the special case of
a Gaussian starting measure. If we have standard Brownian motion,
then the coupling rate γ(t) = 1 and the formula (19) reads (C2 = 1)

Dt = D + t

which is sharp if the starting measure is the normal law µ0 = N (0, σ2),
which at time t gives µt = N (0, σ2 + t).

Example 2: Ginzburg-Landau dynamics with boundary reser-
voirs. We consider the system process {Xt, t ≥ 0} on RN with gener-
ator

L =
N∑
i=1

(∂i − ∂i+1)
2 − (ϕ′(xi+1)− ϕ′(xi))(∂i+1 − ∂i) + L1 + LN

where ∂i denotes partial derivative w.r.t. xi, and where the extra op-
erators L1 and LN model the reservoirs and are given by

L1 = b1(x1) ∂1 +
1

2
σ2
1∂

2
1

LN = bN(xN) ∂N +
1

2
σ2
N∂

2
N .

This models a non-equilibrium system with harmonic potential in the
bulk, and driven by reservoirs with drift b1, bN . For the choice b1(x) =
−κ1x, bN(x) = −κNx this corresponds to a “non-equilibrium” Ornstein-
Uhlenbeck process, for which it can be shown that the unique station-
ary measure µ is a Gaussian product measure, with an energy profile
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µ(x2i ) = α + βi linearly interpolating between the left and right reser-
voirs.

The noise in the system is degenerate, but does not depend on x, which
means that the coupling condition is satisfied. The covariance matrix
a of (1) is given by aii = −2, 2 ≤ i ≤ N − 1, a11 = 1, aNN = 1, ai,i+1 =
2, 1 ≤ i ≤ N − 1.

If the drifts associated to the reservoirs b1, bN are not linear, then the
stationary non-equilibrium state is unknown and not Gaussian. In the
following, direct application of Theorem 4.2 then gives the following.

PROPOSITION 4.1. If the reservoir drifts satisfy

〈u,−∆u〉 − u21b′1(x1)− u2Nb′N(xN) ≤ −κN‖u‖2

with −∆ the discrete laplacian defined via (∆u)i = ui+1 + ui−1 − 2ui
for 2 < i < N − 1, and (∆u)1 = u2 − u1, (∆u)N = uN−1 − uN , then
the unique stationary measure of the process with generator L satisfies
GCBS(D), with D = C2

N/2κN , with CN = ‖a‖ ≤ 4.

Example 3: Perturbation of the drift. Remark that if (21) is
satisfied with κ > 0 for the drift b with constant κ and b̃ is such that
〈Dx(b̃ − b)(u), u〉 ≤ ε‖u‖2, for some 0 < ε < κ, then obviously, (21)
is satisfied for the drift b̃ with constant κ̃ = κ − ε. E.g., if b̃(x) =
−∇W (x) + ε(x), where W (x) is a strictly convex potential, then if
‖Dxε‖∞ is sufficiently small, there is a unique invariant probability
measure ν which satisfies GCB(·). However, ε is allowed to be of non-
gradient form, which implies that ν is not known in explicit form. The
same applies to systems where one adds sufficiently weak “boundary”
reservoirs as long as the noise of these resevoirs does not depend on x.

5 Distance Gaussian moment approach

In this section, we start with a different approach, based on the equivalence
between GCBS(D) and the existence of a Gaussian estimate of an exponential
moment of the square of the distance (cf. Theorem 5.1 below).

5.1 A general equivalence

In this subsection, we work in a general separable metric space (Ω, d). We
first generalize Definition 2.1.
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DEFINITION 5.1. Let µ be a probability measure on (the Borel σ-field of)
(Ω, d). We say that µ satisfies a Gaussian concentration bound with con-
stant D > 0 on the metric space (Ω, d) if there exists x0 ∈ Ω such that∫
d(x0, x) dµ(x) <∞ and for all f ∈ Lip(Ω,R), one has∫

ef−µ(f) dµ ≤ eD lip(f)2 .

For brevity we shall say that µ satisfies GCB(D) on (Ω, d).

REMARK 5.1.

a) Note that if there exists x0 ∈ Ω such that
∫
d(x0, x) dµ(x) < ∞ then,

by the triangle inequality,
∫
d(x0, x) dµ(x) <∞ for all x0 ∈ Ω, and all

Lipschitz functions on (Ω, d) are µ-integrable.

b) Note that one can find a topological space and a probability on the Borel
sigma-algebra and two distances d1 and d2 s.t. µ satisfies GCB on
the metric space with d1 but it does not on the metric space with d2.
For example, take R, µ to be the Gaussian measure, d1 the Euclidean
distance and d2(x, y) =

∫ y
x

(1 + |s|) ds.

THEOREM 5.1. Let µ a probability measure on (Ω, d). Then µ satisifies a
Gaussian concentration bound if and only it has a Gaussian moment. More
precisely, we have the following:

1. If µ satisfies GCB(D), there exists x0 ∈ Ω such that∫
e
d(x0,x)

2

16D dµ(x) ≤ 3 e
µ(d)2

D (23)

where µ(d) :=
∫
d(x, x0) dµ(x).

2. If there exist x0 ∈ Ω, a > 0 and b ≥ 1 such that∫
ead(x0,x)

2

dµ(x) ≤ b (24)

then µ satisfies GCB(D). with

D =
1

2a

(
1 ∨ b2 e

2
√
π

)
. (25)

This result can be found in [7, Theorem 2.3] with less explicit constants.
We provide a direct proof of the theorem in appendix A. Notice that, by the
triangle inequality, if (23) holds for some x0 then it holds for any x0. Idem
for (24).
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5.2 Example 1: Diffusions coming down from infinity

As a first example of application, we consider diffusions “coming down from
infinity” for which we show that from any starting measure, at positive times
t > 0, GCBS(D) holds.

We consider a diffusion process on Rd which solves the SDE

dXt = b(Xt) dt+ dWt .

We introduce the following condition on the drift.

CONDITION 5.1. There exists an open subset D ⊂ Rd (called “domain”) such
that there exists a real, non-negative, non-decreasing and C 1 function h and
a constant A > 0 such that for all x ∈ D

〈x, b(x)〉
‖x‖

≤ A− h(‖x‖) . (26)

THEOREM 5.2. Under condition H, if additionally we have the integrability
condition ∫ ∞

0

du

h(u)
<∞ (27)

then there exists t∗ > 0, a non-negative function C(t) and a constant α > 0
such that for all 0 ≤ t ≤ t∗

sup
x∈D

Ex

(
eα ‖Xt‖

2

1{T∂>t}

)
≤ C(t)

where T∂ denotes the exit time of the domain D.

We deduce the following result showing immediate Gaussian concentra-
tion in the course of diffusions coming down from infinity.

THEOREM 5.3. Assume that hypothesis (26) and (27) hold. Let µ be any
probability measure on (the Borel field of) Rd. Let t∗ be as in Theorem 5.2.
Then, for all t > 0, the probability measure (µt)t≥0 defined by

µt(f) = Eµ
(
f(Xt)

∣∣T∂ > t
)
, ∀f ∈ Cb(R

d)

satisfies GCBS(Dt) where

Dt =
1

2α

(
1 ∨ C2(t ∧ t∗)

Pµ(T∂ > t ∧ t∗)2
e

2
√
π

)
.
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PROOF. For 0 < t ≤ t∗, the result follows from Theorems 5.2 and 5.1.
For t > t∗ the result follows from the semigroup property of S∂(t)f(x) =
Ex
(
f(Xt)|T∂ > t

)
and the result for 0 < t ≤ t∗.

PROOF of Theorem 5.2. Define

u(t, x) = ϕ(t) eα ‖x‖
2

where ϕ will be chosen later on. We have

∂tu(t, x) + L u(t, x)

= eα ‖x‖
2 (
ϕ̇(t) + ϕ(t)

[
dα/2 + 2α2‖x‖2 + 〈x, b(x)〉

])
≤ eα ‖x‖

2 (
ϕ̇(t) + ϕ(t)

[
dα + 4α2‖x‖2 + A ‖x‖ − h(‖x‖) ‖x‖

])
.

Using integration by parts we get∫ z

0

du

h(u)
=

z

h(z)
+

∫ z

0

uh′(u)

h(u)2
du

and using that h is non-decreasing we obtain

lim inf
z→∞

h(z)

z
≥ 1∫∞

0
du
h(u)

> 0 .

Therefore, choosing α > 0 sufficiently small and y∗ > 0 sufficiently large, we
have for u ≥ y∗

h(u)− 2α2 u− A− dα

2u
>
h(u)

2
.

We then define a non-increasing function y(s) and the non-decreasing func-
tion ϕ(s) via

ϕ̇(s)

ϕ(s)
= −ẏ(s) y(s) = y(s)

h(s)

2
.

We impose additionally y(0) =∞ and obtain∫ ∞
y(s)

du

h(u)
=
s

2
.

This define t∗ via ∫ ∞
y∗

du

h(u)
=
t∗
2

and
ϕ(s) = e−y(s)

2/2 .
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If A > y∗ using Ito’s formula with TA the hitting time of the boundary of the
ball centered at x with radius A, (where A > ‖x‖)

Ex
(
u(t ∧ T∂ ∧ TA, Xt∧T∂∧TA)

)
= Ex

(∫ t∧T∂∧TA

0

(
∂tu+ L u

)
(s,Xs) ds

)
.

If Xs ≥ y(s) ∨ y∗ we have(
∂tu+ L u

)
(s,Xs) ≤ eα ‖Xs‖

2

(
ϕ̇+ ϕ

h(y(s))

2

)
= 0

and if Xs < y(s) ∨ y∗ we have(
∂tu+ L u

)
(s,Xs) ≤ eαy(s)

2 (
ϕ̇(s) + ϕ(s)C

(
1 + y(s)2)

)
for some (computable) constant C > 0 independent of s. Therefore

Ex

(∫ t∧T∂∧TA

0

(
∂tu+ L u

)
(s,Xs) ds

)
≤ Ex

(∫ t∧T∂∧TA

0

eαy(s)
2 (
ϕ̇(s) + ϕ(s)C

(
1 + y(s)2

))
ds

)
≤
∫ t

0

eαy(s)
2 (
ϕ̇(s) + ϕ(s)C

(
1 + y(s)2

))
ds

= −
∫ t

0

eαy(s)
2

ẏ(s) y(s) e−y(s)
2/2 ds+

∫ t

0

eαy(s)
2

e−y(s)
2/2C

(
1 + y(s)2

)
ds

and if α < 1/2

≤
∫ ∞
y(t)

eαy
2

y e−y
2/2 dy +O(1)

∫ t

0

ds =
1

1− 2α
e−(1−2α) y(t)

2/2 +O(1) t .

We now observe that since u ≥ 0

Ex
(
u(t ∧ T∂, Xt∧T∂ ) 1{TA>t∧T∂}

)
≤ Ex

(
u(t ∧ T∂ ∧ TA, Xt∧T∂∧TA)

)
therefore by the monotone convergence theorem (let A tend to infinity)

Ex
(
u(t ∧ T∂, Xt∧T∂ )

)
≤ 1

1− 2α
e−(1−2α) y(t)

2/2 +O(1) t .

The result follows by observing that

ϕ(t) Ex

(
eα ‖Xt‖

2

1{T∂>t}

)
≤ Ex

(
u(t ∧ T∂, Xt∧T∂ )

)
.
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5.3 Example 2: Markovian diffusion processes with
space-time dependent drift and covariance

In this section, we consider stochastic differential equations on Rd given by

dXt = b(Xt, t) dt+ σ(Xt, t) dWt

where the vector field b and the matrix-valued σ are regular in x, t. We
assume that, for any given initial condition x0, the solution exists, is unique
and defined for all times. This generalizes the coupling setting of Theorem
4.2, i.e., we impose a more general confining condition on the drift b(x, t) and
allow the covariance matrix σ(x, t) to depend on time and location.

THEOREM 5.4. Assume that α > 0, β > 0 and θ > 0 such that, for all
x ∈ Rd and t ≥ 0

〈x , b(x, t)〉 ≤ α ‖x‖ − β‖x‖2 (28)

and
σt(x, t)σ(x, t) ≤ θ Id

where the second inequality is in the sense of the order on positive definite
matrices. Then, for every initial probability measure µ0 on Rd satisfying
GCBS(D0), the evolved probability measure µt satisfies GCBS(Dt) for all
t ≥ 0, where Dt is given by the formula (25), with

a = a0 =
β

2θ
∧ 1

16D0

b = bt = b0 exp

(
−a0

(
θd+

2α2

β

)
t

)
+ 2 e

4a0
β

(
θd+ 2α2

β

) (
1− exp

(
−a0

(
θd+

2α2

β

)
t

))
and

b0 = 3 eµ0(d)
2/8D

where µ0(d) =
∫
‖x‖ dµ(x).

PROOF. Let a0 = β
2θ
∧ 1

16D0
and define u(x) = ea0‖x‖

2
. Using the assumptions

we get

Lu(x) ≤
(
2a20θ‖x‖2 + a0θd+ 2a0α‖x‖ − 2a0β‖x‖2

)
u(x)

≤ a0
(
θd+ 2α‖x‖ − β‖x‖2

)
u(x)

≤ a0

(
θd+

2α2

β
− β

2
‖x‖2

)
u(x) .
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For any A > 0, let TA = inf{t ≥ 0 : ‖Xt‖ ≥ A}. Using Dynkin’s formula and
Theorem 5.1, we get

Eµ0

(
ea0‖Xt∧TA‖

2
)

≤ b0 + a0Eµ0

(∫ t∧TA

0

ea0‖Xs‖
2

(
θd+

2α2

β
− β

2
‖Xs‖2

)
ds

)
(29)

where, via (23)

b0 =

∫
ea0‖x‖

2

dµ(x) ≤ 3 e
µ(d)2

8D

where µ(d) =
∫
‖x‖ dµ(x). We now estimate the expectation on the right-

hand side of (29). Define, for s > 0, the event

Es =

{
‖Xs‖2 >

4

β
θd+

2α2

β

}
.

We have

Eµ0

(
ea0‖Xt∧TA‖

2
)

≤ b0 + 2a0

(
θd+

2α2

β

)
Eµ0

(∫ t∧TA

0

ea0‖Xs‖
2

1Ecs ds

)
− a0

(
θd+

2α2

β

)
Eµ0

(∫ t∧TA

0

ea0‖Xs‖
2

ds

)
≤ b0 + 2a0

(
θd+

2α2

β

)
e

4a0
β

(
θd+ 2D2

β

)
t

− a0
(
θd+

2α2

β

)
Eµ0

(∫ t∧TA

0

ea0‖Xs‖
2

ds

)
.

By the Monotone Convergence Theorem, letting A ↑ ∞, and Fubini’s Theo-
rem, we get

Eµ0

(
ea0‖Xt‖

2
)

≤ b0 + 2a0

(
θd+

2α2

β

)
e

4a0
β

(
θd+ 2α2

β

)
t

− a0
(
θd+

2α2

β

)∫ t

0

Eµ0

(
ea0‖Xs‖

2
)

ds .

Using Grönwall’s lemma, we obtain

Eµ0

(
ea0‖Xt‖

2
)
≤ b0 exp

(
−a0

(
θd+

2α2

β

)
t

)
+

2 e
4a0
β

(
θd+ 2α2

β

) (
1− exp

(
−a0

(
θd+

2α2

β

)
t

))
.
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By Theorem 5.1, we deduce that µt satisfies GCBS(Dt) with the announced
constant Dt.

As an application, we consider the famous Lorenz system
dx
dt

= σ(y − x)
dy
dt

= rx− y − xz
dz
dt

= xy − bz .

which, for a certain range of (positive) parameters has a strange attractor [8,
Chapter 14].

Adding a noise which satisfies the condition of Theorem 4.2, this leads to
a unique invariant probability measure whose properties are largely unknown.
However, this measure satisfies GCBS(). This can be proved observing that
the Lorenz system translated by the vector (0, 0,−2r) satisfies (28) using the
squared norm ‖(x, y, z)‖2 = rx2 + σy2 + σz2 with

β = inf
rx2 + y2 + bz2

rx2 + σy2 + σz2

where the infimum is taken over x, y, z in such a way that (x, y, z) 6= (0, 0, 0).

6 Non Markovian diffusions: Martingale mo-

ment approach

In this section we consider the simplest context beyond Markov, where we
can no longer rely on methods based on generators.

We consider the stochastic differential equation on R given by

dXt = −κXt dt+ σt dWt (30)

where we assume that the process σt is uniformly bounded and predictable.
An example of this setting is{

dYt = −θYt + dWt

dXt = −κXt + σ(Yt) dWt .

Then the couple (Xt, Yt) is Markov but Xt is not, and satisfies a SDE of the
form (30).

Because the process {Xt, t ≥ 0} is no longer a Markov process (unless σt
depends only on Xt) we can no longer use techniques based on the generator
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as we did before for processes of Ornstein-Uhlenbeck type. The main point is
that as a consequence, Xx

t equals a deterministic process of bounded variation
plus a martingale. As a consequence, the Gaussian concentration bound can
be obtained from estimating the martingale, which can be done with the help
of Burkholder’s inequalities.

The assumption (30) allows us to write the solution in the form

Xt = X0 e−κt +

∫ t

0

e−κ(t−s) σs dWs . (31)

We have the following result.

THEOREM 6.1. Assume that there exists M > 0 such that

sup
t≥0
‖σt‖L∞ ≤M .

Assume X0 is distributed according to a probability measure µ satisfying
GCBS(D). Then we have that for all t > 0 there exists Ct > 0 such that
Xt satisfies GCBS(Dt). Moreover, if κ > 0 then all weak limit points of
{Xt, t ≥ 0} satisfy GCBS(D∞) for some D∞ > 0.

PROOF. We use Theorem 5.1, and will prove that there exist a > 0, b > 0
such that

E
(

eaX
2
t

)
≤ b .

Then we can conclude via Theorem 5.1, that the distribution of Xt satisfies
GCBS(C) with C ≤ 1

2a
(1 ∨ b2 e

2
√
π
). We start from (31) from which we derive

the inequality

X2
t ≤ 2X2

0 e−2κt + 2

(∫ t

0

e−κ(t−s) σs dWs

)2

. (32)

We start by estimating, for γ > 0

E

(
exp

(
γ

(∫ t

0

e−κ(t−s) σs dWs

)2
))

=
∞∑
n=0

γn

n!
E

((∫ t

0

e−κ(t−s) σs dWs

)2n
)
.

Next use Burkholder’s inequality [5] which states that for a martingale {Zt, t ≥
0} w.r.t. Brownian filtration, with quadratic variation [Z,Z]t, we have the
estimate

E(Z2n
t ) ≤ A(2n)nE([Z,Z]nt )

25



with A an absolute constant. As a consequence,

E

((∫ t

0

e−κ(t−s) σs dWs

)2n
)

= e−2nκtE

((∫ t

0

eκs σs dWs

)2n
)

≤ e−2nκtA(2n)nE

((∫ t

0

e2κs σ2
s ds

)n)
≤ e−2nκtAM2n(2n)nE

((∫ t

0

e2κs ds

)n)
≤ AM2n(2n)n

(
1− e−2κt

2κ

)n
.

As a consequence we obtain

E

(
exp

(
γ

(∫ t

0

e−κ(t−s) σs dWs

)2
))

≤ A
∞∑
n=0

1

n!
γnM2n(2n)n

(
1− e−2κt

2κ

)n
.

The r.h.s. of this inequality is a convergent series provided

γ <

(
2 eM2

(
1− e−2κt

2κ

))−1
.

We then estimate, using (32) and the Cauchy-Schwarz inequality

E
(

eaX
2
t
)
≤
(
E
(

e4aX
2
0 e−2κt ))1/2 (

E
(

e4a(
∫ t
0 e−κ(t−s) σs dWs)

2))1/2
. (33)

Because by assumption the distribution of X0 satisfies GCBS(C), we have
that the first factor in the r.h.s. in (33) is finite as soon as 4a e−2κt < a0
where a0 is such that E

(
ea0X

2
0

)
<∞. The second factor is finite as soon as

a <

(
8 eM2

(
1− e−2κt

2κ

))−1
.

Therefore, E
(

eaX
2
t

)
is finite for

a <

(
8 eM2

(
1− e−2κt

2κ

))−1
∧ a0 e2κt

which, combined with Theorem 5.1 concludes the proof of the theorem.
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A Proof of Theorem 5.1

Statement 1. Choose x0 ∈ Ω arbitrarily. Since x 7→ d(x0, x) is 1-Lipschitz,
GCBS(D) implies by the classical Chernoff bound that for all r ≥ 0 we have

µ{x ∈ Ω : d(x0, x) > µ(d) + r} ≤ e−
r2

4D (34)

where

µ(d) :=

∫
d(x0, x) dµ(x) .

We have∫
ead(x0,x)

2

dµ(x)

=

∫
ead(x0,x)

2

1{d(x,x0)<µ(d)} dµ(x) +

∫
ead(x0,x)

2

1{d(x,x0)≥µ(d)} dµ(x)

≤ eaµ(d)
2

+ e2aµ(d)
2

∫
e2a(d(x0,x)−µ(d))

2

1{d(x,x0)≥µ(d)} dµ(x) .

Now we use the fact that∫
e2a(d(x0,x)−µ(d))

2

1{d(x,x0)≥µ(d)} dµ(x)

= 1 +

∫ ∞
1

µ
({
x : e2a(d(x0,x)−µ(d))

2 ≥ u
})

du .

The result follows using (34) with a = 1/(16D).
Statement 2. Since for all x and for all a > 0

d(x0, x) ≤ 1√
a

ead(x0,x)
2

it follows that x 7→ d(x0, x) is µ-integrable. We also have that ef is µ-
integrable for any Lipschitz function. Now, using Jensen’s inequality and
then the triangle inequality, we obtain∫

ef−µ(f) dµ

≤
∫ ∫

ef(x)−f(y) dµ(x) dµ(y) ≤
(∫

elip(f)d(x,x0) dµ(x)

)2

. (35)

Combining the elementary inequality

lip(f) d(x, x0) ≤
lip(f)2

4a
+ ad(x, x0)

2
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with (24), we obtain ∫
elip(f)d(x,x0) dµ(x) ≤ b e

1
4a

lip(f)2 . (36)

We now show that the prefactor of the exponential can be changed to 1. We
first establish the following lemma.

LEMMA A.1. Let Z be a symmetric random variable distributed according to
a probability measure ν such that there exist C1 ≥ 1 and C2 > 0 such that
for all λ ∈ R

E
(
eλZ
)
≤ C1 eC2λ2 .

Then for all λ ∈ R we have

E
(
eλZ
)
≤ e

C2

(
1∨ C1e

2
√
π

)
λ2
.

PROOF. We have for any λ ∈ R

E(Z2q) = E
(
Z2q e−λZ eλZ

)
≤ C1 (2q)2qλ−2q e−2q eC2λ2 ≤ C1 4qqq e−q Cq

2

where the first inequality follows maximizing x2q e−λx over x, while the second
is obtained by minimizing over λ. Using the bound

√
2π nn+

1
2 e−n ≤ n! ≤ enn+

1
2 e−n

which is valid for any n ≥ 1, we get

C1 4qqq e−q Cq
2

(2q)!
≤

(
1 ∨ C1 e

2
√
π

)q
Cq

2

q!
, q ≥ 1 .

The result follows.
We now combine the above lemma for C1 = b2 and C2 = lip(f)2

2a
with (35) and

(36). Theorem 5.1 follows.

B An approximation lemma

In this appendix, (Ω, ‖ · ‖) is a separable Banach space. We denote by
Lip(Ω,R) the space of real-valued Lipschitz functions on (Ω, ‖·‖), by Lips(Ω,R)
the space of real-valued Lipschitz functions with bounded support, and by
Lipb(Ω,R) the space of real-valued bounded Lipschitz functions. If Ω is a
Banach space, we denote by C∞(Ω,R) the space of real-valued infinitely
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differentiable functions, and by C∞s (Ω,R) the space of real-valued infinitely
differentiable functions with bounded support.

Let C be class of real-valued functions on Ω, we say that µ satisfies
GCB(C ;D) if there exists D > 0 such that

log µ
(
ef−µ(f)

)
≤ D lip(f)2 .

for all f ∈ C .

LEMMA B.1. Let µ be a probability measure on Ω. Then

1. If µ satisfies GCB(C∞s (Ω,R);D) then it satisfies GCB(Lips(Ω,R);D).

2. If µ satisfies GCB(Lips(Ω,R);D) then it satisfies GCB(Lip(Ω,R);D).

PROOF. Let ν be a C∞ (in the sense of distributions) probability measure
on Ω with bounded support. For every λ > 0 we define the rescaled measure
νλ by

νλ(f) := ν(fλ)

for any f continuous with bounded support, where fλ(x) := f(λx). For
f ∈ Lips(Ω,R), we have νλ ∗ f ∈ C∞s (Ω,R) and lip(νλ ∗ f) ≤ lip(f). Since µ
is assumed to satisfy GCB(C∞s (Ω,R);D), it follows that

µ
(
eνλ∗f−µ(νλ∗f)

)
≤ eD lip(f)2 .

The first statement then follows by dominated convergence.
For the second statement, as an intermediate step, we prove that if µ

satisfies GCB(Lips(Ω,R);D) then it satisfies GCB(Lipb(Ω,R);D). Let ψ :
R+ → R+ be defined by

ψ(u) =


1 if u ≤ 1

2− u if 1 ≤ u ≤ 2

0 if u ≥ 2.

For any A > 0 define ψA : Ω→ R+ by

ψA(x) = ψ

(
‖x‖
A

)
.

We have ψA ∈ Lips(Ω,R) and lip(ψA) ≤ 1/A. Take f ∈ Lipb(Ω,R) such that
f(0) = 0 (without loss of generality), define the function FA by

FA(x) = f(x)ψA(x).
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We show that FA ∈ Lips(Ω,R). We have

FA(x)− FA(y) = f(x) [ψA(x)− ψA(y)] + ψA(y) [f(x)− f(y)] .

Since ‖ψA‖∞ ≤ 1 we get

lip(FA) ≤ ‖f‖∞
A

+ lip(f).

Since µ is assumed to satisfy GCB(Lips(Ω,R);D), we have

µ
(
eFA−µ(FA)

)
≤ exp

(
D

(
‖f‖∞
A

+ lip(f)

)2
)
. (37)

Using the Dominated Convergence Theorem, we take the limit A→ +∞ and
get

µ
(
ef−µ(f)

)
≤ eD lip(f)2 .

Finally, let us prove that if µ satisfies GCB(Lipb(Ω,R);D) then it satisfies
GCB(Lip(Ω,R);D). Define for M > 0

fM(x) = (f(x) ∧M) ∨ (−M) .

By observing that lip(fM) ≤ lip(f) and since µ satisfies GCB(Lipb(Ω,R);D)
by assumption, we have

µ
(
efM−µ(fM )

)
≤ eD lip(f)2 . (38)

We are going to take the limit M → +∞ and prove that the left-hand side
converges to µ (exp(f − µ(f))). We first prove that supM>0 |µ(fM)| < +∞.
We start by proving that infM>0 µ(fM) > −∞. Take a ball B such that
µ(B) > 0. Denote by xB its center and by rB its radius. Using (38) and the
mean-value theorem, we deduce that there exists yM ∈ B such that

µ(B) efM (yM )−µ(fM ) ≤ eD lip(f)2 .

Hence, using that lip(fM) ≤ lip(f), we get

fM(xB) ≤ µ(fM) +D lip(f)2 − log µ(B) + lip(f)rB .

Since fM(0) = 0, we obtain fM(xB) ≥ − lip(f)‖xB‖, which implies infM>0 µ(fM) >
−∞. A similar argument applies to −f , therefore

Af := sup
M>0
|µ(fM)| < +∞ .
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We now prove that ef is integrable with respect to µ. We have

µ
(
efM
)

= µ
(
1{f≥0} efM

)
+ µ

(
1{f<0} efM

)
. (39)

If x ∈ Ω is such that f(x) ≥ 0, then fM(x) ↑ f(x) as M ↑ +∞, then

µ
(
1{f≥0} efM

)
≤ µ

(
efM
)
≤ eD lip(f)2+Af .

By the Monotone Convergence Theorem we thus get

µ
(
1{f≥0} ef

)
= lim

M→+∞
µ
(
1{f≥0} efM

)
≤ eD lip(f)2+Af . (40)

Now we deal with the second term in the right-hand side of (39). Since the
function 1{f<0} efM is nonnegative and bounded above by 1 and converges
pointwise to 1{f<0} ef as M tends to +∞, we apply the Dominated Conver-
gence Theorem to get that

lim
M→+∞

µ
(
1{f<0} efM

)
= µ

(
1{f<0} ef

)
.

Therefore, using this inequality, (40) and (39) we conclude that

lim
M→+∞

µ
(
efM
)

= µ
(
ef
)
< +∞. (41)

By a similar argument one shows that µ
(
e−f
)
< +∞.

We now prove that µ(fM) converges to µ(f) as M tends to +∞. We ob-
serve that |fM | ≤ ef + e−f . Hence by the Dominated Convergence Theorem
we conclude that

lim
M→+∞

µ(fM) = µ(f). (42)

Using (42) and (41), we can take the limit M → +∞ in inequality (38) and
obtain

µ
(
ef−µ(f)

)
≤ eD lip(f)2 .
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