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1CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris,
F-91128 Palaiseau, France

2CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris,
F-91128 Palaiseau, France

3DIM-CMM, Universidad de Chile, UMI 2807 UChile-CNRS, Beauchef
851, Santiago, Chile

June 9, 2020

Abstract

We study a class of multi-species birth-and-death processes going almost
surely to extinction and admitting a unique quasi-stationary distribution (qsd
for short). When rescaled by K and in the limit K → +∞, the realizations
of such processes get close, in any fixed finite-time window, to the trajecto-
ries of a dynamical system whose vector field is defined by the birth and death
rates. Assuming this dynamical system has a unique attracting fixed point, we
analyzed the behavior of these processes for finite K and finite times, “interpo-
lating” between the two limiting regimes just mentioned. In the present work,
we are mainly interested in the following question: Observing a realization of
the process, can we determine the so-called engineering resilience? To answer
this question, we establish two relations which intermingle the resilience, which
is a macroscopic quantity defined for the dynamical system, and the fluctuations
of the process, which are microscopic quantities. Analogous relations are well
known in nonequilibrium statistical mechanics. To exploit these relations, we
need to introduce several estimators which we control for times between logK
(time scale to converge to the qsd) and exp(K) (time scale of mean time to
extinction).
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Titre en français :
Distributions quasi-stationnaires et résilience : que peut-on obtenir des données ?

Résumé en français :
Nous étudions une classe de processus de naissance et mort avec plusieurs espèces

dans la situation où l’extinction est certaine et la distribution quasi-stationnaire est
unique. Si on fixe un intervalle de temps fini et qu’on normalise les réalisations d’un
tel processus par un paramètre d’échelle K, elles deviennent arbitrairement proches,
dans la limite K → +∞, des trajectoires d’un certain système dynamique dont le
champ de vecteurs est défini à partir des taux de naissance et mort. Quand le
système dynamique admet un seul point fixe attractif, nous avons précédemment
analysé le comportement du processus pour des valeurs de K finies et pour des temps
finis, c’est-à-dire, le comportement intermédiaire entre les deux comportements lim-
ites évoqués ci-dessus. La question principale qui nous intéresse dans le présent article
est la suivante : si on observe une réalisation du processus, pouvons-nous estimer la
résilience au sens de l’ingénieur (engineering resilience) ? Pour répondre à cette ques-
tion, nous démontrons deux relations entremêlant la résilience, qui est une quantité
macroscopique définie pour le système dynamique sous-jacent, et les fluctuations du
processus, qui sont elles des quantités microscopiques. De tels genres de relations sont
bien connues en mécanique statistique hors d’équilibre. Afin d’exploiter ces relations
nous introduisons plusieurs estimateurs empiriques que nous parvenons à contrôler
pour des temps entre logK, qui est l’échelle de temps pour observer la convergence
vers la distribution quasi-stationnaire, et exp(K), qui est l’échelle du temps moyen
d’extinction.

Mots clés :
processus de naissance et mort, systèmes dynamiques, résilience, distribution

quasi-stationnaire, relation de fluctuation-dissipation, estimateurs empiriques.
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1 Introduction and main results

1.1 Context and setting

The ability of an ecosystem to return to its reference state after a perturbation stress is
given by its resilience, a concept pioneered by Holling. Resilience has several faces and
multiple definitions [5]. In the traditional theoretical setting of dynamical systems,
that is, differential equations, one of them is the so-called engineering resilience. It
is concerned with what happens in the vicinity of a fixed point (equilibrium state)
of the system, and is given by minus the real part of the dominant eigenvalue of the
Jacobian matrix evaluated at the fixed point. It can also be defined as the reciprocal
of the characteristic return time to the fixed point after a (small) perturbation. In this
paper, we are interested in how to determine the engineering resilience from the data.
But which data? The drawback of the notion of engineering resilience is that we do
not observe population densities governed by differential equations. Instead, we count
individuals which are subject to stochastic fluctuations. Can we nevertheless infer the
resilience? The subject of this paper is to show that this is possible in the framework
of birth-and-death processes which are, in a sense made precise below, close to the
solutions of a corresponding differential equation, at certain time and population size
scales.

Let us now describe our framework. We consider a population made of d species
interacting with one another. Suppose that the state of the process at time t, which
we denote by NK(t) = (NK

1 (t), . . . , NK
d (t)), is n = (n1, . . . , ni, . . . , nd) ∈ Zd+, where ni

is the number of individuals of the ith species. Then the rate at which the population
increases (respectively decreases) by one individual of the jth species is KBj(

n
K )

(respectively KDj(
n
K )), where K is a scaling parameter. Under the assumptions we

will make, the process goes extinct, i.e., 0 is an absorbing state, with probability one.
There are two limiting regimes for the behavior of this process. The first one is to
fix K and let t tend to infinity, which leads inevitably to extinction. The second one
consists in fixing a time horizon and letting K tend to +∞, after having rescaled the
process by K. In this limit, the behavior of the rescaled process is governed by a
certain differential equation. More precisely, given any 0 < tH < +∞ and any ε > 0
and x0 ∈ Rd+, we have

lim
K→+∞

PbKx0c

(
sup

0≤t≤ tH
dist

(
NK(t)

K
,x(t)

)
> ε

)
= 0

where dist(·, ·) is the Euclidean distance in Rd+, and x(t) is the solution of the differ-
ential equation in Rd+

dx

dt
= B(x)−D(x)

with initial condition x0. We refer to [4, Chapter 11] for a proof. We use the notations
x = (x1, . . . , xd), B(x) = (B1(x), . . . , Bd(x)), and so on and so forth. We will make
further assumptions (see Subsection 1.4) on the birth and death rates to be in the
following situation. The vector field

X = B −D

has a unique attracting fixed point x∗ (lying in the interior of Rd+). We denote by
M∗ its differential evaluated at x∗, namely

M∗ = DX(x∗).
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We then define the (engineering) resilience as

ρ∗ = − sup{Re(z) : z ∈ Sp(M∗)}

where Sp
(
M∗
)

denotes the spectrum (set of eigenvalues) of the matrix M∗. Under
our assumptions, we have ρ∗ > 0.

We can now formulate more precisely the goal of this paper. Given a finite-length
realization of the process (NK(t), t ≤ T ), with large, but finite K, we want to build
an estimator for ρ∗. To this end, we need a good understanding of the behavior
of the Markov process (NK(t)) in an intermediate regime between the two limiting
regimes described above. This was done in a previous work of ours [3], and this can
be roughly summarized as follows. All states n 6= 0 are transient and 0 is absorbing,
hence the only stationary distribution is the Dirac measure sitting at 0. The mean
time to extinction behaves like exp(Θ(K)). (We recall Bachmann-Landau notations
below.) If we start in the vicinity of the state n∗ = bKx∗c, that is, if the initial state
has its coordinates of size of order K, then either the process wanders around n∗ or
it gets absorbed at 0. More precisely, there is a unique quasi-stationary distribution
(qsd, for short) νK which describes the statistics of the process conditioned to be non-
extinct before time t. Without this conditionning, the law of the process at time t is
well approximated by a mixture of the Dirac measure at 0 and the qsd νK , for times
t ∈ [cK logK, exp(Θ(K))], where c > 0, in the sense that the total variation distance
between them is exponentially small in K, provided that K is large enough. We will
rely on these results that will be recalled precisely later on. We will also need to prove
further properties.

1.2 Main results

To estimate the engineering resilience ρ∗, we will establish a matrix relation involving
M∗. Let µK = (µK1 , . . . , µ

K

d ) be the vector of species sizes averaged with respect to
νK , that is,

µKp =

∫
np dνK(n) , p = 1, . . . , d. (1.1)

For each τ ≥ 0, define the matrix

ΣK

p,q(τ) = EνK
[(
NK

p (τ)− µKp
)(
NK

q (0)− µKq
)]
, p, q ∈ {1, . . . , d}.

In Section 4.1, we will prove the following result.

Theorem 1.1. For all τ ≥ 0 we have

ΣK(τ) = eτM
∗

ΣK(0) +O
(√
K
)
. (1.2)

Some comments are in order. If τ is equal to, say, 1/K then the estimate becomes
useless. More generally, if τ is too small then eτM

∗
is too close to the identity matrix.

Moreover, we will show later on that µK and ΣK(τ) are of order K. Hence the estimate
becomes irrelevant if τ becomes proportional to logK. Indeed, without knowing the
constant of proportionality, eτM

∗
ΣK(0) can be of the same order than the error term.

Before proceeding further, we recall the following classical Bachmann-Landau no-
tations.

Notations. Given a ∈ R, the symbol O(Ka) stands for any real-valued function f(K)
such that there exists C > 0 and K0 > 0 such that, for any K > K0, |f(K)| ≤ CKa.
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Note in particular that O(1) will always mean a strictly positiveconstant that we don’t
want to specify. Sometimes, we will also use the symbol Θ(Ka) stands for any real-
valued function f(K) such that there exist C1, C2 > 0 and K0 > 0 such that, for any
K > K0, C1K

a ≤ f(K) ≤ C2K
a. One can naturally generalize Θ(Ka) to vector-

valued functions. For instance, for n ∈ Rd+ we write n = Θ(Ka) if ni = Θ(Ka) for
i = 1, . . . , d.

Relation (1.2) allows to determine M∗. Indeed, we have

eτM
∗

= ΣK(τ) ΣK(0)−1 +O
(

1√
K

)
. (1.3)

This formula suggests that in order to estimate M∗, we need estimators for ΣK(0)
and ΣK(τ). Given a finite-length realization of

(
NK(t), 0 ≤ t ≤ T

)
up to some time

T > 0, we define estimators for µKp and ΣK
p,q(τ), for 0 ≤ τ < T , p, q ∈ {1, . . . , d},

K ∈ N∗ by

S
µ

p (T,K) =
1

T

∫ T

0

NK

p (s)ds (1.4)

and

SCp,q(T, τ,K) =

1

T−τ

∫ T−τ

0

(
NK

p (s+ τ)−Sµp (T,K)
)(
NK

q (s)−Sµq (T,K)
)

ds. (1.5)

Under suitable conditions on n, K and T , Sµ(T,K) well approximates µK . More
precisely, we will prove an estimate of the following form (see Theorem 3.4 for a
precise statement)∣∣En[Sµp (T,K)

]
− µKp

∣∣ ≤
C
(
K + ‖n‖1

)(1 + logK

T
+ e−c (‖n‖1∧K) +T e− c

′K

)
(1.6)

for every n ∈ Zd+, p = 1, . . . , d, where c, c′, C are positive constants. We use the

notation ‖n‖1 =
∑d
i=1 ni. Let us comment on this bound. Roughly speaking, it can

only be useful if T is much smaller than exp(O(1)K) if n is, say, of order K. For
instance, suppose that, forK large enough, we want the bound to be Θ(K−a), for some
a > 0. One can check that this is possible if n = Θ(K) and T = Θ(Ka+1 logK). (Note
in particular that, in this situation, we have a consistent estimator when K → +∞.)
However, when T becomes exp(O(1)K) or larger, we know that En

[
S
µ

p (T,K)
]
≈ 0,

because with high probability, at this time scale the process is absorbed at 0. This is
the manifestation of the fact that the only stationary distribution is the Dirac measure
at 0. Consistently, our bound becomes very bad in that regime.
An estimate of the same kind holds for SC(T, τ,K) which well approximates ΣK(τ)
in the appropriate ranges.

Remark 1.1. It is possible to use discrete time instead of continuous time in the
above averages. Indeed the key results (in particular Proposition 3.3) are obtained for
discrete times.
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We can now define the empirical matrix M∗emp(T, τ,K) by

eτM
∗
emp(T,τ,K) = SC(T, τ,K)SC(T, 0,K)−1.

We will see later on that, in appropriate regimes, SC(T, 0,K) is near ΣK(0) and
SC(T, τ,K) is near ΣK(τ) (see Propositions 5.4 and 5.6). The matrix ΣK(0) is in-
vertible as a covariance matrix of a non-constant vector and is Θ(K) (see Proposition
2.9). Then (1.2) implies that ΣK(τ) is invertible and the same holds for SC(T, τ,K).
These remarks imply that the matrix M∗emp is well defined.

We define the empirical resilience by

ρ∗emp(T, τ,K) = − sup
{

Re(z) : z ∈ Sp
(
M∗emp(T, τ,K)

)}
.

Our main result (Theorem 5.7) is then the following.

Theorem. For τ = Θ(1), n = Θ(K) (initial state) and 0 < T � exp(Θ(1)K), and
K large enough, we have

∣∣ρ∗emp(T, τ,K)− ρ∗
∣∣ ≤ O(1)

(
K2

√
T

+
1√
K

)
with a probability larger than 1− 1/K. In particular, if T ≥ K5, we have

∣∣ρ∗emp(T, τ,K)− ρ∗
∣∣ ≤ O(1)√

K
.

Several comments are in order. The dependence on the initial state n is somewhat
hidden and involved in the fact that the estimates hold “with a probability larger
than 1 − 1/K”. Indeed, the estimate of this probability results from Chebychev
inequality and variance estimates in which the process is started in n. What the
symbol � precisely means is not mathematically defined. It means that we need to
consider T “much smaller than something exponentially big in K”. Indeed, since we
do not control explicitly the various constants appearing in exponential terms in K,
we have to consider T which varies on a scale smaller than exp(Θ(1)K), for instance
exp

(
Θ(1)

√
K
)
. The reader is invited to step through the proof of Theorem 5.7 for

the more precise, but cumbersome bound we obtain.

1.3 A “fluctuation-dissipation” approach

The above estimator for the engineering resilience, based on (1.3), is valid for any
d. In the case d = 1 (only one species), we have another, simpler, estimator based
on a “fluctuation-dissipation relation”. This relation is in fact true for any d and of
independent interest. Let DK be the d× d diagonal matrix given by

DK

p,p = KBp(x
∗) = KDp(x

∗).

We have the following result. We write ΣK instead of ΣK(0), and the transpose of a
matrix M is denoted by Mᵀ.

Theorem 1.2. We have

M∗ΣK + ΣKM∗ᵀ + 2DK = O
(√
K
)
. (1.7)
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This relation is proved in Section 4.2. For background on fluctuation-dissipation
relations in Statistical Physics, we refer to [7, sections 2-3]. Note that the matrix ΣK

is symmetrical, but in general the matrix M∗ is not (see [3]). Note also that each
term in the left-hand side of (1.7) is of order K, as we will see below.

If ΣK and DK are known, the matrix M∗ is not uniquely defined, except for d = 1
(see for example [8]). For d = 1, (1.7) easily gives the resilience since it becomes a
scalar equation:

ρ∗ =
K(B(x∗) +D(x∗))

2ΣK
+O

(
1√
K

)
.

Remark 1.2. The quantity K(B(x∗) +D(x∗)) = 2KB(x∗) is the average total jump
rate KνK(B(n/K)+D(n/K)) up to O(1) terms. This follows from a Taylor expansion
of B(n/K) +D(n/K) around x∗, Theorem 2.6 and Proposition 2.7.

In the case d = 1, an estimator for DK is

SD(T,K) =
1

T

(
number of births up to time T

)
. (1.8)

In Section 5, we establish a bound for∣∣En[SD(T,K)
]
−KB(x∗)

∣∣
which depends on T,K and ‖n‖1, and is small in the relevant regimes. The estimator
we use for ΣK is

SΣ(T,K) =
1

T

∫ T

0

(
NK(s)− Sµ(T,K)

)(
NK(s)− Sµ(T,K)

)
ds. (1.9)

Again, we can control how well this estimator approximates ΣK . This provides another
estimator for ρ∗, with a controlled error.

1.4 Standing assumptions

The two (regular) vector fields B(x) and D(x) are given in Rd+. We assume that
their components have second partial derivatives which are polynomially bounded.
Obviously, we suppose that Bj(x) ≥ 0 and Dj(x) ≥ 0 for all j = 1, . . . , d and x ∈ Rd+.
A dynamical system in Rd+ is defined by the vector field X(x) = B(x)−D(x), namely

dx

dt
= B(x)−D(x) = X(x).

For x ∈ Rd+, we use the following standard norms:

‖x‖1 =

d∑
j=1

xj , ‖x‖2 =

√√√√ d∑
j=1

x2
j .

We now state our hypotheses.

H.1 The vectors fields B and D vanish only at 0.

H.2 There exists x∗ belonging to the interior of Rd+ (fixed point of X ) such that

B(x∗)−D(x∗) = X(x∗) = 0 .
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H.3 Attracting fixed point: there exist β > 0 and R > 0 such that ‖x∗‖2 < R, and
for all x ∈ Rd+ with ‖x‖2 < R,

〈X(x), (x− x∗)〉 ≤ −β ‖x‖2 ‖x− x∗‖22 . (1.10)

H.4 The fixed point 0 of the vector field X is repelling (locally unstable). Moreover,
on the boundary of Rd+, the vector field X points toward the interior (except at
0).

H.5 Define

B̂(y) = sup
‖x‖1=y

d∑
j=1

Bj(x) , D̂(y) = inf
‖x‖1=y

d∑
j=1

Dj(x)

and for y > 0, let

F (y) =
B̂(y)

D̂(y)
.

We assume that there exists 0 < L < R such that supy>L F (y) < 1/2 and
limy→+∞ F (y) = 0.

H.6 There exists y0 > 0 such that
∫∞
y0
D̂(y)−1 dy < +∞ and y 7→ D̂(y) is increasing

on [y0,+∞[.

H.7 There exists ξ > 0 such that

inf
x∈Rd+

inf
1≤ j≤ d

Dj(x)

sup1≤ `≤ d x`
> ξ. (H7)

H.8 Finally, we assume that
inf

1≤ j≤ d
∂xjBj(0) > 0. (H8)

(By ∂xj we mean the partial derivative with respect to xj .)

Assumptions H.5 and H.6 ensure that the time for “coming down from infinity”
for the dynamical system is finite. Together with H.3, this also implies that x∗ is a
globally attracting stable fixed point. More comments on these assumptions can be
found in [3].

1.5 A numerical example

We consider the two-dimensional vector fields

B(x1, x2) =

(
a x1 + b x2

e x1 + f x2

)
and

D(x1, x2) =

(
x1

(
c x1 + d x2

)
x2

(
g x1 + hx2

))
where all the coefficients are positive. This is a model of competition between two
species of Lotka-Volterra type. We have taken

a = 0.4569, b = 0.2959, e = 0.5920, f = 0.6449

c = 0.9263, d = 0.9157, g = 0.9971, h = 0.2905.
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Assumptions H.1 and H.4 are easily verified numerically. Assumptions H.5 and H.6
are satisfied because B̂(y) ≤ (a + b + e + f)y and D̂(y) ≥ (c ∧ h)y2/4. Concerning
H.2, we checked numerically that there is a unique fixed point inside the positive
quadrant, namely x∗ = (0.3567, 1.4855). It remains to check H.3, namely that

−β = sup{R(x) : x ∈ R2
+} < 0

where

R(x) =
〈X(x), (x− x∗)〉
‖x‖2‖x− x∗‖22

.

We first checked that the numerator N(x) = 〈X(x), (x−x∗)〉 is negative and vanishes
only at 0 and x∗. It is easy to check that N(x) < 0 for ‖x‖2 large enough. We have
verified numerically that the only solutions of the equations ∂x1

N = ∂x2
N = 0 in the

closed positive quadrant are x∗ and z = (0.1739, 0.4361), with N(z) = −0.2852, thus
this is a negative local minimum. This implies that N(x) < 0 in the closed positive
quadrant, except at 0 and x∗ where it vanishes. This implies that R ≤ 0 in the closed
positive quadrant. It is easy to check that

lim sup
‖x‖2→+∞

R(x) ≤ −(c ∧ h)/
√

2.

This implies that R < 0 except perhaps at 0 and x∗. Near 0 we have by Taylor
expansion

R(x) = −〈DX(0)x, x∗〉
‖x‖2‖x∗‖22

(
1 +O(‖x‖2)

)
= −〈x,D

ᵀB(0)x∗〉
‖x‖2‖x∗‖22

(
1 +O(‖x‖2)

)
and, since the vector DᵀB(0)x∗ has positive components, there exists % > 0 such that
for all x ∈ R2

+

〈x,DᵀB(0)x∗〉 ≥ % ‖x‖2.

If y = x− x∗ is small, we have by Taylor expansion (since X(x∗) = 0)

R(x) =
〈M∗y, y〉
‖x∗‖2 ‖y‖22

(
1 +O(‖y‖2)

)
=

〈
y, 1

2

(
M∗ᵀ +M∗

)
y
)〉

‖x∗‖2 ‖y‖22

(
1 +O(‖y‖2)

)
.

One can check numerically that the two real eigenvalues of the symmetric matrix

M∗ᵀ +M∗

are strictly negative, the largest being numerically equal to −0.786. This completes
the verification of hypothesis H.3.

Illustrating standard experiments on populations of cells or bacteria, we have
chosen K = 105 and simulated a unique realization of the process with T = 100 which
contains about 5.107 jumps (cell divisions or deaths). The resilience computed from
the vector field is numerically equal to 0.547. We have computed ρ∗emp(100, 1, 105).
The relative error, that is |ρ∗emp(100, 1, 105)− ρ∗|/ρ∗, is equal to 0.022.

Note that the situation we are interested in is completely different from standard
statistical approach where one can repeat the experiments.
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1.6 Organization of the paper

In Section 2, we will study the time evolution of the moments of the process and we will
prove moment estimates for the qsd. In Section 3, we will obtain control on the large
time behavior of averages for the process. In Section 4, we will prove the relations
(1.2) and (1.7). In Section 5, we will apply these relations to obtain approximate
expressions of the engineering resilience in terms of the covariance matrices for the
qsd. From the results of Section 3, we will deduce variance bounds for the estimators
(1.4), (1.5) and (1.8), starting either in the qsd or from an initial condition of order
K.

2 Time evolution of moments of the process and
moments of the QSD

2.1 Time evolution of moments starting from anywhere

The generator LK of the birth and death process NK = (NK(t), t ≥ 0) is defined by

LKf(n) = (2.1)

K

d∑
`=1

B`

( n
K

) (
f(n+ e(`))− f(n)

)
+K

d∑
`=1

D`

( n
K

) (
f(n− e(`))− f(n)

)
where e(`) = (0, . . . , 0, 1, 0, . . . , 0), the 1 being at the `-th position, and f : Zd+ → R

is a function with bounded support. We denote by (SKt , t ≥ 0) the semigroup of the
process NK acting on bounded functions, that is, for f : Zd+ → R, we have

SKt f(n) = E
[
f(NK(t))

∣∣NK(0) = n
]

= En[f(NK(t))] .

For A > 1, let
TA = inf{t > 0 : ‖NK(t)‖1 > A}. (2.2)

Notice that we will use either ‖·‖1 or ‖·‖2. They are of course equivalent but one can
be more convenient than the other, depending on the context. We have the following
result.

Theorem 2.1. There exists a constant C(2.1) > 0 such that for K large enough, the
operator group SK1 extends to exponentially bounded functions and

sup
n∈Zd+

SK1

(
e‖·‖1

)
(n) ≤ eC(2.1)K .

Proof. Introduce the function GK defined on [y0,+∞) by

GK(y) =

∫ ∞
y

dz

D̂(z)
+

1

K D̂(y)
.

Assumption H.6 implies that GK is well defined and decreasing on [y0,+∞). We can
define its inverse function on (0, s0] for s0 > 0 small enough (independent of K). Take

0 < η ≤ s0 ∧ 1− e−1

4 . Then there is a unique positive function yK defined by

yK(s) = G−1
K (ηs), s ∈ (0, 1]. (2.3)
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Note that yK(s) ≥ y0 and lims↓0 yK(s) = +∞. Let

ϕK(s) =
e−KyK(s)

KD̂(yK(s))
.

Note that
lim
s↓0

ϕK(s) = 0.

Using the Lipschitz continuity of D̂ (and then its differentiability almost everywhere)
and (2.3), we obtain

ϕ̇K(s) =
dϕK
ds

(s) = −

(
e−KyK(s)

D̂(yK(s))
+

e−KyK(s)D̂′(yK(s))

KD̂(yK(s))2

)
dyK
ds

(s) = η e−KyK(s).

We now consider the function

fK(t, n) = ϕK(t) e‖n‖1

to which we apply Itô’s formula at time t ∧ TA. We get

En

[
ϕK
(
t ∧ TA

)
e‖N

K(t∧TA)‖1
]

= En

[∫ t∧TA

0

(
∂tfK + LKfK

)
(s,NK(s))ds

]
.

We have

∂tfK(t, n) + LKfK(t, n) = ϕ̇K(t) e‖n‖1

+KϕK(t) e‖n‖1

(
(e−1)

d∑
`=1

B`

( n
K

)
+ (e−1−1)

d∑
`=1

D`

( n
K

))
.

Note that

∂tfK(t, n) + LKfK(t, n)

≤ e‖n‖1
(
ϕ̇K(t) +KϕK(t)

(
(e−1) B̂

(
‖n‖1
K

)
− (1− e−1) D̂

(
‖n‖1
K

)))
≤ e‖n‖1

(
ϕ̇K(t)−KϕK(t)(1− e−1) D̂

(
‖n‖1
K

)(
1− eF

(
‖n‖1
K

)))
.

It follows from H.5 that there exists a number ζ > y0 such that if y > ζ, then
F (y) < (2e)−1.
If ‖n‖1 < ζK we get∣∣∂tfK(t, n) + LKfK(t, n)

∣∣ ≤ O(1) eζK
(
ϕ̇K(t) +KϕK(t)

)
.

For ‖n‖1 ≥ K(ζ ∨ yK(t)) we have

∂tfK(t, n) + LKfK(t, n) ≤ 0

since ϕ̇K(t) = ηKD̂(yK(t))ϕK(t) and D̂(‖n‖1/K) ≥ D̂(yK(t)).
Finally, for ζK ≤ ‖n‖1 < KyK(t) we get∣∣∂tfK(t, n) + LKfK(t, n)

∣∣ ≤ eKyK(t) ϕ̇K(t) = η.

We deduce that
En

[
ϕK
(
1 ∧ TA

)
e‖N

K(1∧TA)‖1
]
≤ O(1) eζK .

The result follows by letting A tend to infinity and by monotonicity.
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We deduce moment estimates for the process which are uniform in the starting
state, and in time, for times larger than 1.

Corollary 2.2. For all t ≥ 1, the semi-group (St) maps functions of polynomially
bounded modulus in bounded functions. In particular, for all q ∈ N, we have

sup
t≥1

sup
n∈Zd+

En
[
‖NK(t)‖q1

]
≤ qq e−qKq eC(2.1) . (2.4)

Proof. We have

En
[
‖NK(1)‖q1

]
= Kq En

[
‖NK(1)‖q1

Kq
e−
‖NK(1)‖1

K e
‖NK(1)‖1

K

]
≤ Kqqq e−q En

[
e
‖NK(1)‖1

K

]
since for all x ≥ 0, xq e−x ≤ qq e−q. Inequality (2.4) follows from Hölder’s inequality
and Theorem 2.1. Let us now consider t > 1. From the Markov property and by
using the previous inequality, we deduce that

En
[∥∥NK(t)

∥∥q
1

]
= En

[
ENK(t−1)

[∥∥NK(1)
∥∥q

1

] ]
≤ qq e−qKq eC(2.1) .

The proof is finished.

For times t less than 1, the moment estimates depends on the initial state.

Proposition 2.3. For each integer q, there exists a constant cq > 0 such that for all
K > 1, t ≥ 0 and n ∈ Zd+

En
[∥∥NK(t)

∥∥q
2

]
≤ cqKq + ‖n‖q2 1{t<1} .

Proof. We have only to study the case t < 1, the other case being given in (2.4).
We prove the result for q even, namely q = 2q′. The result for q odd follows from
Cauchy-Schwarz inequality. Letting

fq′(n) = ‖n‖2q′

2

we have

LKfq′(n) = K

d∑
`=1

B`

( n
K

)((
‖n‖22 + 2n` + 1

)q′ − ‖n‖2q′

2

))
+K

d∑
`=1

D`

( n
K

)((
‖n‖22 − 2n` + 1

)q′ − ‖n‖2q′

2

))
.

Using H.5 and the equivalence of the norms, we see that there exists a constant
cq′ > 0 such that if ‖n‖2 > cq′K

LKfq′(n) < 0.

Moreover, we can take cq′ large enough such that for all n

LKfq′(n) ≤ cq′K2q′ .
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Applying Itô’s formula to fq′ we get as in the proof of Theorem 2.1

En

[
‖NK(t ∧ TA)‖2q′

2

]
≤ ‖n‖2q′

2 + En

[∫ t∧TA

0

cq′K
2q′ ds

]
≤ ‖n‖2q′

2 + t cq′K
2q′ .

(Recall that TA is defined in (2.2).) The result follows by letting A tend to infinity.

2.2 Moments estimates for the qsd

Let us first recall (cf. [3]) that, under the assumptions of Section 1.4, there exists a
unique qsd νK with support Zd+\{0}. Further, starting from the qsd, the extinction
time is distributed according to an exponential law with parameter λ0(K) satisfying
(Theorem 3.2 in [3])

e−d1K ≤ λ0(K) ≤ e−d2K (2.5)

where d1 > d2 > 0 are constants independent of K. Recall also that for all t > 0,

PνK
(
NK(t) ∈ · , T0 > t

)
= e−λ0(K)t νK

(
·) (2.6)

where
T0 = inf{t > 0 : NK(t) = 0}.

Finally, for all f in the domain of the generator

L †KνK(f) = νK(LKf) = −λ0(K) νK(f) (2.7)

with the notation

νK(f) =

∫
f(n)dνK(n).

We use several notations from [3] that we now recall. Let

n∗ = bKx∗c.

For x ∈ Rd+ and r > 0, B(x, r) is the ball of center x and radius r. We consider the
sets

∆ = B
(
n∗, ρ(4.2)

√
K
)
, D = B

(
n∗,

minj n
∗
j

2

)
∩Zd+ (2.8)

where ρ(4.2) > 0 is a constant defined in [3, Corollary 4.2]. Note that since n∗ is of
order K, we have ∆ ⊂ D for K large enough. The first entrance time in ∆ (resp. D)
will be denoted by T∆ (resp. TD).

We first prove that the support of the qsd is, for large K, almost included in D.
(This will be important to control moments later on.)

Proposition 2.4. There exists a constant c(2.4) > 0 such that for all K large enough

νK
(
Dc
)
≤ e−c(2.4)K .

Proof. We first recall two results from [3]. From Lemma 5.1 in [3], there exist γ > 0
and δ ∈ (0, 1) such that for all K large enough

sup
n∈∆c\0

Pn
(
T∆ > γ logK,T0 > T∆

)
≤ δ. (2.9)
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By Sublemma 5.8 in [3], there exist two constants C > 0 and c > 0 such that for all
K large enough, and for all t > 0

sup
n∈∆

Pn
(
TDc < t

)
≤ C

(
1 + t

)
e−cK . (2.10)

Now, for q ∈ N\{0} define
tq = qγ logK.

We will first estimate supnPn
(
NK(tq) ∈ Dc, T0 > tq

)
. Note that NK(tq) ∈ Dc implies

TDc ≤ tq. We distinguish two cases according to whether n ∈ ∆ or n ∈ ∆c\{0}.
Let n ∈ ∆. It follows from (2.10) that

Pn (NK(tq) ∈ Dc) ≤ C
(
1 + tq

)
e−cK .

Now let n ∈ ∆c\{0}. We have

Pn
(
NK(tq) ∈ Dc\{0}

)
=

Pn
(
NK(tq) ∈ Dc\{0}, T∆ ≤ tq

)
+ Pn

(
NK(tq) ∈ Dc\{0}, T∆ > tq

)
.

Using the strong Markov property at time T∆ and (2.10) we obtain

Pn
(
NK(tq) ∈ Dc\{0}, T∆ ≤ tq

)
= En

[
1{T∆≤ tq}PNK(T∆) (NK(tq − T∆) ∈ Dc\{0})

]
≤ C(1 + tq) e−cK .

We bound the second term recursively in q.

Pn
(
T∆ > tq, T0 > T∆

)
= En

[
1{T∆>tq−1}1{T0>T∆}PNK(tq−1)

(
T∆ > t1, T0 > T∆

)]
≤ δ sup

n∈∆c\{0}
Pn
(
T∆ > tq−1, T0 > T∆

)
where we used the strong Markov property at time tq−1 and (2.9). This implies

sup
n∈∆c\{0}

Pn
(
NK(tq)∈Dc\{0}, T∆> tq

)
≤ sup
n∈∆c\{0}

Pn
(
T∆ > tq, T0> T∆

)
≤ δq.

Therefore
sup
n 6=0

Pn
(
NK(tq) ∈ Dc\{0}

)
≤ C

(
1 + tq

)
e−cK + δq.

Taking q = bKc we conclude that there exists a constant c′ > 0 such that for K large
enough

sup
n 6=0

Pn
(
NK(tbKc) ∈ Dc\{0}

)
≤ e−c

′K .

This implies
PνK
(
NK(tbKc) ∈ Dc, T0 > tbKc

)
≤ e−c

′K

but by (2.6)

PνK
(
NK(tbKc) ∈ Dc, T0 > tbKc

)
= e−λ0(K)tbKc νK

(
Dc
)

and the result follows from (2.5).
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Corollary 2.5. For each q ∈ N, there exists Cq > 0 such that for all K large enough∫
Dc
‖n‖q1 dνK(n) ≤ CqKq e−c(2.4)K and

∫
‖n‖q1 dνK(n) ≤ CqKq.

Proof. It follows at once from (2.6) (at time 1) and Theorem 2.1 that∫
e‖n‖1 dνK(n) ≤ eλ0(K) eC(2.1)K ≤ 2 eC(2.1)K (2.11)

for K large enough. We have∫
Dc
‖n‖q1 dνK(n) = Kq

∫
Dc

(
‖n‖1
K

)q
e−
‖n‖1
K e

‖n‖1
K dνK(n)

≤ Kqqq e−q
∫

e
‖n‖1
K 1Dc(n)dνK(n).

We use Hölder inequality to get∫
Dc
‖n‖q1 dνK(n) ≤ Kqqq e−q

(∫
e‖n‖1 dνK(n)

) 1
K
(∫

1Dc(n)dνK(n)

)1− 1
K

.

The first result follows from (2.11) and Proposition 2.4. The second estimate follows
from the first one, and the bound supn∈D ‖n‖1 ≤ O(1)K.

We now estimate centered moments.

Theorem 2.6. For each q ∈ Z+, there exists Cq > 0 such that for all K large enough∫
‖n−Kx∗‖2q2 dνK(n) ≤ CqKq.

Proof. The proof consists in a recursion over q. The bound is trivial for q = 0. For
q ∈ N define the function

fq(n) = ‖n−Kx∗‖2q2 1D1
(n)

where
D1 = B

(
Kx∗,

2K

3
min
j
x∗j

)
∩Zd+.

Recall that e(j) is the vector with 1 at the jth coordinate and 0 elsewhere. From the
trivial identity

‖n−Kx∗ ± e(j)‖22 = ‖n−Kx∗‖22 ± 2(nj −Kx∗j) + 1 (2.12)

it follows that∣∣‖n−Kx∗ ± e(j)‖2q2 − ‖n−Kx∗‖2q2 ± 2q (nj −Kx∗j)‖n−Kx∗‖
2q−2
2

∣∣
≤ 3q2q (1 + ‖n−Kx∗‖2q−2

2 ).

Indeed, applying the trinomial expansion to (2.12), we obtain∣∣‖n−Kx∗ ± e(j)‖2q2 − ‖n−Kx∗‖2q2 ± 2q(nj −Kx∗j)‖n−Kx∗‖
2q−2
2

∣∣
≤ q!

∑
p1≤q−2

p1+p2+p3=q

‖n−Kx∗‖2p1

2 (2‖n−Kx∗‖2)p2

p1! p2! p3!
+ q ‖n−Kx∗‖2q−2

2 .
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Observe that if p1 ≤ q − 2, p1 + p2 + p3 = q and then 2p1 + p2 = p1 + q − p3 ≤
2q − 2− p3 ≤ 2q − 2, since p3 ≥ 0. This implies that

‖n−Kx∗‖2p1

2 (2‖n−Kx∗‖2)p2 ≤ 2q(1 + ‖n−Kx∗‖2q−2
2 ).

It follows that

LKfq(n) = 2qK

d∑
j=1

Xj

( n
K

)
(nj −Kx∗j )‖n−Kx∗‖

2q−2
2 1D1

(n) +Rq(n) (2.13)

where

|Rq(n)| ≤ O(1)
(
K6q(1 + ‖n−Kx∗‖2q−2

2 )1D1
(n) + qK2q+11Dc(n)

)
(2.14)

To get this bound, we used the fact that

sup
j=1,...,d

|1D1
(n± e(j))− 1D1

(n)| ≤ 1Dc(n).

Using (1.10) we get

K

d∑
j=1

Xj

( n
K

)
(nj −Kx∗j)‖n−Kx∗‖

2q−2
2 1D1

(n)

≤ −β′‖n−Kx∗‖2q2 1D1(n) = −β′fq(n) (2.15)

where

β′ =
β

3
min
j
x∗j .

Integrating the equation (2.13) with respect to νK and using (2.7), (2.14), (2.15) and
Proposition 2.4, we obtain

(2qβ′ − λ0(K)) νK(fq) ≤ O(1)
(
K6q(1 + νK(fq−1)) + 6qK2q+1 e−c(2.4)K

)
.

Observing that νK(f0) ≤ 1, it follows by recursion over q that, for each integer q, there
exists C ′q > 0 such that, for all K large enough, νK(fq) ≤ C ′qKq. Finally we have∫

‖n−Kx∗‖2q2 dνK(n) = νK(fq) +

∫
‖n−Kx∗‖2q2 1Dc1(n)dνK(n)

≤ νK(fq) +

∫
‖n−Kx∗‖2q−2

2 1Dc(n)dνK(n)

since D ⊂ D1. The result follows using the previous estimate and Corollary 2.5.

The next result gives a more precise estimate for the average of n (instead of an
error of order

√
K ).

Proposition 2.7. We have
µK −Kx∗ = O(1)

where µK is defined in (1.1). Moreover, since ‖n∗ −Kx∗‖2 = O(1), we have

µK − n∗ = O(1) . (2.16)
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Proof. Define the functions

gj(n) = 〈n−Kx∗, e(j)〉, 1 ≤ j ≤ d.

By Taylor expansion and the polynomial bounds on B and D we get

LKgj(n) = K
(
Bj(n/K)−Dj(n/K)

)
=

d∑
m=1

(
∂mBj(x

∗)− ∂mDj(x
∗)
)
gm(n)1D(n) +O(1)

‖n−Kx∗‖22
K

1D(n)

+ O(1) (Kp + ‖n‖p2 )1Dc(n)

for some positive integer p independent of K. Using Cauchy-Schwarz inequality,
identity (2.7), Corollary 2.5 and Proposition 2.4 we get∫ (

1 + ‖n‖p2
)
1Dc(n)dνK(n) = o(1).

From Proposition 2.4, Theorem 2.6 and (2.5) we get

d∑
m=1

(
∂mBj(x

∗)− ∂mDj(x
∗)
)
νK(gm) = O(1).

The result follows from the invertibility of the d× d matrix (∂mBj(x
∗)− ∂mDj(x

∗))
which follows from H.3. The other inequalities follow immediately.

Corollary 2.8. For all K > 0, we have

‖ΣK‖ ≤
∫ ∥∥n− µK∥∥2

2
dνK(n) =

∫
‖n−Kx∗‖22 dνK(n) +O(1) ≤ O(1)K.

Proof. Combine Proposition 2.7 and Theorem 2.6.

We now show that ΣK is indeed of order K.

Proposition 2.9. There exist two strictly positive constants c(2.9) and c′(2.9) such that

for all K large enough, the matrix ΣK satisfies

ΣK ≥ c(2.9)K Id

for the order among positive definite matrices, Id being the identity matrix, and, in
particular, ∫ ∥∥n− µK∥∥2

2
dνK(n) ≥ c′(2.9)K.

Proof. We denote by Σ̃K the positive definite matrix

Σ̃K

p,q =

∫ (
np − n∗p

)(
nq − n∗q

)
dνK(n) .

By (2.16) we have ∥∥Σ̃K − ΣK
∥∥

2
= O(1). (2.17)
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Let v be a unit vector in Rd. We have

〈 v, Σ̃Kv〉 =

∫
〈 v, (n− n∗)〉2 dνK(n) ≥

∫
∆
〈 v, (n− n∗)〉2 dνK(n).

From Lemma 5.3 in [3] there exists a constant c > 0 such that for all K large enough
and all n ∈ ∆,

νK({n}) ≥ cU∆({n})
where U∆ is the uniform distribution on ∆. Therefore

〈 v, Σ̃K v〉 ≥ c
∫

∆

〈 v, (n− n∗)〉2 dU∆(n)

and we get
〈 v, Σ̃Kv〉 ≥ c(2.9)K‖v‖22.

The result follows.

3 Controlling time averages of the estimators

For T > 0, we define the time average of a function f : Zd+ → R by

Sf (T,K) =
1

T

∫ T

0

f(NK(s))ds. (3.1)

The goal of this section is to obtain a control of |Sf (T,K)−νK(f)| for a suitable class
of functions.

We recall the following result from [3, Theorem 3.1].

Theorem 3.1 ([3]). There exist a > 0, K0 > 1 such that, for all t ≥ 0 and for all
K ≥ K0, we have

sup
n∈Zd+\{0}

∥∥Pn(NK(t) ∈ · , t < T0)− Pn(t < T0) νK(·)
∥∥

TV
≤ 2 e−

at
logK . (3.2)

It is also proved in [3] that, for a time much larger than logK and much smaller
than the extinction time (which is of order exp(Θ(1)K)), the law of the process at
time t is close to the qsd. The accuracy of the approximation depends on the initial
condition. This suggests to study the distance between the law of the process at time
t and the qsd as a function of the initial condition, K and t. This will result from
(3.2) if Pn

(
T0 ≤ t

)
can be estimated. In fact we prove a more general result.

Lemma 3.2. For γ ≥ 0, define τγ = inf
{
t ≥ 0 : ‖NK(t)‖1 ≤ γK

}
. There exist δ > 0,

α > 0 and C > 0 such that for all n ∈ Zd+, K ≥ 1, 0 ≤ γ ≤ 1 ∧ α
‖x∗‖1

and t ≥ 0, we

have

Pn
(
τγ ≤ t

)
≤ C

(
exp

(
−δ
(
ζ

(
‖n‖1
K
∧ α

)
− γ‖x∗‖1

)
K

)

+ t exp (−δ (α− γ‖x∗‖1)K)

)
(3.3)

where
ζ = min

1≤j≤d
x∗j > 0. (3.4)
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Taking γ = 0 in (3.3), we get

Pn
(
T0 ≤ t

)
≤ C

(
exp

(
−δ
(
ζ
‖n‖1

K
∧ α

)
K

)
+ t exp(−α δK)

)
. (3.5)

Proof. It follows from H.1 and H.3 (using Taylor’s expansion of X(x) near 0) that
there exists α0 ∈ (0, R) (where R was introduced in Assumption H.3) such that for
all x ∈ Rd+ satisfying ‖x‖2 ≤ α0 we have

〈X(x), x∗〉 ≥ β‖x∗‖2 ‖x‖2 − 2β ‖x‖2〈x, x∗〉+ β‖x‖32 + 〈X(x), x〉

≥ β‖x∗‖2 ‖x‖2 +O(1)‖x‖22 ≥
β ‖x∗‖22

2
‖x‖2. (3.6)

For α ∈ (0, α0] and δ > 0 to be chosen later on, we define

ψ(n) = e−δ(〈n,x
∗〉∧αK) .

It is easy to verify that if 〈n, x∗〉 > αK + ‖x∗‖2 we have

LKψ(n) = 0.

If αK − ‖x∗‖2 ≤ 〈n, x∗〉 ≤ αK + ‖x∗‖2 we have∣∣LKψ(n)
∣∣ ≤ O(K) e−αδK .

For 〈n, x∗〉 ≤ αK − ‖x∗‖2, we have ‖n‖1 ≤ 〈n, x∗〉/ζ ≤ αK/ζ, where ζ is defined in
(3.4), and

LKψ(n) = Kg
(
δ,
n

K

)
e−δ〈n,x

∗〉

where the function g is defined by

g(s, x) =

d∑
j=1

Bj(x)
(

e−sx
∗
j −1

)
+

d∑
j=1

Dj(x)
(

esx
∗
j −1

)
.

We have

g(s, x) = −s
d∑
j=1

(
Bj(x)−Dj(x)

)
x∗j

+

d∑
j=1

Bj(x)
(

e−sx
∗
j −1 + sx∗j

)
+

d∑
j=1

Dj(x)
(

esx
∗
j −1− sx∗j

)
.

From the differentiability of the vector fields B and D and using (3.6), it follows that
there exists a constant Γ > 0 such that, for all 0 ≤ s ≤ 1 and ‖x‖2 < α0 we have

g(s, x) = −s 〈X(x) , x∗〉+O(1) s2 ‖x‖2

≤ −s β ‖x
∗‖22

2
‖x‖2 + Γs2 ‖x‖2.

Therefore we can choose δ > 0 and 0 < α < α0 such that

sup
‖x‖2≤α

g(δ, x) < 0.
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Therefore, for all n, we have

LKψ(n) ≤ O(1)K e−αδK .

For γ̃ > 0 (independent of K), we define

τ̃γ̃ = inf
{
t ≥ 0 : 〈NK(t), x∗〉 ≤ γ̃K

}
.

We apply Ito’s formula to ψ to get

En
[
ψ
(
NK(t ∧ τ̃γ̃)

)]
= ψ(n) + En

[∫ t∧τ̃γ̃

0

LKψ(NK(s))ds

]
.

We have
γ̃K − ζ ≤ 〈NK(τ̃γ̃), x∗〉 ≤ γ̃K

hence
ψ(NK(τ̃γ̃)) ≥ e−δ(γ̃∧α)K e−δζ .

Then
En
[
ψ
(
NK(t ∧ τ̃γ̃)

)]
≥ Pn

(
τ̃γ̃ ≤ t) e−δ (γ̃∧α)K e−δζ .

Therefore

Pn
(
τ̃γ̃ ≤ t) e−δ (γ̃∧α)K e−δζ ≤ e−δ(〈n,x

∗〉∧αK) + tO(1)K e−αδK .

To conclude, observe that

Pn
(
τγ ≤ t) ≤ Pn

(
τ̃γ̃ ≤ t)

for γ̃ = γ ‖x∗‖1 because for all n ∈ Zd+,

0 < ζ ‖n‖1 ≤ 〈n, x∗〉 ≤ ‖n‖1 sup
j=1,...,d

x∗j ≤ ‖n‖1‖x∗‖1

and ‖NK(τγ)‖1 ≤ γK.

We have the following result.

Proposition 3.3. For all bounded functions h : Zd+ → R, t ≥ 0, n ∈ Zd+, and
K > K0, we have∣∣En [h(NK(t)

)]
− νK(h)

∣∣ ≤ O(1)‖h‖∞
(

e
−δ
(
ζ
‖n‖1
K ∧α

)
K

+ t e−αδK + e−
at

logK

)
where α, δ and ζ are defined in Lemma 3.2, and a and K0 are defined in Theorem
3.1.

Proof. From the bound (3.2) we get∣∣∣En [h(NK(t)
)
1{T0>t}

]
− Pn(t < T0) νK(h)

∣∣∣ ≤ O(1) ‖h‖∞ e−
at

logK .

This implies∣∣En [h(NK(t)
)]
− νK(h)

∣∣
≤
∣∣∣En [h(NK(t)

)
1{T0≤t}

]∣∣∣+ Pn(t ≥ T0) νK(h) +O(1) ‖h‖∞ e−
at

logK

≤ O(1) ‖h‖∞
(
Pn(t ≥ T0) + e−

at
logK

)
≤ O(1) ‖h‖∞

(
e
−δ
(
ζ
‖n‖1
K ∧α

)
K

+t e−αδK + e−
at

logK

)
using (3.5).
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We now extend Proposition 3.3 to more general functions. For q ∈ Z+, we define
the Banach space FK,q by

FK,q =

{
f : Zd+ → R : ‖f‖K,q := sup

n 6=0

|f(n)|
Kq + ‖n‖q2

< +∞

}
. (3.7)

We have the following result for time-averages of functions in FK .

Theorem 3.4. For all K > K0, f ∈ FK,q, T > 0, and n ∈ Zd+, we have∣∣En[Sf (T,K)
]
− νK(f)

∣∣ ≤ O(1) ‖f‖K,q (Kq + ‖n‖q2)

×
(

1

T
+ e
−δ
(
ζ
‖n‖1
K ∧α

)
K

+T e−αδK +
logK

aT
+
(
1− e−λ0(K)

) 1
2

)
where α, δ and ζ are defined in Lemma 3.2, and λ0(K) is defined in (2.5).

Remark 3.1. One can check that if one modifies slightly the definition of the time
average (3.1) by integrating from 1 to T + 1, then one can remove the term ‖n‖q2 from
the previous estimate.

Proof. For f ∈ FK,q, Corollary 2.5 gives∣∣νK(f)
∣∣ ≤ O(1)Kq‖f‖K,q.

By Proposition 2.3 we have∣∣∣∣∣ 1

T
En

[∫ 1∧T

0

f
(
NK(s)

)
ds

]∣∣∣∣∣ ≤ O(1) ‖f‖K,q
Kq + ‖n‖q2

T
.

Hence for T ≤ 1 we get∣∣En[Sf (T,K)
]
− νK(f)

∣∣ ≤ O(1) ‖f‖K,q
(
Kq + ‖n‖q2

)( 1

T
+ 1

)
.

For T > 1, we have by the Markov property that

1

T
En

[∫ T

1

f
(
NK(s)

)
ds

]
=

1

T

∫ T

1

En
[
ENK(s−1)

[
f
(
NK(1)

)]]
ds

=
1

T

∫ T−1

0

En
[
g
(
NK(s)

)]
ds

where we set
g(m) = Em

[
f
(
NK(1)

)]
. (3.8)

By Corollary 2.2, the function g is bounded and

‖g‖∞ ≤ O(1) ‖f‖K,qKq. (3.9)

Applying Proposition 3.3 to g thus gives∣∣En[g(NK(s)
)]
− νK(g)

∣∣
≤ O(1) ‖f‖K,qKq

(
e
−δ
(
ζ
‖n‖1
K ∧α

)
K

+s e−αδK + e−
as

logK

)
.
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Integrating over s ∈ [0, T − 1] yields∣∣∣∣∣ 1

T

∫ T−1

0

En
[
g
(
NK(s)

)]
ds− T − 1

T
νK(g)

∣∣∣∣∣
≤ O(1) ‖f‖K,q

Kq

T

(
(T − 1) e

−δ
(
ζ
‖n‖1
K ∧α

)
K

+ (T − 1)2 e−αδK +
logK

a

)
.

Using Lemma 3.5 (stated and proved right after this proof), we finally obtain∣∣En[Sf (T,K)
]
− νK(f)

∣∣
≤ O(1) ‖f‖K,q

Kq + ‖n‖q2
T

+O(1) ‖f‖K,q
Kq

T

(
(T − 1) e

−δ
(
ζ
‖n‖1
K ∧α

)
K

+ (T − 1)2 e−αδK +
logK

a

)
+O(1) ‖f‖K,qKq

(
1− e−λ0(K)

) 1
2 +

1

T
νK(g) + νK(f)1{T≤1}

≤ O(1) ‖f‖K,q
(
Kq + ‖n‖q2

)( 1

T

(
2 +

logK

a

)
+ e
−δ
(
ζ
‖n‖1
K ∧α

)
K

+T e−δ αK

+
(
1− e−λ0(K)

) 1
2 + 1{T≤1}

)
.

This finishes the proof of the theorem.

We used the following lemma in the previous proof.

Lemma 3.5. For f ∈ FK,q and g defined in (3.8) we have

|νK(g)− νK(f)| ≤ O(1)Kq ‖f‖K,q
(
1− e−λ0(K)

) 1
2 .

Proof. We write

νK(g) = EνK
[
f(NK(1))1{T0>1}

]
+ EνK

[
f(NK(1))1{T0≤1}

]
.

Since νK is a qsd, it follows by Cauchy-Schwarz inequality that

|νK(g)− νK(f)|

≤
(
1− e−λ0(K)

)∣∣νK(f)
∣∣+
(
EνK
[
f2(NK(1))

]) 1
2

(
EνK
[
1{T0≤1}

]) 1
2

≤ O(1)Kq ‖f‖K,q
(
1− e−λ0(K)

) 1
2

where we used Corollaries 2.2 and 2.5 and the fact that under νK the law of T0 is
exponential with parameter λ0(K). The lemma is proved.

4 Fluctuation and correlation relations

4.1 Proof of Theorem 1.1

Let
Σ̃K

i,j(t) = EνK
[
(NK

i (t)− n∗i)(NK

j (0)− n∗j )
]
, i, j = 1, . . . , d.
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For 1 ≤ i ≤ d, let fi(n) = 〈n− n∗, e(i)〉. We have, since Bi(x
∗) = Di(x

∗), 1 ≤ i ≤ d,
and n∗/K − x∗ = O(1)/K,

d

dt
Σ̃K

i,j(t)

= EνK
[
LKfi(N

K(t))(NK

j (0)− n∗j)
]

= KEνK

[
Bi

(
NK(t)

K

)(
NK

j (0)− n∗j
)]
−KEνK

[
Di

(
NK(t)

K

)(
NK

j (0)− n∗j
)]

= KEνK

[(
Bi

(
NK(t)

K

)
−Bi

(
n∗

K

))(
NK

j (0)− n∗j
)]

−KEνK
[(
Di

(
NK(t)

K

)
−Di

(
n∗

K

))
(NK

j (0)− n∗j)
]

+O(1).

As in the previous proof, we split the integrals according to whether NK(t) ∈ D or
NK(t) ∈ Dc. Using Cauchy-Schwarz inequality, Corollary 2.5, and the fact that νK is
a qsd, the second contribution is exponentially small in K. In the first contribution,
we use Taylor expansion around x∗. The error terms are bounded by

O(1)

K
EνK
[
‖NK(t)−Kx∗‖22 ‖NK(0)−Kx∗‖2

]
+O(1).

Now we use Cauchy-Schwarz inequality, Theorem 2.6 and that νK is a qsd to obtain

d

dt
Σ̃K

i,j(t)

=

d∑
`=1

(∂`Bi(x
∗)− ∂`Di (x∗))EνK

[
(NK

` (t)− n∗`)(NK

j (0)− n∗j)
]
+O(

√
K)

=

d∑
`=1

M∗i,` Σ̃K

`,j(t) +O
(√
K
)
.

Since M∗ has a spectrum contained in the open left half-plane by H.3, we integrate
the equation

d

dt
Σ̃K(t) = M∗Σ̃K(t) +O

(√
K
)

from 0 to τ using the method of constant variation and obtain

Σ̃K(τ) = eτM
∗

Σ̃K(0) +O
(√
K
)
.

We arrive at the desired relation by using (2.16).

4.2 Proof of Theorem 1.2

Recall that

ΣK

p,q = ΣK

p,q(0) =

∫ (
np − µKp

)(
nq − µKq

)
dνK(n).

We will first do the proof with the following matrix instead of ΣK :

Σ̃K

i,j =

∫
(ni − n∗i)(nj − n∗j)dνK(n).

24



On the one hand we have by (2.7)〈
L †KνK , (ni − n∗i)(nj − n∗j)

〉
= −λ0(K)

〈
νK , (ni − n∗i)(nj − n∗j)

〉
.

By Theorem 2.6 and (2.5) the right-hand side of this equation is exponentially small
in K. On the other hand, using formula (2.1) we have〈

L †KνK , (ni − n∗i)(nj − n∗j)
〉

=
〈
νK ,LK

(
(ni − n∗i)(nj − n∗j)

)〉
= K

d∑
`=1

〈
νK , B`

( n
K

) (
(nj − n∗j) δi,` + (ni − n∗i) δj,` + δi,` δj,`

)〉
+K

d∑
`=1

〈
νK , D`

( n
K

) (
− (nj − n∗j)δi,` − (ni − n∗i)δj,` + δi,`δj,`

)〉
= K

〈
νK ,
(
Bi

( n
K

)
−Di

( n
K

))
(nj − n∗j)

〉
+K

〈
νK ,
(
Bj

( n
K

)
−Dj

( n
K

))
(ni − n∗i)

〉
+K

〈
νK , Bi

( n
K

)
+Di

( n
K

)〉
δi,j .

We split each integral by separating integration over D (defined in (2.8)) and Dc.
Inside Dc, we apply Corollary 2.5 and use the assumption that B and D are poly-
nomially bounded. Inside D, we use Taylor’s formula around x∗ for the functions
Bi(n/K)−Di(n/K), and Bi(n/K)+Di(n/K). We also use that Bi(x

∗) = Di(x
∗), 1 ≤

i ≤ d, and n∗/K − x∗ = O
(

1
K

)
. The error terms are then bounded by

O
(

1

K

)∫
‖n−Kx∗‖32 dνK(n) and O(1)

∫
‖n−Kx∗‖2 dνK(n)

respectively. Using Theorem 2.6, both bounds are of order
√
K. We obtain

d∑
`=1

M∗i,` Σ̃K

`,j +

d∑
`=1

M∗j,` Σ̃K

`,i + 2KBi (x∗) δi,j = O
(√
K
)

which can be written in the more compact form

M∗Σ̃K + Σ̃KM∗ᵀ + 2DK = O
(√
K
)

(4.1)

where DK is the diagonal matrix of averages birth (or death) rates. To finish the

proof, it remains to replace Σ̃K by ΣK . This is done by using (2.17).

Remark 4.1. Note that each term on the left hand side is of order K, see Corollary
2.8.

Remark 4.2. We will see in Appendix C that the qsd νK around n∗ is well approx-
imated at scale

√
K by a Gaussian distribution. Dividing out (4.1) by 2K and taking

the limit K →∞, we recover Relation (C.1), as expected from Theorem C.1.

5 Variance estimates for the estimators

It is straightforward to apply Theorem 3.4 to Sµ(T,K), SC(T, τ,K), SD(T,K), and
SΣ(T,K), which are defined respectively in (1.4), (1.5), (1.8), and (1.9). This gives the

25



bound (1.6) on Sµ(T,K) anounced in Section 1. The bounds for the other estimators
all have the same structure. We will not state them.

In this section we prove two variance estimates for any time average Sf (T,K)
with f ∈ FK,q. In the first one, one starts from anywhere in Zd+, while in the second
one the starting distribution is the qsd. Recall that SΣ(T,K) = SC(T, 0,K). We will
only give the proofs of these estimates for SΣ(T,K), since manipulating SC(T, τ,K)
is cumbersome but otherwise the proofs are the same.

Proposition 5.1. There exist strictly positive constants δ′, ζ ′, α′, θ′, C ′ and K0 ≥ 2
such that, for all K ≥ K0, f ∈ FK,q (see Definition 3.7), T ≥ 0, and n 6= 0, we have

En

[(
Sf (T,K)− νK(f)

)2
]
≤ C ′‖f‖2K,q(cq‖n‖

q
1 +Kq)

×
(
‖n‖q1 +Kq logK

T ∨ 1
+Kq e−δ

′
(
ζ′
‖n‖1
K ∧α′

)
K +TKq e−θ

′K

)
where cq was defined in Proposition 2.3.

One can use Chebyshev inequality to bound Pn
(∣∣Sf (T,K)− νK(f)

∣∣ > δ
)
, for any

δ > 0.
The proof of Proposition 5.1 is postponed to Appendix A. The previous estimate,

as well as all the estimates we will give below, have the same behaviour in their
dependence in K, n and T . They display the qualitative behaviour that we met
several times:

1. The bounds are not useful for K too small.

2. If K is large, the bounds are not useful if n is small (order one) because the
process can be absorbed at 0 in a time of order one with a sizeable probability.

3. Finally, for K large and n of order K, the time T must be large enough (poly-
nomial in K in our bounds) but not too large (less than an exponential in K
because the process can reach the origin with high probability in such large
times).

Integrating the previous estimate with respect to the qsd, we get the following control.

Corollary 5.2. There exist two positive constants C ′′ > 0 and θ′′ such that for all
K ≥ K0, for all f ∈ FK,q and for all T ≥ 0, we have

EνK

[(
Sf (T,K)− EνK

(
f
))2
]
≤ C ′′‖f‖2K,qK2q

×
(

(1 + C2q)(1 + cq)
logK

T ∨ 1
+ (1 + Cq)(1 + T ) e−θ

′′K

)
where K0 is as in the previous proposition, cq is defined in Proposition 2.3, and Cq
is defined in Corollary 2.5.

Observe that the previous inequality is only useful in the range 0 ≤ T ≤ eθ
′′K .

The proofs of the two previous estimates are postponed to Appendix A.
We now apply the previous results to our estimators.
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Proposition 5.3. For all 1 ≤ p ≤ d, we have

En

[(
S
µ

p (T,K)− µKp
)2
]
≤ O(1)(c1‖n‖1 +K)

×
(
‖n‖1 +K logK

T ∨ 1
+K e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K +TK e−θK

)
and

EνK

[∣∣Sµp (T,K)− µKp
∣∣2] ≤ O(1)K2

(
1 + logK

T ∨ 1
+ (1 + T ) e−θ

′′K

)
.

Proof. The proof follows by applying Proposition 5.1 and Corollary 5.2 to the func-
tions f(n) = nj , 1 ≤ j ≤ d, which belong to FK,1.

Proposition 5.4. For 1 ≤ p, p′ ≤ d and for all n 6= 0, we have

En

[(
SΣ

p,p′(T,K)− ΣK

p,p′
)2
]
≤ O(1)

(
c2‖n‖2

2 +K2
)2

×
(

1 + logK

T ∨ 1
+ e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K +T e−θK

)
and

EνK

[(
SΣ

p,p′(T,K)− ΣK

p,p′
)2
]
≤ O(1)K4

(
1 + logK

T ∨ 1
+ (1 + T ) e−θ

′′K

)
.

Proof. The proof follows by applying Proposition 5.1 and Corollary 5.2 to the func-
tions f(n) = npnp′ , 1 ≤ p, p′ ≤ d, which belong to FK,2.

Proposition 5.5. There exist positive constants C̃, θ̃, δ̃, ζ̃ and β̃ such that for all
K ≥ 2, T > 0 and 1 ≤ ` ≤ d,

En
[(
SD

` (T,K)−KB`(x
∗)
)2
]
≤

C̃
(
K +

A`(1 + Cq`)K

T
+K1−q`A`

T
(K + ‖n‖1)q`R`

+K2−2q`A2
`(K + ‖n‖1)2q`(R2

` + R`)
)

where

R` = (1 + cq`)

(
1 + logK

T
+ T e−θ̃K + e

−δ̃
(
ζ̃
‖n‖1
K ∧ β̃

)
K
)

and A` > 0, q` ∈ N, are such that, for all x ∈ Rd+,

|B`(x)| ≤ A`(1 + ‖x‖q`1 ).

The existence of A` and q` follows from the assumptions on B. The constants Cq`
and cq` are defined in Corollary 2.5 and Lemma 2.3, respectively.
We also have

EνK

[(
SD

` (T,K)−KB`(x
∗)
)2
]
≤

C̃

(
K +

A`(1 + Cq`)K

T
+
A`
T
KR̃` +K2A2

`(R̃
2
` + R̃`)

)
where

R̃` = (1 + Cq`)

(
(1 + C2q`)(1 + cq`)

logK

T
+ (1 + T ) e−θ̃K

)
.
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Proof. First observe that

SD

` (T,K) =
NK

` (0, T )

T

where NK

` (0, T ) is defined in Appendix B. By assumption, the function f`(n) =
Kq` B`

( n
K

)
∈ FK,q` . Let m be any probability measure on Zd+ having all its moments

finite. We apply Theorem 3.4 to the function f`, and then using integration against
m we get ∣∣Em

[
Sf`(T,K)

]
− νK(f`)

∣∣ ≤ O(1)‖f`‖K,q`

×
∫ (

(K + ‖n‖2)
q`

(
e
−δ
(
ζ
‖n‖1
K ∧ β

)
K

+T e−δ β K +
1 + logK

T

))
dm(n).

We now apply the identity in Proposition B.1 and divide by Kq`−1. We obtain∣∣∣Em

[
SD

` (T,K)
]
− νK

(
KB`

( n
K

))∣∣∣ ≤ O(1)‖f`‖K,q` K1−q` (5.1)

×
∫ (

(K + ‖n‖2)
q`

(
e
−δ
(
ζ
‖n‖1
K ∧ β

)
K

+T e−δβK +
1 + logK

T

))
dm(n).

We now estimate∫
B`

( n
K

)
dνK(n) =

∫
D
B`

( n
K

)
dνK(n) +

∫
Dc
B`

( n
K

)
dνK(n).

The second integral is bounded from above by O(1)/K using the polynomial bound on
B` and the first estimate in Corollary 2.5. For the first integral we use Taylor expan-
sion around x∗ to first order, then Cauchy-Schwarz inequality, and finally Theorem
2.6 for q = 1. Therefore we obtain∣∣Em

[
SD

` (T,K)
]
−KB`(x∗)

∣∣ ≤ O(1)
√
K +O(1) ‖f`‖K,q`K1−q`

×
∫

(K + ‖n‖2)
q`

(
e
−δ
(
ζ
‖n‖1
K ∧ β

)
K

+T e−δβK +
1 + logK

T

)
dm(n). (5.2)

Now we apply the estimate in Proposition B.1 to obtain

Em

[(
SD

` (T,K)− Em

[
SD
` (T,K)

])2
]

=
1

T 2
Em

[(
NK

` (0, T )− Em

[
NK

` (0, T )
])2
]

≤ Em

[(
1

T

∫ T

0

K1−q` f`(N
K(s))ds− Em

[
NK

` (0, T )

T

])2 ]

+
2

T
Em

[
1

T

∫ T

0

K1−q` f`(N
K(s))ds

]

≤ 2Em

[(
1

T

∫ T

0

K1−q` f`(N
K(s))ds−K1−q`νK(f`)

)2 ]

+ 2Em

[ (
K1−q`νK(f`)− Em

[
SD
` (T,K)

])2
]

+
2

T
Em

[
1

T

∫ T

0

K1−q` f`
(
NK(s)

)
ds

]
.
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For the first term we use either Corollary 5.2 or Proposition 5.1. For the second
term we use (5.1). For the third and last term we apply Theorem 3.4, integrate with
respect to m and use (5.2). To finish the proof, we replace m by either δn or νK .

Recall that Bp(x
∗) = Dp(x

∗), 1 ≤ p ≤ d.

Proposition 5.6. Under the assumptions of Proposition 5.1 and Corollary 5.2, we
have, for all 1 ≤ p, p′ ≤ d, and τ ≥ 0,

En

[(
SCp,p′(T, τ,K)− ΣK

p,p′(τ)
)2
]
≤ O(1)

(
c2‖n‖21 +K2

)2×(
1 + τ + logK

T ∨ 1
+ e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K +(T + τ) e−θK

)
.

and

EνK

[(
SCp,p′(T, τ,K)− ΣK

p,p′(τ)
)2
]

≤ O(1)K4

(
1 + τ + logK

T
+ (1 + T + τ) e−θ

′′K

)
Proof. The proof requires some simple modifications of the proofs of Propostions 5.1
and 5.2. This is left to the reader.

Remark 5.1. If one modifies slightly the definition of the estimator by integrating
from time 1, then, in the four previous propositions, one can replace the factor (‖n‖1+
K) by K, and the factor (‖n‖21 +K2) by K2.

Recall that we defined in Section 1 an empirical matrix M∗emp(T, τ,K) by

eτM
∗
emp(T,τ,K) = SC(T, τ,K)SΣ(T,K)−1

and an empirical resilience by

ρ∗emp(T, τ,K) = − sup{Re(z) : z ∈ Sp
(
M∗emp(T, τ,K)

)
}.

From the above results one can derive various statistical estimates for the difference
between ρ∗emp(T, τ,K) and ρ∗. We have the following result which was stated at the
end of Section 1.2. As already mentioned, we use the symbol� which is not rigorously
defined to formulate a more transparent bound. The reader can easily step through
the proof to get a more precise, but rather cumbersome bound. Let us also note that
the dependence on the initial state n is related to the part “with a probability larger
than 1− 1/K” of the statement. Indeed, the estimate of this probability results from
Chebychev inequality and variance estimates in which the process is started in n.

Theorem 5.7. For τ = Θ(1), n = Θ(K) (initial state) and 0 < T � exp(Θ(1)K),
and K large enough, we have

∣∣ρ∗emp(T, τ,K)− ρ∗
∣∣ ≤ O(1)

(
K2

√
T

+
1√
K

)
with a probability higher than 1− 1/K. In particular, if T ≥ K5, we have∣∣ρ∗emp(T, τ,K)− ρ∗

∣∣ ≤ O(1)/
√
K.
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Proof. It follows from Propositions 5.4 and 5.6 and the standing assumptions that,
with a probability higher that 1− 1/K, we have

‖SC(T, τ,K)− ΣK(τ)‖ ≤ O(1)
K3

√
T

and

‖SΣ(T,K)− ΣK‖ ≤ O(1)
K3

√
T
.

(‖ · ‖ stands for any matrix norm on Rd×d since they are all equivalent.) We now use
Theorem 1.1 and Proposition 2.9 to obtain∥∥∥ eτM

∗
emp(T,τ,K)− eτM

∗
∥∥∥ ≤ O(1)

(
1√
K

+
K2

√
T

)
.

The result follows since τ is of order one.

A Proof of the two variance estimates

A.1 Starting from anywhere: proof of Proposition 5.1

It is enough to prove the result for ‖f‖K,q = 1. We have

En

[(
1

T

∫ T

0

f
(
NK(t)

)
dt

)2 ]
=

2

T 2

∫ T

0

dt2

∫ t2

0

En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1.

Step 1 is to estimate the contribution of the range 0 ≤ t1 ≤ t2 ≤ 1. Using Cauchy-
Schwarz inequality and Proposition 2.3 we get∣∣∣∣∫ 1

0

dt2

∫ t2

0

En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1

∣∣∣∣ ≤ O(1)
(
‖n‖q1 +Kq

)2
.

Step 2 is to estimate the contribution in the range 0 ≤ t2− 1 ≤ t1 ≤ t2. This implies
that T > 1. We have using again Proposition 2.3∣∣∣∣∣

∫ T

1

dt2

∫ t2

t2−1

En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1

∣∣∣∣∣
≤
∫ T

1

dt2

∫ t2

t2−1

(
En

[
f
(
NK(t1)

)2
]

+ En

[
f
(
NK(t2)

)2
])

dt1

≤ O(1)T
(
‖n‖q1 +Kq

)2

.

Step 3
(1) Using the Markov property and the definition of g (see (3.8)) we have∫ T

1

dt2

∫ t2−1

0

En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1

=

∫ T−1

0

ds

∫ s

0

En

[
f
(
NK(t1)

)
g
(
NK(s)

)]
dt1

=

∫ T−1

0

ds

∫ s

0

En

[
f
(
NK(t1)

)
ENK(t1)

[
g
(
NK(s− t1)

)]]
dt1 .
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Let us first write
En

[
f
(
NK(t1)

)
ENK(t1)

[
g
(
NK(s− t1)

)]]
as the sum of J1(n) and J2(n) where

J1(n) = En

[
f
(
NK(t1)

)
ENK(t1)

[
1{T0>s−t1}g

(
NK(s− t1)

)]]
and

J2(n) = En

[
f
(
NK(t1)

)
ENK(t1)

[
1{T0≤s−t1}g

(
NK(s− t1)

)]]
.

We further decompose J1(n) as J1,1(n) + J1,2(n) where

J1,1(n) = En

[
f
(
NK(t1)

)
1{T0≤t1}ENK(t1)

[
1{T0>s−t1}g

(
NK(s− t1)

)]]
and

J1,2(n) = En

[
f
(
NK(t1)

)
1{T0>t1}ENK(t1)

[
1{T0>s−t1}g

(
NK(s− t1)

)]]
.

Since 0 is an absorbing state, we have for all n 6= 0 that

J1,1(n) = 0.

(2) We start by estimating J2(n). Since 0 is an absorbing state, we have

J2(n) = g(0)En

[
f
(
NK(t1)

)
PNK(t1)

(
T0 ≤ s− t1

)]
.

Note that g(0) = E0[f(NK(1))] = f(0). Since we are going to use Lemma 3.2, we
write J2(n) = J2,1(n) + J2,2(n) where

J2,1(n) = f(0)En

[
f
(
NK(t1)

)
1{‖NK(t1)‖1>Kα/ζ}PNK(t1)

(
T0 ≤ s− t1

)]
.

and

J2,2(n) = f(0)En

[
f
(
NK(t1)

)
1{‖NK(t1)‖1≤Kα/ζ}PNK(t1)

(
T0 ≤ s− t1

)]
.

We first estimate J2,1(n). Using (3.9), Lemma 3.2 with γ = 0, and since f belongs to
FK,q (see (3.7)), we have

|J2,1(n)| ≤ O(1)En
[
|f(NK(t1))|

]
e−αδK(1 + C(s− t1))

≤ O(1)(‖n‖q1 +Kq) e−αδK(1 + C(s− t1))

where we used Proposition 2.3 for the second inequality.
We now estimate J2,2(n) by splitting it as J2,2,1(n) + J2,2,2(n) where

J2,2,1(n) = f(0)En

[
f
(
NK(t1)

)
1{‖NK(t1)‖1≤Kα/ζ} 1EK PNK(t1)

(
T0 ≤ s− t1

)]
.

and

J2,2,2(n) = f(0)En
[
f
(
NK(t1)

)
1{‖NK(t1)‖1≤Kα/ζ}1EcKPNK(t1)

(
T0 ≤ s− t1

)]
where

EK :=

{
‖NK(t1)‖1 >

([
1

2‖x∗‖1

(
ζ
‖n‖1
K
∧ α
)]
∧ 1

)
K

}
.
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Proceeding as before we get

|J2,2,1(n)| ≤ O(1)KqEn

[
1EK PNK(t1)

(
1{T0≤s−t1}

)]
≤ O(1)Kq

(
e
−δK

(([
1

2‖x∗‖1

(
ζ
‖n‖1
K ∧α

)]
∧1

)
∧α
)

+(s− t1) e−αδK
)
.

We used Lemma 3.2 with γ = 0.
We now handle J2,2,2(n).

Note that γ ≤ 1 ∧ α
‖x∗‖1 . We proceed as before with f and g, and we use Lemma

3.2 with

γ =

(
1

2‖x∗‖1

(
ζ
‖n‖1
K
∧ α
))
∧ 1.

to get

|J2,2,2(n)| ≤ O(1)Kq Pn

(
‖NK(t1)‖1 ≤

((
1

2‖x∗‖1

(
ζ
‖n‖1
K
∧ α
))
∧ 1

)
K

)
≤ O(1)Kq

(
e−δ
(

1
2

(
ζ
‖n‖1
K ∧α

)
∧‖x∗‖1

)
K +C t1 e−

αδK
2

)
.

(3) Let us now estimate |J1,2(n)− νK(f)2| for all n 6= 0. We have∣∣J1,2(n)− νK(f)2
∣∣ ≤ ∣∣∣J1,2(n)− νK(g)En

[
f(NK(t1))1{T0>t1}PNK(t1)

(
T0 > s− t1

)]∣∣∣
+
∣∣∣νK(g)En

[
f
(
NK(t1)

)
1{T0>t1}PNK(t1)

(
T0 > s− t1

)]
− νK(g)En

[
f
(
NK(t1)

)
1{T0>t1}

]∣∣∣
+
∣∣∣νK(g)En

[
f
(
NK(t1)

)
1{T0>t1}

]
− νK(g)νK(f)

∣∣∣+
∣∣νK(g)νK(f)− νK(f)2

∣∣
= W1(n) +W2(n) +W3(n) +W4.

(3)-(i) By Theorem 3.1 and since NK(t1) 6= 0, we have∣∣∣ENK(t1)

[
1{T0>s−t1}g

(
NK(s− t1)

)]
−PNK(t1)

(
T0 > s− t1

)
ν(g)

∣∣∣ ≤ O(1)Kq e−
a(s−t1)

logK .

Hence, using Proposition 2.3, we get for all n 6= 0

W1(n) ≤ O(1)Kq
(
cq‖n‖

q
1 +Kq

)
e−

a(s−t1)
logK .

(3)-(ii) We have∣∣∣νK(g)En

[
f
(
NK(t1)

)
1{T0>t1}PNK(t1)

(
T0 > s− t1

)]
− νK(g)En

[
f
(
NK(t1)

)
1{T0>t1}

]∣∣∣
≤
∣∣νK(g)

∣∣En(∣∣f(NK(t1)
)∣∣ 1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

))
Define 0 < γ′ < β by

γ′ = γ′(n) =
1

2

(
ζ‖n‖1
K

∧ α
)
.

We split the right hand side in two terms:

En

[∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
= En

[
1{‖NK(t1)‖1≤γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
+ En

[
1{‖NK(t1)‖1>γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
.
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The first term is estimated using the growth property of f , Lemma 3.2, and Cauchy-
Schwarz inequality, namely

En

[
1{‖NK(t1)‖1≤γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
≤ En

[
1{‖NK(t1)‖1≤γ′K}

∣∣f(NK(t1)
)∣∣2] 1

2

Pn
(
‖NK(t1)‖1 ≤ γ′K

) 1
2

≤ O(1)Kq Pn
(
‖NK(t1)‖1 ≤ γ′K

) 1
2

≤ O(1)Kq
(

e
− δ2
(
ζ
‖n‖1
K ∧α

)
K

+O(1) t1 e−
αδK

2

) 1
2

.

To deal with the second term, we observe using Lemma 3.2 and Proposition 2.3 that,
if ‖NK(t1)‖1 > γ′K, then

PNK(t1)

(
T0 ≤ s− t1

)
≤ e
−δ
(
ζ
‖NK(t1)‖1

K ∧α
)
K

+O(1)(s− t1) e−αδK

≤ e−δ(ζγ
′∧α)K +O(1)(s− t1) e−αδK

= e
−δ
(
ζ
(

1
2

(
ζ‖n‖1
K ∧α

))
∧α
)
K

+O(1)(s− t1) e−αδK .

Now

En

[
1{‖NK(t1)‖1>γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
≤ O(1)En

[
1{‖NK(t1)‖1>γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}

]
×
(

e
−δ
(
ζ
(

1
2

(
ζ‖n‖1
K ∧α

))
∧α
)
K

+O(1)(s− t1) e−αδK
)

≤ O(1)
(
‖n‖q1 +Kq

)(
e
−δ
(
ζ
(

1
2

(
ζ‖n‖1
K ∧α

))
∧α
)
K

+O(1)(s− t1) e−αδK
)

×
(

e
−δ (1∧ζ)

2

(
ζ2‖n‖1

2K ∧α
)
K

+O(1)(s− t1) e−αδK
)
.

(3)-(iii) Let us now prove that for all n 6= 0,

W3(n) =
∣∣∣En(f(NK(t1)

)
1{T0>t1}

)
− νK(f)

∣∣∣
≤ O(1)(cq‖n‖

q
1 +Kq)

(
e−

a(t1−1)
logK + e−λ0(K) e−δ

(
ζ
‖n‖1
K ∧α

)
K

+ C(t1 − 1) e−αδK +1− e−λ0(K)
)
. (A.1)

For 0 ≤ t1 ≤ 1, using Proposition 2.3 we obtain∣∣∣En[f(NK(t1)
)
1{T0>t1}

]∣∣∣ ≤ O(1)(cq‖n‖
q
1 +Kq).

We now deal with t1 > 1. The Markov property gives

En

[
f
(
NK(t1)

)
1{T0>t1}

]
= En

[
1{T0>t1−1}ENK(t1−1)

[
f
(
NK(1))1{T0>1}

]]
= En

[
1{T0>t1−1}g̃(NK(t1 − 1))

]
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where
g̃(n) = En

[
NK(1)1{T0>1}

]
≤ g(n)

is a function bounded by O(1)Kq. For n 6= 0, we use Theorem 3.1 and Corollary 2.2
to get ∣∣∣En[1{T0>t1−1}ENK(t1−1)

[
f
(
NK(1))1{T0>1}

]]
− Pn

(
T0 > t1 − 1

)
EνK

[
f
(
NK(1))1{T0>1}

]∣∣∣
≤ O(1)Kq e

a(t1−1)
logK .

Since νK is the qsd, we have

EνK
[
f
(
NK(1))1{T0>1}

]
= e−λ0(K) νK(f).

Using Corollary 2.5, Lemma 3.2 and the properties of f we obtain∣∣∣Pn(T0 > t1 − 1
)
EνK

[
f
(
NK(1))1{T0>1}

]
− νK(f)

∣∣∣
≤ O(1)Kq

(
e−λ0(K) e−δ

(
ζ
‖n‖1
K ∧α

)
K +C(t1 − 1) e−βδK +1− e−λ0(K)

)
and (A.1) is proved.

(3)-(iv) Let us note that

W4 ≤ |νK(f)| |νK(f)− νK(g)|.

Proposition 2.3 and Lemma 3.5 give

W4 ≤ O(1)K2q
(
1− e−λ0(K)

) 1
2 .

(3)-(v) Collecting the informations given in the four previous estimates, we obtain
a precise estimation of |J1,2(n)− νK(f)2| for all n 6= 0.

(3)-(vi) We have∣∣∣En[f(NK(t1)
)
ENK(t1)

[
g
(
NK(s− t1)

)]]
− νK(f)2

∣∣∣
≤ |J2(n)|+

∣∣J1,2(n)− νK(f)2
∣∣ .

Collecting the above relevant estimates we obtain that there exist δ′, ζ ′, β′, θ′ (all
being positive and independent of K) such that∣∣∣En[f(NK(t1)

)
ENK(t1)

[
g
(
NK(s− t1)

)]]
− νK(f)2

∣∣∣ ≤ O(1)Kq(cq‖n‖
q
1 +Kq)

×
(
1{t1≤1} + e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K +(s+ t1 + 1) e−θ

′K + e−
a(s−t1)

logK + e−
at1

logK

)
.

Now we have

2

T 2

∣∣∣∣∣
∫ T−1

0

ds

∫ s

0

En

[
f
(
NK(t1)

)
ENK(t1)

[
g
(
NK(s− t1)

)]]
dt1 − νK(f)2

∣∣∣∣∣
≤ O(1)Kq(cq‖n‖

q
1 +Kq)

(
1

T
+ e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K +T e−θ

′K +
logK

T

)
.

The final result for T ≥ 1 follows by collecting all estimates. For T < 1 the bound
follows directly from Proposition 2.3.
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A.2 Starting from the qsd: proof of Corollary 5.2

The result follows from Proposition 5.1 by integrating over n with respect to the qsd.
More precisely, we have

En

[∣∣Sf (T,K)− νK(f)
∣∣2] ≤ C ′‖f‖2K,q( (cq‖n‖

q
1 +Kq)‖n‖q1 +Kq logK

T ∨ 1

+ (cq‖n‖
q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K +(cq‖n‖

q
1 +Kq)TKq e−θ

′K

)
.

The integrals of the first and third terms with respect to the q.s.d are estimated using
Corollary 2.5. We deal with second term:∫

(cq‖n‖
q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K dνK(n) =∫

1{{‖n‖1<β′K/ζ′}}∩D}(cq‖n‖
q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K dνK(n)

+

∫
1{{‖n‖1<β′K/ζ′}}∩Dc}(cq‖n‖

q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K dνK(n)

+

∫
1{‖n‖1≥β′K/ζ′}(cq‖n‖

q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K ∧ β′

)
K dνK(n).

The third integral is estimated using the fact that the integrand is exponentially
small in K. The second integral is estimated using the first estimate in Corollary
2.5. We finally deal with the first integral. If n ∈ D then ‖n‖1 ≥ ‖n‖2 ≥ ‖n∗‖2/2.

If {‖n‖1 < β′K/ζ ′} ∩ D 6= ∅, on this set we have e−δ
′
(
ζ′
‖n‖1
K ∧ β′

)
K ≤ e−δ

′ζ′
‖n∗‖2

2

(exponentially small in K). The estimate follows.

B Counting the number of births

Denote by NK

` (t1, t2) the number of births of species of type ` between the times t1
and t2 (1 ≤ ` ≤ d, 0 ≤ t1 ≤ t2).

Proposition B.1. For any probability measure m on Zd+, we have

Em

[
NK

` (t1, t2)
]

= K

∫ t2

t1

Em

[
B`

(
NK(s)

K

)]
ds

and

Em

[(
NK

` (t1, t2)− Em

[
NK

` (t1, t2)
])2
]
≤ 2KEm

[ ∫ t2

t1

B`

(
NK(s)

K

)
ds

]
+ Em

[(∫ t2

t1

KB`

(
NK(s)

K

)
ds− Em

[
NK

` (t1, t2)
])2
]
.

Proof. Recall that the generator of the process is given in (2.1). Let us now give a
pathwise representation of the process. We introduce d independent point Poisson
measures M`(ds,dθ) on R2

+ with intensity dsdθ. We define the d-dimensionnal càd-làg
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process (Nt, t ∈ R+)

Nt = N0 +

d∑
`=1

∫ t

0

∫
M`(ds,dθ)

×

(
1{

θ ≤KB`
(
NK(s)

K

)} − 1{
KB`

(
NK(s)

K

)
≤ θ≤K

(
B`

(
NK(s)

K

)
+D`

(
NK(s)

K

))}
)
.

Then the number of births of species of type ` occuring between the times t1 and t2
is given by

NK

` (t1, t2) =

∫ t2

t1

∫
1{

θ≤KB`
(
NK(s)

K

)}M`(ds,dθ).

Using the Markov property we get at once the first identity.
We now establish the estimate. Indeed

Em

[(
NK

` (t1, t2)− Em

(
NK

` (t1, t2)
)2
]

≤ 2Em

[(
NK

` (t1, t2)−
∫ t2

t1

KB`

(
NK(s)

K

)
ds
)2
]

+ 2Em

[(∫ t2

t1

KB`

(
NK(s)

K

)
ds− Em

[
NK

` (t1, t2)
])2
]
.

By the L2-isometry for jump processes (see [6, Formula (3.9) p.62]), we have

Em

[(
NK

` (t1, t2)−
∫ t2

t1

KB`

(
NK(s)

K

)
ds
)2
]

=

∫ t2

t1

∫
Em

[(
1{

θ≤KB`
(
NK(s)

K

)})2]
dsdθ

=

∫ t2

t1

Em

[
KB`

(
NK(s)

K

)]
ds.

This finishes the proof.

C Gaussian limit for the rescaled qsd

We have the following theorem of independent interest. A part of this theorem par-
tially generalizes a result obtained in [2] for models involving a single species (d = 1).
Recall that n∗ = bKx∗c.

Theorem C.1. For all K > 1, define the measure aK on the Borel σ-algebra of Rd

by

aK(·) = νK

({
n ∈ Zd+ :

n− n∗√
K
∈ ·
})

.

Then (aK)K converges weakly to the centered Gaussian measure with covariance matrix

S =

∫ ∞
0

eτM
∗
B∗ eτM

∗ᵀ
dτ.
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where B∗ is the diagonal matrix with entries B`(x
∗) = D`(x

∗). The matrix S is also
the unique symmetric solution of the (Lyapunov) equation (fluctuation-dissipation
relation)

M∗S + SM∗ᵀ = −B∗ . (C.1)

Remark C.1. We have

lim
K→+∞

ΣK

K
= S.

This follows by dividing out equation (1.7) by K, letting K tend to infinity, and using
the uniqueness of the (symmetric) solution of (C.1).

Proof. By Theorem 2.6, the family of measures (aK)K is tight. For p ∈ Rd define

HK(p) =

∫
e
i
〈 p,(n−n∗)〉
√
K dνK(n).

It follows also from Theorem 2.6 that the family of functions (HK) is uniformly
bounded in C2. We will prove that

lim
K→∞

HK(p) = e−〈 p,Sp〉, ∀p ∈ Rd. (C.2)

This will entail that there is only one weak accumulation point for (aK)K . The proof
will be the consequence of Prokhorov Theorem [1]. Using (2.7) and (2.5), we have

lim
K→∞

νK

(
LK e

i
〈 p,( ·−n∗)〉
√
K

)
= 0 .

We also have

νK

(
LK e

i
〈 p,( · −n∗)〉
√
K

)
= K

d∑
`=1

∫
dνK(n) e

i
〈 p,(n−n∗)〉
√
K

×
(
B`

( n
K

)(
e
i
p`√
K −1

)
+D`

( n
K

)(
e
− i

p`√
K −1

))
.

Using Taylor expansion, and the moments estimates and the polynomial bounds on
B` and D` (and B`(x

∗) = D`(x
∗)) we obtain

νK

(
LK e

i
〈 p,( · −n∗)〉
√
K

)
= −

d∑
`=1

B`

(
n∗

K

)
p2
`HK(p) + i

d∑
`=1

p`

d∑
j=1

(
∂jB`

(
n∗

K

)
− ∂jD`

(
n∗

K

))

×
∫

e
i
〈 p,(n−n∗)〉
√
K

n∗j − n∗j√
K

dνK(n) +O
(

1√
K

)
= −

d∑
`=1

B`

(
n∗

K

)
p2
`HK(p)

+

d∑
`=1

p`

d∑
j=1

(
∂jB`

(
n∗

K

)
− ∂jD`

(
n∗

K

))
∂pjHK(p) +O

(
1√
K

)

= −
d∑
`=1

B`(x
∗) p2

`HK(p) +

d∑
`=1

p`

d∑
j=1

M∗`,j ∂pjHK(p) +O
(

1√
K

)
.
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We conclude that every accumulation point H̆ of (HK)K is bounded in C1, satisfies
H̆(0) = 1, and is a solution of the equation

−
d∑
`=1

B`(x
∗) p2

` H̆(p) +

d∑
`=1

p`

d∑
j=1

M∗`,j ∂pj H̆(p) = 0.

Then (C.2) follows from Lemma C.2 (stated and proved right after this proof) with
A = M∗.

Lemma C.2. Let (Bj) be d strictly positive numbers and A a real d× d matrix such
that Sp(A) ⊂ {z ∈ C : Re(z) < 0}. Then there exists a unique C1(Rd,R) function H
satisfying H(0) = 1 and

−
d∑
`=1

B` p
2
`H(p) +

d∑
`=1

p`

d∑
j=1

A`, j ∂pjH(p) = 0, p ∈ Rd. (C.3)

This function is given by
H(p) = e−〈 p,Sp〉

where

S =

∫ ∞
0

eτAB eτA
ᵀ

dτ

where B is the diagonal matrix with entries (Bj). The matrix S is also the unique
symmetric solution of the equation

AS + SAᵀ = −B.

Proof. We use the method of characteristics. For all p ∈ Rd, we define the function
p(s), s ≥ 0 as the solution of

dp

ds
(s) = Aᵀp(s), p(0) = p.

Let

b(s) = −
d∑
`=1

B`

∫ s

0

p`(τ)2 dτ.

Let H be a solution of (C.3). It is easy to check that for all p ∈ Rd+ and s ∈ R

d

ds

(
H
(
p(s)

)
eb(s)

)
= 0.

Integrating from 0 to u yields

H(p) = H
(
p(u)

)
eb(u) .

From the spectral properties of A we get

lim
u→+∞

H
(
p(u)

)
= H(0) = 1.

Therefore
H(p) = eb(∞)
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and

b(∞) = −
∫ ∞

0

〈
p, eτAB eτA

ᵀ

p
〉

dτ = −〈 p, Sp〉.

Finally we get from the spectral properties of A

AS + SAᵀ =

∫ ∞
0

(
A eτAB eτA

ᵀ

+ eτAB eτA
ᵀ

Aᵀ
)

dτ

=

∫ ∞
0

d

dτ

(
eτAB eτA

ᵀ
)

dτ = −B.

This finishes the proof of the lemma.

Acknowledgements: We thank the two anonymous referees for fruitful comments
and suggestions.

Funding: S. M. has been supported by the Chair “Modélisation Mathématique et
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