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Abstract. Multiagent-based simulation (MABS) is the processing of a
multiagent model of a complex system by a simulation platform that con-
trols its execution. The objective is the understanding of the dynamic
of this complex system with the experimenting of different configura-
tions for the same multiagent model. Following a scheduling process, an
activated agent has to act according to his context, that is his current
perceptible simulation state. In this paper, we propose to delegate the
context computation process to the scheduling process. This approach
has several advantages. The first is an optimization of the context com-
putation, a single computation being used for several agents. The second
advantage is a more configurable design process and a simplification of
the reusability of agent behaviors in different simulations. The model
that we propose gives a formal framework to support this context com-
putation delegation while preserving agents’ autonomy. We describe a
crisis situation to illustrate the benefits of our model and compare our
approach with a classical simulation scheduling approach.

Keywords: Simulation design; Scheduling policy; Multiagent environ-
ment; Crisis situation

1 Introduction

Multiagent systems (MAS) deal with the coordination of autonomous agents
interacting in an environment to solve problems. This bottom-up modeling ap-
proach has often been used to model complex systems, for instance in social
sciences [1], in the military domain [2], or in transportation [3].

Multiagent-based simulation (MABS) combines the advantages of the MAS
paradigm, with the advantages of simulation. MABS is consequently a fitting
solution to model complex processes and understand their dynamics. These fea-
tures explain the uptake of MABS by several domains and why it is becoming
one of the main directions for the deployment of multiagent systems [4]. How-
ever, the agent-centered design of MABS has two limitations. On the one hand,
the simulation design is hardly configurable. Indeed, the MABS designer has two
options to test new configurations, he can either modify the scheduler, and/or
change the agent behavior associated to a context.
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These two options often imply that the user of the simulation is either its
designer or has only a set of predefined configurations he could use. The second
limitation is related to the computational efficiency of the simulation process.
Using their context, the agents decide which action they have to perform. For
each agent, the context computation takes into account his available information
including his own state, his accessible information about other agents, his local
environment perception, etc. This context computation is automatic and repet-
itive for each scheduled agent. Indeed, in the majority of MABS frameworks,
all agents must automatically compute their new context before performing an
action, even if their context has not changed since their last execution. This
computation is repetitive because the agents compute their context at each exe-
cution, even if they have the same context than others. This context computation
process is time-consuming and is one of the barriers to increased use of MABS
for large simulations.

In this paper, we propose an approach that improves the configurability of the
simulation process by delegating the context computation to the multiagent en-
vironment. Thus, the designer can change the simulation behavior by modifying
the agent context computation without modifying the agent’s implementation.
In addition, our approach is more dynamic than a classical approach because
the modification of the agent and simulation behaviors are possible both offline
(by the designer) and online (by the agents). Finally, our approach is computa-

tionally efficient because the same context computation can be used for several
agents who desire to be activated with the same context conditions.

The remainder of the paper is organized as follows. Section 2 presents the
issues related to the activation process in simulation. In section 3, we position
our work in a practical context of crisis management. The agents design model is
provided in section 4. Section 5 presents our experiments and results. The paper
concludes with some perspectives to this work.

2 State of the Art

The execution of a multiagent-based simulation (MABS) model necessitates a
scheduling process (performed by a scheduler) that synchronizes the agents exe-
cution. In this section, we give a presentation of the MABS frameworks focused
on this activation process.

In the current MABS framework, we distinguish three ways for the scheduler
to activate the agents. The first activation mechanism is the default activation
mechanism. It consists in activating the agents with only one method. In this
case, the scheduler keeps a minimal description of the agent like his internal
clock or his identification information, and activates the agents either by calling
a default method [5] or with a control message [6]. In this case, the scheduler
responsibility towards the agents is minimal and the agents compute locally the
perception-decision-action loop.

The second activation mechanism consists in activating the agents directly
with a reference to the next action to perform. In this case, the scheduler keeps,
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in addition of the minimal description of the agent, an information about the
next agent action to perform. The agent delegates to the scheduler the call of his
actions. In the logo-based multiagent platforms such as the TurtleKit simulation
tool of Madkit [7], an agent has an automaton that determines the next action
that should be executed. The action activation is delegated to the scheduler.

The third and last activation mechanism is called contextual activation. It
consists in activating the agents with some kind of context information. In this
case, the scheduler keeps a detailed description of the agents and computes each
context for the agents according to the agent focuses and the accessible descrip-
tions. The Jedi framework [8] and the Repast Simphony simulation platform [9]
are the only two proposals where the choice of the action that is executed by an
agent can be computed by the scheduler. In the Jedi framework, the computa-
tion of the agent action decision is based on an interaction matrix where a cell
is a conditioned interaction between two agents. The interaction is conditioned
following the MABS state, i.e. a specific context. For instance, an interaction is
possible between two agents following their proximity. At each of these contexts,
an action is associated and will be executed by the activated agent. This matrix
is given by the designer and do not change during the simulation. This proposal
is limited by the choice of the matrix to specify the interaction. Indeed, the num-
ber of components that can be taken into account to condition an interaction
is limited to the matrix dimensions. Moreover, this matrix cannot be changed
by the agents, their autonomy is therefore limited. The Repast Simphony sim-
ulation platform natively uses the first scheduling options (i.e. with a default
agents’ method to call and no information given to the agent), but it also allows
a sort of contextual activation based on “watchers”. Watchers allow an agent to
be notified of a state change in another agent and schedule the resulting action.
The designer specifies which agent to watch and a query condition that must be
verified to trigger the resulting action. This activation process is coherent with
our definition of a contextual activation. However, it is limited by the expressive-
ness of the watcher queries language to express the activation context. Indeed,
the queries are boolean expressions that evaluate the watcher and the watchee
using primitives such as colocated and linked to and the logic operators AND
and OR. More importantly, it is not possible to integrate complex conditions
about other components (different from the watcher and the watchee).

We propose a simulation model called Eass (Environment as Active Support
for Simulation) proposing a complete contextual activation. The context com-
putation is delegated to the environment and where agent activation is based
on context evaluation. Our proposal is based on the accessible description of the
MABS components inside the environment and the computation of the agents
contexts by the environment. The language to express matching conditions is
defined such that it is the most expressive possible to define a context.
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3 A Crisis Management Simulation

We consider a crisis management application in transportation where several
emergency services must be coordinated to limit the crisis consequences. The
various activities in crisis response are coordinated between services. For in-
stance, the task of evacuation may first need authorization from the mayor, it
could involve military personnel for transport, the fire brigade to clear the road
and aid agencies to provide shelter and food. The problem is further compli-
cated by the shifting goals of the various organizations when their priorities
change due to the highly dynamic nature of crisis situations. A crisis situation
is a dynamic and complex phenomenon characterized by the initial situation
(location and time, impact on population and infrastructure), and this situation
requires a specific organization to limit the negative effects. In [10], we propose
an organization-based modeling of a crisis in transportation. With the victim
evacuation example, we illustrate in this paper how the agent behavior is mod-
eled by the designer and dynamically supported by the scheduling process.

This task of evacuation consists in coordinating different emergency agents
to secure and carry the victims. We consider two categories of emergency agents.
The first is related to the emergency agents playing the role of physician. The
goal of the physicians is to make a clinical diagnosis to stabilize the victim and to
define the suitable evacuation. The second category is related to the emergency
agents who play the role medical porter. The goal of the medical porters is to
transport a victim to an emergency vehicle. In our implementation, each agent is
situated on a two-dimensional space environment. The emergency agents have a
perception field that limits their perception of the environment. In this example,
the victims are objects because they are not autonomous. Figure 1 depicts an
example of crisis situation with the stakeholders.

The evacuation process requires to follow sequentially two actions: 1/ A
physician makes a diagnosis, 2/ Two medical porters carry the victim. The
second action needs a synchronization of the two medical porters. Each med-
ical porter has a specific capacity among medical monitoring or victim handling.
The first capacity allows the medical porter to monitor the victim and to inform
the physician of the victim state evolution. The second capacity is necessary to
carry the victim. To transport a victim, two medical porters with complemen-
tary capacities are required. In this evacuation process, physicians and medical
porters have to cooperate: a diagnosis of the victim has to be done before to
transport him. Medical porters have to coordinate themselves to transport a
victim together.

4 Agents Design

One of the main roles of the MAS designer is to define the behaviors of the
agents. In Eass, this is done by defining and composing “filters”. A Filter is a
set of parameterized conditions, i.e. the context, and the associated action to be

4



Dynamically configurable Multi-Agent Simulation for Crisis Management

!"#$#$%$#&'()*+%

,#&-%./."0.+12%$."3#1.$%

4#&'()*+%/*5.6#+0%

#+%78%$9()(6%.+3#"*+/.+&%

".$*'"1.$% 9-2$#1#(+%

/.5#1(6%9*"&."%

:;<%".9".$.+&()*+%

9*&.+)(6%3#1)/$%

=0.+&% >?@.1&%

;.5#1(6AB*"&."%B-2$#1#(+% C.$*'"1.%D#1)/%

E#5%

E9*$#)*+%

%

E5#(0+*$#$FG%

E#5%

E9*$#)*+%

E1(9(1#&2%

%

E.3(1'()*+FG%

E#5%

E9*$#)*+%

E$&(&.%

E#5%

E9*$#)*+%

E&"(+$9*"&%

E$9(1.%

Fig. 1. An example of transportation crisis situation with emergency services to evac-
uate victims.

performed 3. A context is a set of constraints on the descriptions of the MAS
components (agents, messages or objects). For instance, a filter could express the
following context: “if there is a victim nearby (condition 1), and a free medical
porter nearby (condition 2), then carry the victim (action)”. The context here
is made of conditions 1 and 2.

We propose to the designer an agent design process of three steps (cf. Fig-
ure 2). The first step, called enumeration step, consists in specifying all the
possible filters that could be useful to each type of agent (e.g. the physician and
the medical porter in our example). The second step, called behavior step, is to
design the behaviors of the agents, i.e. how the state of the agents is updated,
and which filters are relevant in each state. The last step, called the simulation

step, is to execute a simulation and to ensure its coherence.

4.1 The Enumeration Step

The enumeration step takes as input the description of the MAS model, and pro-
vides as output a filters library. The MAS model is composed of the description
of the system entities (the categories of agents and objects) and the possible ac-
tions of the agents. For each agent type, the designer enumerates all the relevant
contexts and associates, to each context, one or several actions. Then, according
to these associations between contexts and actions, the designer defines the filter
library.

For instance in the crisis simulation, one possible action for the physician is
move (moving towards a victim) and the context of this action is the perception
of a victim in the physician field of view, which is not handled by another
physician or a medical porter. With these two information (the action and the
context), the designer defines the filter that link the context with the relevant
action.

3 a formal definition of filters can be found in [11]
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Fig. 2. The three steps of the agents design process

The output of the enumeration step is a library of filters, associating contexts
to actions, which is one of the two inputs of the behavior step.

4.2 The Behavior Step

Following Figure 2, the behavior step takes as input the filters library defined
in the enumeration step and the scenarios that the designer wants to simulate.
The output of this step is a library of behaviors. A behavior is an organized
collection of filters that is related to a scenario. Each behavior is defined in the
form of an automaton where the nodes are agent states and the edges are filters
from the library.

The scenario describes the workflow of a part of the simulation. The designer
uses this workflow to define which filters are taken into account and when. For
instance, consider a crisis scenario “priority to evacuation”. In this scenario, the
main objective is to evacuate the victims. However, a victim cannot be evacuated
until it is handled by a physician who provide a first diagnosis. When designing
the behaviors of physicians, the designer translates this scenario to a behavior
automaton.

In this scenario (cf. Fig. 3), from state 1, where the physician is looking for
a victim, the filter Filter1 might match and the physician would go to state 2
where he would have found a victim without a porter. For this filter to match,
the agent a has to be free, i.e. not engaged to handle another victim, the victim
should be in the perception field of a and the victim should not be already
handled by another physician or a medical porter. This filter is of priority 1.
From state 1, there is another filter (Filter2) that could match and take the
physician to another state (state 3), in which he would have found a victim with
a medical porter. The filter linking state 1 and state 3 (priority 2) is of higher
priority than the filter linking state 1 and state 2 (priority 1). Indeed, the victims
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Fig. 3. Example physician behavior (priority to evacuation scenario)

that are already handled by a medical porter would be evacuated immediately
after the physician’s diagnosis, while the others would still wait for a medical
porter.

In state 2, the physician is engaged for handling a victim v, but he has not
reached it yet. Two other filters matching might change the state of the agent.
The first is the same filter Filter2 linking state 1 and state 3, i.e. another victim
is found that is not handled by another physician but is however handled by
a medical porter. A filter of higher priority (Filter3) links state 2 to state 4,
which is related to the case the physician has reached the victim, he should then
diagnose it. The context assertion is the co-location of the physician and the
victim. The same filter links state 3 to state 4.

This step provides the simulation with a library of behaviors that the agent
might adopt during the simulation.

4.3 The Simulation Step

Finally, the simulation step is the process taking as input the behaviors library
and the initial state of the world, and which runs the simulation. During the
simulation execution, the agent activation has to be managed, as well as the
priority and the pooling of the filters.

In our framework, the environment plays a main role as a dynamic com-
ponent of the simulation system. Indeed, the environment manages the filters
built during the modeling phase, as well as the descriptive information about
the simulation components (agents and objects).
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4.4 An Example of a Crisis Application Execution

This section illustrates the global scheduling policy execution through a sce-
nario of crisis simulation example. During the initialization phase, the MAS
components (physicians, medical porters and victims) are registered in the envi-
ronment. For each registration of an agent, a description is generated by the en-
vironment process where the pairs (id, value) and (time, 0) are added to this de-
scription. The agent identifier is automatically added to the list potentialAgents

of the default filter. After this registration, each agent, following his behavior
automaton, adds his filters in the environment. In this example, there are three
physician agents P1, P2 and one victim V1. The physician agent P1 adds the
filers Fvictim detection and Fdiagnosis in the environment (Fdetect and Fdiag).
These filters do not exist, so the environment process adds the associated filters
and initializes the parameter potentialAgents with the identifier of P1 for each
of them. The physician agent P2 adds the same filters and the environment pro-
cess updates the parameter potentialAgents with the identifier of P2. At this
moment, P1 and P2 share the same filters.

Once the simulation environment is initialized, the simulation starts. The
current simulation time is tE = 1. The filters with the highest priority are evalu-
ated first and they are triggered according to the matching with the descriptions
in the environment. Let’s consider the case where one physician agent P1 sees
the victim V1 while the physician agent P2 does not see a victim.

P1 is activated by the filter Fvictim detection to perform the action move in

a direction, the filter variable unification gives the description of the victim V1

with the information about position and id which are necessary for the action
execution. During the action execution by the agent P1, his internal time is
updated to 1.

P1 has an internal time that is inferior to tE and he is not activated. Conse-
quently he is activated by the default filter to perform the default action move

randomly. During the action execution, their internal time is updated to 1.
All the agents have their internal time superior or equal to tE (Recall that tE

= 1). Consequently, the time update filter Ftime is triggered and the simulation
time tE is incremented to 2.

5 Experiments

This section presents the assessment of the Eassmodel. Our objective is to com-
pare the cost of the context computation by the environment versus the context
computation by the agents. A prototype of our ABS framework has been im-
plemented as a plugin for the multiagent platform Madkit [7]. The plugin is
composed of an environment component with an API that enables the agents
to add/retract/modify their descriptions and filters. We have executed the same
agent behavior with a contextual activation and with a classical activation and
compared the execution time. In the latter case, the scheduler activates the
agents alternately and each of them computes locally his context. The results
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show that our contextual activation is always more efficient than the classical
activation. The first explanation of this result is the use of the Rete algorithm
that enables to optimize the matching process of the shared filters. The second
explanation is related to the context computation process itself. With a clas-
sical scheduler, the context computation is based on the ”exploration” of the
perceived environment while it is based on an event (environment modification)
evaluation process in our solution. The consequence is that the cost of the match-
ing process in our solution increases with the number of entities that are taken
into account by the filters (figure 4). The cost increases following the number of
entities that compute their context and the size of the perceived environment in
the classical solution.

Fig. 4. Simulation run-time comparison between contextual activation (S2) and clas-
sical activation (S1)

6 Conclusion

In this paper, we discuss the role of the scheduling process in multiagent sim-
ulation. We have proposed a new model, called Eass (Environment as Active
Support for Simulation), where the context computation is externalized to the
environment and where agent activation is based on this context evaluation.
Whereas classical approaches are agent-centered, our proposal is environment-
centered because it delegates a part of the activity of the agents to the MAS envi-
ronment. Our proposal is grounded on the PbC coordination principle [12] which
argues in favor of MAS entities that have to be partially observable through a set
of properties. For future work, we intend to test our platform on a complex, more
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realistic and bigger scenario of crisis management in transportation networks (as
in [13]).
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