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Introduction

In addition to the sparsity property of a wireless channel, the channel multipath components are modeled as clusters of multirays due to scatterers distributed in the environment. This is a typical channel configuration that future multiple-input multiple-output (MIMO) wireless communication systems will have to cope with. Hence, there is a strong need to design new appropriate channel estimation techniques. A cluster of multirays can be characterized by its mean delay and its delay spreading. In a previous work, we have focused on estimating the mean delays of the different clusters based on a deterministic channel model. For the work to be complete, we propose in this work to estimate the standard deviation of the delay spreading of each cluster based on a stochastic model, exploiting time delays distribution of the scattered signals.

Channel model and system model

Consider an N × M MIMO system. For n = 1 . . . N and m = 1 . . . M, the channel impulse response between the nth transmit antenna and the mth receive antenna can be modeled as:

h (n,m) (t) = L l=1 P l p=1 α (n,m) lp δ(t -(τ (n,m) l + τ (n,m) lp )) (1) 
where δ(.) is the Dirac function; L is the total number of propagation paths (clusters), with P l contributing rays for the lth path (cluster), τ (n,m) l + τ (n,m) lp is the pth contributing ray delay in the lth cluster with τ (n,m) lp a small deviation from the mean path delay τ (n,m) l and α (n,m) lp is the corresponding complex gain.

Pilot symbols on different carrier frequencies at each transmit antenna are sent through the channel in order to distinguish the paths between different transmit-receive antenna pairs. Suppose that a known pulse shape g(t) is transmitted at a constant rate 1/T . Signal contribution from the nth transmit antenna at the mth receive antenna is given as:

x (n,m) (t) = L l=1 P l p=1 α (n,m) lp g(t -(τ (n,m) l + τ (n,m) lp )) + z (n,m) (t) (2) 
with z (n,m) (t) an additive white gaussian noise.

In this work, we assume that all multiray delays associated to a given scatterer l share a same distribution for different transmit-receive antenna pairs, having same mean delay with same variance of delay spreading. Hence in the above equation, τ (n,m) l = τ l where τ l is the mean delay associated to cluster l.

Applying the discrete Fourier transform (DFT), the Fourier coefficients of the received signal are given by:

X (n,m) [k] = L l=1 P l p=1 α (n,m) lp G[k]e -j 2π T k(τ l +τ (n,m) lp ) + Z (n,m) [k] (3) 
for k = -K /2 + 1, . . . , K /2 where K is the considered number of Fourier coefficients, G [k] is the DFT of pulse g(t) and Z (n,m) [k] is the DFT of noise z (n,m) (t).

Let v k (τ) = G[k]e -j 2π
T kτ , (3) can be rewritten as:

X (n,m) [k] = L l=1 P l p=1 α (n,m) lp v k (τ l + τ (n,m) lp ) + Z (n,m) [k] (4)

Channel parameter estimation

First, a deterministic model based approach is considered to estimate cluster mean delays.

As the delay deviations τ (n,m) lp are considered small, the U th order Taylor expansion of (4) gives:

X (n,m) [k] = L l=1 P l p=1 α (n,m) lp v k (τ l ) + U u=1 (τ (n,m) lp ) u u! v (u) k (τ l ) + R U (τ (n,m) lp ) + Z (n,m) [k] (5) 
where

v (u) k (τ l ) is the u th order derivative of v k (τ l ) and R U (τ (n,m) lp
) is the remaining term in the Taylor approximation considered as small.

(5) can be approximated as:

X (n,m) [k] ≈ L l=1 U u=0 a (n,m) l,u v (u) k (τ l ) + Z (n,m) [k] (6) 
where a (n,m) l,u

= P l p=1 α (n,m) lp (τ (n,m) lp ) u u! .
The mean delays can be estimated, using the MUSIC-like method proposed in our previous work, by finding the locations of peaks of the following cost function:

P(τ) = 1 U u=0 v (u) (τ) H Ûn ÛH n v (u) (τ) (7) 
where

v (u) (τ l ) = [v (u) -K /2+1 (τ l ), . . . , v (u) K /2 (τ l )] T v (u) k (τ l ) = (-j 2π T k) u v k (τ l ) (8)
and Ûn is the matrix of the estimated effective noise subspace eigenvectors.

As a second step, a stochastic model based approach is considered, where a stochastic channel model is derived, assuming a predefined statistical distribution for multiray delays. The Fourier coefficients for any transmit-receive antenna pair can be modeled with the following random function:

X [k] = L l=1 ∫ τ∈T v k (τ)α l (τ; ξ l )dτ + Z [k] ( 9 
)
where T is the interval in which the spreading for all clusters takes place; ξ l = [τ l , σ l ] is the parameter vector characterising the channel, such that τ l is the mean delay and σ l is the standard deviation of the delay spreading of cluster l; α l (τ; ξ l ) is the complex gain in the cluster, where for a fixed ξ l , α l (τ; ξ l ) is a random process with respect to the delay variable τ, and Z [k] is the additive noise modeled as a gaussian random variable with zero mean and variance σ 2 z . Since the gain coefficients are assumed to be identically distributed for all the transmit-receive antenna pairs with the same distribution of multiray delays, subscript (n, m) is omitted in the above equation.

The Fourier coefficients are concatenated to form the following random vector:

x = L l=1 ∫ τ∈T v(τ)α l (τ; ξ l )dτ + z (10) with x = [X[-K /2 + 1], . . . , X [K /2]] T and z = [Z[-K /2 + 1], . . . , Z [K /2]] T .
The corresponding covariance matrix is given by

R X = E{xx H } = L l,l =1 ∫ T ∫ T E{α l (τ; ξ l )α * l (τ ; ξ l )}v(τ)v(τ ) H dτdτ + σ 2 z I (11) 
where * denotes the complex conjugate, and τ, τ ∈ T .

Assuming that the different clustered signals are uncorrelated, and the multirays within each cluster are also uncorrelated. It comes that :

E{α l (τ; ξ l )α * l (τ ; ξ l )} = δ ll δ ττ σ 2 α l w l (τ; ξ l ) (12) 
where δ pq is the Kronecker delta.

The covariance matrix can then be written as follows:

R X = L l=1 R(τ l , σ l ) + σ 2 z I (13) 
where

R(τ l , σ l ) = σ 2 α l ∫ +∞ -∞ w l (τ; ξ l )v(τ)v(τ) H dτ ( 14 
)
is the covariance matrix of the lth received clustered signal, w l (τ; ξ l ) is the normalized power delay function of the cluster and σ 2 α l is its total mean power.

Assuming that multiray delays in each cluster are uniformly distributed, we have,

[R(τ l , σ l )] k+K /2,k +K /2 = |G[k]| 2 e -j 2π T (k-k )τ l sinc( 2π T (k -k ) √ 3σ l ) (15) 
For the clustered signal l, we have: R(τ l , σ l )U n = 0 (16) Hence the proposed scheme for estimation is as follows: firstly, the mean delays are estimated through a 1-dimensional search by the cost function given in (7), then the value of each estimated mean delay is substituted in R(τ l , σ l ) (15), the corresponding standard deviation can then be estimated by through a 1-dimensional search over σ as follows:

σl = argmax σ 1 ||R( τl , σ) Ûn || 2 F (17)

Simulation results

Simulations are carried out for an 12 × 12 MIMO system. Three clusters (L = 3) with associated mean delays τ 1 = 0.33T , τ 2 = 0.51T and τ 3 = 0.72T are considered. 

Conclusion

A scheme for estimating some statistical parameters of MIMO channel in scattering environments is presented. The proposed scheme has the ability to estimate two statistical channel parameters. Firstly, a deterministic model based approach is used to estimate the cluster mean delay, this estimated mean delay is then exploited to estimate the associated standard deviation of delay spreading through a stochastic model based approach that exploits the statistical distribution of the cluster multiray delays.
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 12 Figure 1: RMSE of standard deviation of delay spreading estimation vs SNR, σ l = 0.01T for all l.