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Abstract

We study a class of multi-species birth-and-death processes going almost surely

to extinction and admitting a unique quasi-stationary distribution (qsd for short).

When rescaled by K and in the limit K → +∞, the realizations of such processes

get close, in any fixed finite-time window, to the trajectories of a dynamical system

whose vector field is defined by the birth and death rates. Assuming that this dy-

namical has a unique attracting fixed point, we analyzed in a previous work what

happens for large but finite K, especially the different time scales showing up.

In the present work, we are mainly interested in the following question: Observing

a realization of the process, can we determine the so-called engineering resilience?

To answer this question, we establish two relations which intermingle the resilience,

which is a macroscopic quantity defined for the dynamical system, and the fluctua-

tions of the process, which are microscopic quantities. Analogous relations are well

known in nonequilibrium statistical mechanics. To exploit these relations, we need

to introduce several estimators which we control for times between logK (time

scale to converge to the qsd) and exp(K) (time scale of mean time to extinction).

We also provide variance estimates. Along the way, we prove moment estimates

of independent interest for the process started either from an arbitrary state or

from the qsd. We also obtain weak convergence of the rescaled qsd to a Gaussian

measure.
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1 Introduction and main results

1.1 Context

The ability of an ecosystem to return to its reference state after a per-
turbation stress is given by its resilience, a concept pioneered by Holling.
Resilience has several faces and multiple definitions [6]. In the traditional
theoretical setting of dynamical systems, that is, coupled differential equa-
tions, one of them is the so-called engineering resilience. It is concerned
with what happens in the vicinity of a fixed point (equilibrium state) of the
system, and is given by minus the real part of the dominant eigenvalue of
the Jacobian matrix evaluated at the fixed point. It can also be defined
as the reciprocal of the characteristic return time to the fixed point after a
(small) perturbation.

In this paper, we are interested in how one can determine the engineering
resilience from the data. As a first step, we address this problem in the
framework of birth-and-death processes. We consider a population made of
d species interacting with one another. If the state of the process NK(t) =
(NK

1 (t), . . . , NK
d (t)) at some time t is n = (n1, . . . , ni . . . , nd) ∈ Zd+, where

ni is the number of individuals of the ith species, then the rate at which
the population increases (respectively decreases) by one individual of the
jth species is KBj(n/K) (respectively KDj(n/K)), where K is a scaling
parameter. When K tends to +∞, the process renormalized by K is well
described by a dynamical system in any given finite-time window. More
precisely, given any 0 < t̄ < +∞ and any ε > 0, we have

lim
K→+∞

P

(
sup

0≤t≤t̄

∥∥∥∥NK(t)

K
− x(t)

∥∥∥∥ > ε

)
= 0

where x(t) is the solution of the differential equation in Rd+

dx

dt
= B(x)−D(x) (1.1)

with initial condition x0 = NK(0)/K. See [4, Chapter 11] for a proof.
We use the notations x = (x1, . . . , xd), B(x) = (B1(x), . . . , Bd(x)), etc.
We make further assumptions (see Section 2) on the birth and death rates
ensuring that we are in the following situation. The vector field B − D
has a unique attracting fixed point x∗ (lying in the interior of Rd+). For
each K, the process NK(t) goes almost surely to 0 (extinction), there is a
unique stationary distribution which is the Dirac measure at 0, and there
is a unique quasi-stationary distribution (qsd) νK which, roughly speaking,
describes the statistics of the process conditioned not to be extinct.

In a previous paper [3], we proved a number of properties describing
the behavior of NK(t) when K is large, but finite. We established a bound
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for the total variation distance between the process conditioned to non-
extinction before time t and νK . This bound is exponentially small in t for
t� logK, and as a by-product, we obtained an estimate for the mean time
to extinction in the qsd which behaves like exp(O(1)K). We also quantified
how close is the law of the process (not conditioned to non-extinction) either
to the Dirac measure at 0 or νK , for times much larger than logK and much
smaller than the mean time to extinction. We will rely on these results that
will be recalled along the way, and we will also prove some further properties.

1.2 Resilience and related statistics

Let
X = B −D

be the vector field of the dynamical system (1.1), and M∗ its differential
evaluated at the fixed point x∗, namely

M∗ = DX(x∗). (1.2)

We then define the (engineering) resilience as

ρ∗ = − sup{Re(z) : z ∈ Sp(M∗)} (1.3)

where Sp
(
M∗
)

denotes the spectrum (set of eigenvalues) of the matrix M∗.
Under our assumptions, we have ρ∗ > 0. Engineering resilience is useful for
two major purposes:

1. It gives the exponential rate at which the system goes to the fixed
point if the initial condition is taken nearby (the inverse of ρ∗ has
dimension of time);

2. It allows the estimation of the change of the fixed point after a (small)
perturbation of the system.

Our goal is to estimate the number ρ∗ from a long enough realization
of the stochastic process (NK(t), t ≤ T ), and for K large, but finite. For
this purpose, we will establish two matrix relations. The first one is a
“fluctuation-dissipation relation”. We need the following notations. Let DK

be the d× d diagonal matrix with entries

DK
p,p = KBp(x

∗) = KDp(x
∗)

and

ΣK
p,q =

∫ (
np − µKp

)(
nq − µKq

)
dνK(n)

be the d × d covariance matrix around the vector µK = (µK1 , . . . , µ
K
d ) of

average populations sizes of the different species which is defined by

µKp =

∫
np dνK(n), p = 1, . . . , d. (1.4)

We will show later on that µK and ΣK are of order K.
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Theorem 1.1. We have

M∗ΣK + ΣK tM∗ + 2DK = O
(√
K
)
. (1.5)

(The transpose of a matrix M is denoted by tM .) This relation will be
proved in Section 6.1. For background on fluctuation-dissipation relations
in Statistical Physics, we refer to [8, sections 2-3]. Note that the matrix ΣK

is symmetrical, but in general the matrix M∗ is not (see [3]). Note also that
each term in the left hand side of (1.5) is of order K, as we will see below.

Remark 1.1. Equation (1.5) may be surprising since our process is not re-
versible. However, it is proved in [5] that a d-dimensional general Ornstein-
Uhlenbeck process dX = −AX dt+σ dWt has a unique stationary Gaussian
measure whose covariance matrix Σ satisfies

AΣ + Σ tA = σ tσ

provided A is a stable matrix, that is, Sp(A) ⊂
{

Re(z) < 0
}

, which is not
necessarily symmetric for d > 1, and σ is a nonsingular matrix.

If ΣK and DK are known, then we have a Sylvester transpose equation
whose solution is not unique, except for d = 1 (see for example [9]). We can
overcome this non-uniqueness issue by using another relation involving M∗.
For τ ≥ 0, define

ΣK
p,q(τ) = EνK

[(
NK
p (τ)− µKp

)(
NK
q (0)− µKq

)]
.

Theorem 1.2. For all τ ≥ 0 we have

ΣK(τ) = eτM
∗

ΣK(0) +O
(√
K
)
. (1.6)

This theorem will be proved in Section 6.2. Relation (1.6) allows to
determine M∗. Indeed, we have

eτM
∗

= ΣK(τ) ΣK(0)−1 +O

(
1√
K

)
.

Obviously, ΣK(0) = ΣK , and as mentioned above, ΣK is of order K. There-
fore the relevant range for τ is O(1) ≤ τ � O(1) logK.

Remark 1.2 (d = 1). Where there is only one population, (1.5) easily gives
the resilience since it becomes a scalar equation:

ρ∗ =
K(B(x∗) +D(x∗))

2ΣK
+O

(
1√
K

)
.

Note that K(B(x∗) +D(x∗)) is the average total jump rate KνK(B(n/K) +
D(n/K)) up to O(1). This follows from a Taylor expansion of B(n/K) +
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D(n/K) around x∗, Theorem 4.3 and Proposition 4.4.
Relation (1.6) gives another way to compute the resilience in this case,
namely for all τ ≥ 0,

ρ∗ = −1

τ
log

ΣK(τ)

ΣK(0)
+O

(
1√
K

)
.

Given a realization of
(
NK(t), 0 ≤ t ≤ T

)
up to some time T , one can

define several statistics, which are vectors or matrices, to estimate the above
quantities.

Definition 1.1. For T > 0 and 0 < τ < T , p = 1, . . . , d, let

S
µ

p (T,K) =
1

T

∫ T

0
NK
p (s) ds

SΣ
p,q(T,K) =

1

T

∫ T

0

(
NK
p (s)− Sµp (T,K)

)(
NK
q (s)− Sµq (T,K)

)
ds

SD

p (T,K) =
1

T
#
{

birth of species p for 0 ≤ t ≤ T
}

SCp,q(T, τ,K) =
1

T − τ

∫ T−τ

0

(
NK
p (s+ τ)− Sµp (T,K)

)(
NK
q (s)− Sµq (T,K)

)
ds.

The statistics Sµ allow us to infer µK under suitable conditions on n, K
and T . Indeed, we will prove an estimate of the form∣∣En[Sµp (T,K)

]
− µKp

∣∣ ≤ C (K + ‖n‖1)

(
1 + logK

T
+ e−c(‖n‖1∧K) +T e−c

′K

)
for every n ∈ Zd+, p = 1, . . . , d, where C, c, c′ are positive constants, and

‖n‖1 =
∑d

i=1 ni. Let us make some comments on this bound. For K large,
the right-hand side is small when logK � ‖n‖1 ≤ O(1)K, T � K logK,
and T � exp(O(1)K).
When log T � K, we have En

[
S
µ

p (T,K)
]
≈ 0 because with high probabil-

ity the process is absorbed at 0, hence
∣∣En[Sµp (T,K)

]
− µKp

∣∣ is not small.
This is also the manifestation of the fact that the only stationary (ergodic)
distribution is the Dirac measure at 0.

We will use SΣ to infer ΣK , SD to infer DK , and SC(τ) to infer ΣK(τ).
Estimates similar as the one given above for S

µ

p (T,K) will be proved in
Section 7.

We can now define an empirical matrix M∗emp(T, τ,K) by

eτM
∗
emp(T,τ,K) = SC(T, τ,K)SΣ(T,K)−1

and an empirical resilience by

ρ∗emp(T, τ,K) = − sup
{

Re(z) : z ∈ Sp
(
M∗emp(T, τ,K)

)}
.
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From the above results one can derive various statistical estimates for the
difference between ρ∗emp(T, τ,K) and ρ∗. We will prove (Propostion 7.7) that
for τ of order one, T � exp(O(1)K) and K large enough, we have

∣∣ρ∗emp(T, τ,K)− ρ∗
∣∣ ≤ O(1)

(
K2

√
T

+
1√
K

)
with a probability larger than 1− 1/K. In particular, if T � K5, we have∣∣ρ∗emp(T, τ,K)− ρ∗

∣∣ ≤ O(1)/
√
K.

1.3 Organization of the paper

In Section 2, we will give the precise hypotheses. In Section 3, we will study
the time evolution of the moments of the process. In Section 4, we will
prove detailed properties of the qsd, namely moment estimates and weak
convergence of the rescaled qsd to a Gaussian measure. In Section 5, we
will obtain control on the large time behavior of averages for the process.
In Section 6, we will prove the relations (1.5) and (1.6). In Section 7, we
will obtain variance estimates for estimators of the quantities appearing in
Definition 1.1, starting in the qsd or from an initial condition of order K.

2 Standing assumptions

Two (regular) vector fields B(x) and D(x) are given in Rd+. We assume that
their components have second partial derivatives which are polynomially
bounded. Obviously, we suppose that Bj(x) ≥ 0 and Bj(x) ≥ 0 for all
j = 1, . . . , d and x ∈ Zd+. A dynamical system in Rd+ is defined by the
vector field X(x) = B(x)−D(x), namely

dx

dt
= B(x)−D(x) = X(x).

For x ∈ Rd+, we use the following standard norms:

‖x‖1 =
d∑
j=1

xj , ‖x‖2 =

 d∑
j=1

x2
j

 1
2

.

We now state our hypotheses.

H.1 The vectors fields B and D vanish only at 0.

H.2 There exists x∗ belonging to the interior of Rd+ (fixed point of X )
such that

B(x∗)−D(x∗) = X(x∗) = 0 .
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H.3 Attracting fixed point: there exit β > 0 and R > 0 such that ‖x∗‖2 <
R, and for all x ∈ Rd+ with ‖x‖2 < R,

〈X(x), (x− x∗)〉 ≤ −β‖x‖2 ‖x− x∗‖2
2 . (2.1)

H.4 The fixed point 0 of the vector field X is repelling (locally unstable).
Moreover, on the boundary of Rd+, the vector field X points toward
the interior (except at 0).

H.5 Define

B̂(y) = sup
‖x‖1=y

d∑
j=1

Bj(x) , D̂(y) = inf
‖x‖1=y

d∑
j=1

Dj(x)

and for y > 0, let

F (y) =
B̂(y)

D̂(y)
.

We assume that there exists 0 < L < R such that supy>L F (y) < 1
and limy→∞ F (y) = 0.

H.6 There exists y0 > 0 such that
∫∞
y0

1

D̂(y)
dy < +∞ and y 7→ D̂(y) is

increasing on [y0,+∞[.

H.7 There exists ξ > 0 such that

inf
x∈Rd+

inf
1≤j≤d

Dj(x)

sup1≤`≤d x`
> ξ > 0. (H7)

H.8 Finally, we assume that

inf
1≤j≤d

∂xjBj(0) > 0. (H8)

(By ∂xj we mean ∂
∂xj

.)

Assumptions H.5 and H.6 ensure that the time for “coming down from
infinity” for the deterministic dynamical system is finite. Together with
H.3, this also implies that x∗ is a globally attracting stable fixed point.
More comments on these assumptions can be found in [3]. For the interested
reader, the arXiv version1 of this paper contains a supplementary section in
which we study a concrete example of competition between two species for
which the above assumptions hold.

1METTRE LE LIEN URL
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3 Time evolution of moments starting from any-
where

The generator LK of the birth and death process NK = (NK(t), t ≥ 0) is
defined by

LKf(n) = (3.1)

K
d∑
`=1

B`

( n
K

) (
f(n+ e(`))− f(n)

)
+K

d∑
`=1

D`

( n
K

) (
f(n− e(`))− f(n)

)
where e(`) = (0, . . . , 0, 1, 0, . . . , 0), the 1 being at the `-th position, and
f : Zd+ → R is a function with bounded support. We denote by (SKt , t ≥ 0)
the semigroup of the process NK acting on bounded functions, that is, for
f : Zd+ → R, we have

SKt f(n) = E
[
f(NK(t))

∣∣NK(0) = n
]

= En [f(NK(t))] .

For A > 1, let
TA = inf{t > 0 : ‖NK(t)‖1 > A}. (3.2)

Notice that we will use either ‖ · ‖1 or ‖ · ‖2 (which are of course equivalent).
We have the following result.

Theorem 3.1. There exists a constant C(3.1) > 0 such that for K large
enough, the operator group SK1 extends to exponentially bounded functions
and

sup
n∈Zd+

SK1

(
e‖ · ‖1

)
(n) ≤ eC(3.1)K .

Proof. Let us first introduce the function GK defined on [y0,+∞) by

GK(y) =

∫ ∞
y

dz

D̂(z)
+

1

K D̂(y)
.

Assumption H.6 implies that GK is well defined and decreasing. We can
define its inverse function on (0, s0] for s0 > 0 small enough (independent of

K). Take 0 < η ≤ s0 ∧ 1− e−1

4 . Then there is a unique positive function yK
defined by

yK(s) = G−1
K (ηs), s ∈ (0, 1]. (3.3)

Note that yK(s) ≥ y0 and lims↓0 yK(s) = +∞. Let

ϕK(s) =
e−KyK(s)

KD̂(yK(s))
.

Note that
lim
s↓0

ϕK(s) = 0.
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Using the Lipschitz continuity of D̂ (and then its differentiability almost
everywhere) and (3.3), we obtain

ϕ̇K(s) =
dϕK
ds

(s) = −

(
e−KyK(s)

D̂(yK(s))
+

e−KyK(s)D̂′(yK(s))

KD̂(yK(s))2

)
dyK
ds

(s) = η e−KyK(s).

We now consider the function

fK(t, n) = ϕK(t) e‖n‖1

to which we apply Itô’s formula to fK at time t ∧ TA. We get

En

[
ϕK
(
t ∧ TA

)
e‖N

K(t∧TA)‖1

]
= En

[ ∫ t∧TA

0

(
∂tfK + LKfK

)
(s,NK(s)) ds

]
.

We have

∂tfK(t, n) + LKfK(t, n) = ϕ̇K(t) e‖n‖1

+KϕK(t) e‖n‖1

(
(e−1)

d∑
`=1

B`

( n
K

)
+ (e−1−1)

d∑
`=1

D`

( n
K

))
.

Note that

∂tfK(t, n) + LKfK(t, n)

≤ e‖n‖1
(
ϕ̇K(t) +KϕK(t)

(
(e−1)B̂

(
‖n‖1

K

)
− (1− e−1)D̂

(
‖n‖1

K

)))
≤ e‖n‖1

(
ϕ̇K(t)−KϕK(t)(1− e−1)D̂

(
‖n‖1

K

)(
1− eF

(
‖n‖1

K

)))
.

It follows from H.5 that there exists a number ζ > y0 such that if y > ζ,
then F (y) < (2e)−1.
If ‖n‖1 < ζK we get∣∣∂tfK(t, n) + LKfK(t, n)

∣∣ ≤ O(1) eζK
(
ϕ̇K(t) +KϕK(t)

)
.

For ‖n‖1 ≥ K(ζ ∨ yK(t)) we have

∂tfK(t, n) + LKfK(t, n) ≤ 0

since ϕ̇K(t) = ηKD̂(yK(t))ϕK(t) and D̂(‖n‖1/K) ≥ D̂(yK(t)).
Finally, for ζK ≤ ‖n‖1 < KyK(t) we get∣∣∂tfK(t, n) + LKfK(t, n)

∣∣ ≤ eKyK(t) ϕ̇K(t) = η.

We deduce that

En

[
ϕK
(
1 ∧ TA

)
e‖N

K(1∧TA)‖1

]
≤ O(1) eζK .

The result follows by letting A tend to infinity by monotonicity.
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We deduce moment estimates for the process which are uniform in the
starting state, and in time, for times larger than 1.

Corollary 3.2. For all t ≥ 1, the semi-group St maps functions of polyno-
mially bounded modulus in bounded functions. In particular, for all q ∈ N,
we have

sup
t≥1

sup
n∈Zd+

En
[
‖NK(t)‖q1

]
≤ qq e−qKq eC(3.1) . (3.4)

Proof. We have

En
[
‖NK(1)‖q1

]
= Kq En

[
‖NK(1)‖q1

Kq
e−
‖NK (1)‖1

K e
‖NK (1)‖1

K

]
≤ Kqqq e−q En

[
e
‖NK (1)‖1

K

]
since for all x ≥ 0, xq e−x ≤ qq e−q. Inequality (3.4) follows from Hölder’s
inequality and Theorem 3.1.

Let us now consider t > 1. From the Markov property and by using the
previous inequality, we deduce that

En
[∥∥NK(t)

∥∥q
1

]
= En

[
ENK(t−1)

[∥∥NK(1)
∥∥q

1

]]
≤ qq e−qKq eC(3.1) .

The proof is finished.

For time t less than 1, the moment estimates will depend on the initial
state.

Proposition 3.3. For each integer q, there exists a constant cq > 0 such
that for all K > 1, t ≥ 0 and n ∈ Zd+

En
[∥∥NK(t)

∥∥q
2

]
≤ cqKq + ‖n‖q2 1{t<1} .

Proof. We have only to study the case t < 1, the other case being given in
(3.4). We prove the result for q even, namely q = 2q′. The general for q odd
follows from Cauchy-Schwarz inequality. Letting

fq′(n) = ‖n‖2q′

2

we have

LKfq′(n) = K
d∑
`=1

B`

( n
K

)((
‖n‖2

2 + 2n` + 1
)q′ − ‖n‖2q′

2

))
+K

d∑
`=1

D`

( n
K

)((
‖n‖2

2 − 2n` + 1
)q′ − ‖n‖2q′

2

))
.
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Using H.5 and the equivalence of norms, we see that there exists a constant
cq′ > 0 such that if ‖n‖2 > cq′K

LKfq′(n) < 0.

We can moreover choose cq′ larger such that for all n

LKfq′(n) ≤ cq′K2q′ .

Applying Itô’s formula to fq′ we get as in the proof of Theorem 3.1

En
[
‖NK(t ∧ TA)‖2q′

2

]
≤ ‖n‖2q′

2 + En

[ ∫ t∧TA

0
cq′K

2q′ ds

]
≤ ‖n‖2q′

2 + t cq′K
2q′ .

(Recall that TA is defined in (3.2).) The result follows by letting A tend to
infinity.

4 Properties of the qsd

It is proved in [3] that, under the assumptions of Section 2, there exists a
unique qsd νK with support Zd+\{0}. Recall that starting from the qsd, the
extinction time is distributed according to an exponential law with param-
eter λ0(K) satisfying (cf Theorem 3.2 in [3])

e−d1K ≤ λ0(K) ≤ e−d2K (4.1)

where d1 > d2 > 0 are constants independent of K. Recall also that for all
t > 0,

PνK
(
NK(t) ∈ · , T0 > t

)
= e−λ0(K) t νK

(
·) (4.2)

where
T0 = inf{t > 0 : NK(t) = 0}.

Finally, for all f in the domain of the generator

L †
KνK(f) = νK(LKf) = −λ0(K) νK(f). (4.3)

We use the notation

νK(f) =

∫
f(n) dνK(n).

12



4.1 Moments estimates for the qsd

We use several notations from [3]. Let

n∗ = bKx∗c.

For x ∈ Rd+ and r > 0, B(x, r) is the ball of center x and radius r. We
consider the sets

∆ = B
(
n∗, ρ
√
K
)
, D = B

(
n∗,

minj nj
2

)
∩Zd+ (4.4)

where ρ > 0 is a constant defined in [3, Corollary 4.2]. Note that since n∗ is
of order K, we have ∆ ⊂ D for K large enough. The first entrance time in
∆ (resp. D) will be denoted by T∆ (resp. TD).

Proposition 4.1. There exists a constant c(4.1) > 0 such that for all K
large enough

νK
(
Dc
)
≤ e−c(4.1)K .

Proof. We first recall two results from [3].
From Lemma 5.1 in [3], there exist γ > 0 and δ ∈ (0, 1) such that for all

K large enough

sup
n∈∆c\0

Pn
(
T∆ > γ logK,T0 > T∆

)
≤ δ. (4.5)

By Sublemma 5.8 in [3], there exist two constants C > 0 and c > 0 such
that for all K large enough, and for all t > 0

sup
n∈∆

Pn
(
TDc < t

)
≤ C

(
1 + t

)
e−cK . (4.6)

For q ∈ N\{0} define
tq = qγ logK.

We will first estimate supnPn
(
NK(tq) ∈ Dc, T0 > tq

)
.

Note that NK(tq) ∈ Dc implies TDc ≤ tq. We distinguish two cases.

1. Let n ∈ ∆. It follows from (4.6) that

Pn (NK(tq) ∈ Dc) ≤ C
(
1 + tq

)
e−cK .

2. Let n ∈ ∆c\{0}. We have

Pn
(
NK(tq) ∈ Dc\{0}

)
=

Pn
(
NK(tq) ∈ Dc\{0}, T∆ ≤ tq

)
+ Pn

(
NK(tq) ∈ Dc\{0}, T∆ > tq

)
.

13



Using the strong Markov property at time T∆ and (4.6) we obtain

Pn
(
NK(tq) ∈ Dc\{0}, T∆ ≤ tq

)
= En

[
1{T∆≤tq}PNK(T∆) (NK(tq − T∆) ∈ Dc\{0})

]
≤ C(1 + tq) e−cK .

We bound the second term recursively in q.

Pn
(
T∆ > tq, T0 > T∆

)
= En

[
1{T∆>tq−1}1{T0>T∆}PNK(tq−1)

(
T∆ > t1, T0 > T∆

)]
≤ δ sup

n∈∆c\{0}
Pn
(
T∆ > tq−1, T0 > T∆

)
where we used the strong Markov property at time tq−1 and (4.5).
This implies

sup
n∈∆c\{0}

Pn
(
NK(tq) ∈ Dc\{0}, T∆ > tq

)
≤ sup

n∈∆c\{0}
Pn
(
T∆ > tq, T0 > T∆

)
≤ δq.

Therefore

sup
n6=0

Pn
(
NK(tq) ∈ Dc\{0}

)
≤ C

(
1 + tq

)
e−cK + δq.

By taking q = [K] we conclude that there exists a constant c′ > 0 such that
for K large enough

sup
n6=0

Pn
(
NK(t[K]) ∈ Dc\{0}

)
≤ e−c

′K .

This implies
PνK

(
NK(t[K]) ∈ Dc, T0 > t[K]

)
≤ e−c

′K

but
PνK

(
NK(t[K]) ∈ Dc, T0 > t[K]

)
= e−λ0(K) t[K] νK

(
Dc
)

by (4.2) and the result follows from (4.1).

Corollary 4.2. For each q ∈ N, there exists a constant Cq such that for all
K large enough∫

Dc
‖n‖q1 dνK(n) ≤ CqKq e−c(4.1)K and

∫
‖n‖q1 dνK(n) ≤ CqKq.
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Proof. It follows at once from (4.2) (at time 1) and Theorem 3.1 that∫
e‖n‖1 dνK(n) ≤ eλ0(K) eC(3.1)K ≤ 2 eC(3.1)K (4.7)

for K large enough. We have∫
Dc
‖n‖q1 dνK(n) = Kq

∫
Dc

(
‖n‖1

K

)q
e−
‖n‖1
K e

‖n‖1
K dνK(n)

≤ Kqqq e−q
∫

e
‖n‖1
K 1Dc(n) dνK(n).

We use Hölder inequality to get∫
Dc
‖n‖q1 dνK(n) ≤ Kqqq e−q

(∫
e‖n‖1 dνK(n)

) 1
K
(∫

1Dc(n) dνK(n)

)1− 1
K

.

The first result follows from (4.7) and Proposition 4.1. The second estimate
follows from the first one and the bound supn∈D ‖n‖1 ≤ O(1)K.

We now estimate centered moments.

Theorem 4.3. For each q ∈ Z+, there exists a constant Cq > 0 such that
for all K large enough∫

‖n−Kx∗‖2q
2 dνK(n) ≤ CqKq.

Proof. The proof is a recursion over q. The bound is trivial for q = 0. For
q ∈ N define the function

fq(n) = ‖n−Kx∗‖2q
2 1D1(n)

where

D1 = B
(
Kx∗,

2K

3
min
j
x∗j

)
∩Zd+.

Recall that e(j) is the vector with 1 at the jth coordinate and 0 elsewhere.
From the trivial identity

‖n−Kx∗ ± e(j)‖2
2 = ‖n−Kx∗‖2

2 ± 2(nj −Kx∗j ) + 1 (4.8)

it follows that∣∣‖n−Kx∗ ± e(j)‖2q
2 − ‖n−Kx∗‖2q

2 ± 2q (nj −Kx∗j )‖n−Kx∗‖2q−2
2

∣∣
≤ 3q2q (1 + ‖n−Kx∗‖2q−2

2 ).
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Indeed, applying the trinomial expansion to (4.8), we obtain∣∣‖n−Kx∗ ± e(j)‖2q
2 − ‖n−Kx∗‖2q

2 ± 2q(nj −Kx∗j )‖n−Kx∗‖2q−2
2

∣∣
≤ q!

∑
p1≤q−2

p1+p2+p3=q

‖n−Kx∗‖2p1
2 (2‖n−Kx∗‖2)p2

p1! p2! p3!
+ q ‖n−Kx∗‖2q−2

2 .

Observe that if p1 ≤ q − 2, p1 + p2 + p3 = q and p1 ≤ q− 2, then 2p1 + p2 =
p1 + q − p3 ≤ 2q − 2− p3 ≤ 2q − 2 since p3 ≥ 0. This implies that

‖n−Kx∗‖2p1
2 (2‖n−Kx∗‖2)

p2 ≤ 2q(1 + ‖n−Kx∗‖2q−2
2 ).

It follows that

LKfq(n) = 2qK
d∑
j=1

Xj

( n
K

)
(nj−Kx∗j )‖n−Kx∗‖2q−2

2 1D1(n)+Rq(n) (4.9)

where

|Rq(n)| ≤ O(1)K6q(1 +‖n−Kx∗‖2q−2
2 )1D1(n) +O(1)qK2q+11Dc(n) (4.10)

where we used the fact that

sup
j=1,...,d

|1D1(n± e(j))− 1D1(n)| ≤ 1Dc(n).

Using (2.1) we get

K
d∑
j=1

Xj

( n
K

)
(nj −Kx∗j )‖n−Kx∗‖2q−2

2 1D1(n)

≤ −β′‖n−Kx∗‖2q
2 1D1(n) = −β′fq(n) (4.11)

where

β′ =
β

3
min
j
x∗j .

Integrating the equation (4.9) with respect to νK and using (4.3), (4.10),
(4.11) and Proposition 4.1 we obtain

(2qβ′ − λ0(K)) νK(fq)

≤ O(1)K6q(1 + νK(fq−1)) +O(1) 6qK2q+1 e−c(4.1)K .

Observing that νK(f0) ≤ 1, it follows by recursion over q that for each integer
q there exists C ′q > 0 such that for all K large enough νK(fq) ≤ C ′qK

q.
Finally we have

νK
(
‖n−Kx∗‖2q

2

)
= νK(fq) + νK

(
‖n−Kx∗‖2q−2

2 1Dc1(n)
)

≤ νK(fq) + νK
(
‖n−Kx∗‖2q−2

2 1Dc(n)
)
.

The result follows using the previous estimate and Corollary 4.2.
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The next result gives a more precise estimate for the average of n (instead
of an error of order

√
K). (Recall that µK is defined in (1.4).)

Proposition 4.4. We have

µK −Kx∗ = O(1)

where µK is defined in (1.4). Moreover, since ‖n∗−Kx∗‖2 = O(1), we have

µK − n∗ = O(1) . (4.12)

Proof. We define the functions

gj(n) = 〈n−Kx∗, e(j)〉, 1 ≤ j ≤ d.

By Taylor expansion and the polynomial bounds on B and D we get

LKgj(n) = K
(
Bj(n/K)−Dj(n/K)

)
=

d∑
m=1

(
∂mBj(x

∗)− ∂mDj(x
∗)
)
gm(n)1D(n) +O(1)

‖n−Kx∗‖2
2

K
1D(n)

+ O(1) (Kp + ‖n‖p2 )1Dc(n)

for some positive integer p independent of K. Using Cauchy-Schwarz in-
equality, identity (4.3), Corollary 4.2 and Proposition 4.1 we get∫ (

1 + ‖n‖p2
)
1Dc(n) dνK(n) = o(1).

From Proposition 4.1, Theorem 4.3 and (4.1) we get

d∑
m=1

(
∂mBj(x

∗)− ∂mDj(x
∗)
)
νK(gm) = O(1).

The result follows from the invertibility of the d × d matrix (∂mBj(x
∗) −

∂mDj(x
∗)) which follows from H.3. The other inequalities follow immedi-

ately.

Corollary 4.5. We have

‖ΣK‖ ≤
∫ ∥∥n− µK∥∥2

2
dνK(n) =

∫
‖n−Kx∗‖2

2 dνK(n) +O(1) ≤ O(1)K.

Proof. Combine Proposition 4.4 and Theorem 4.3.

We now show that ΣK is indeed of order K.
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Proposition 4.6. For K large enough, the matrix ΣK satisfies

ΣK ≥ O(1)K Id

for the order among positive definite matrices, Id being the identity matrix.
In particular, ∫ ∥∥n− µK∥∥2

2
dνK(n) ≥ O(1)K.

Proof. We denote by Σ̃K the positive definite matrix

Σ̃K
p,q =

∫ (
np − n∗p

)(
nq − n∗q

)
dνK(n) .

By (4.12) we have ∥∥Σ̃K − ΣK
∥∥ = O(1). (4.13)

Let v be a unit vector in Rd. We have

〈 v, Σ̃Kv〉 =

∫
〈 v, (n− n∗)〉2 dνK(n) ≥

∫
∆
〈 v, (n− n∗)〉2 dνK(n).

From Lemma 5.3 in [3] there exists a constant c > 0 such that for all K
large enough and all n ∈ ∆,

νK({n}) ≥ cU∆({n})

where U∆ is the uniform distribution on ∆. Therefore

〈 v, Σ̃K v〉 ≥ c
∫

∆
〈 v, (n− n∗)〉2 dU∆(n)

and we get
〈 v, Σ̃Kv〉 ≥ O(1)K‖v‖2

2.

The result follows.

4.2 Gaussian limit for the rescaled qsd

Recall that n∗ = bKx∗c. We have the following theorem which partially
generalizes a result obtained in [2] for models involving a single species
(d = 1).

Theorem 4.7. For all K > 1, define the measure aK on the Borel σ-algebra
of Rd by

aK(·) = νK

({
n ∈ Zd+ :

n− n∗√
K
∈ ·
})

.

Then (aK)K converges weakly to the centered Gaussian measure with covari-
ance matrix

S =

∫ ∞
0

eτM
∗
B∗ eτ

tM∗ dτ.
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where B∗ is the diagonal matrix with entries B`(x
∗) = D`(x

∗). The ma-
trix S is also the unique symmetric solution of the (Lyapunov) equation
(fluctuation-dissipation relation)

M∗S + S tM∗ = −B∗ . (4.14)

Remark 4.1. We have

lim
K→+∞

ΣK

K
= S.

This follows by dividing out equation (1.5) by K, letting K tend to infinity,
and using the uniqueness of the (symmetric) solution of (4.14).

Proof. By Theorem 4.3, the family of measures (aK)K is tight. For p ∈ Rd
define

HK(p) =

∫
e

i
〈 p,(n−n∗)〉
√
K dνK(n).

It follows also from Theorem 4.3 that the family of functions (HK) is uni-
formly bounded in C2. We will prove that for all p ∈ Rd,

lim
K→∞

HK(p) = e−〈 p,Sp〉 (4.15)

This will prove that there is only one weak accumulation point for (aK)K .
The proof will be the consequence of Prokhorov Theorem [1]. We now prove
(4.15). Using (4.3) and (4.1), we have

lim
K→∞

νK

(
LK e

i
〈 p,( ·−n∗)〉
√
K

)
= 0 .

We also have

νK

(
LK e

i
〈 p,( · −n∗)〉
√
K

)
= K

d∑
`=1

∫
dνK(n) e

i
〈 p,(n−n∗)〉
√
K

×
(
B`

( n
K

)(
e

i
p`√
K −1

)
+D`

( n
K

)(
e
− i

p`√
K −1

))
.

We use Taylor expansion and using the moments estimates and the polyno-
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mial bounds on B` and D` (and B`(x
∗) = D`(x

∗)) we obtain

νK

(
LK e

i
〈 p,( · −n∗)〉
√
K

)
= −

d∑
`=1

B`

(
n∗

K

)
p2
`HK(p) + i

d∑
`=1

p`

d∑
j=1

(
∂jB`

(
n∗

K

)
− ∂jD`

(
n∗

K

))

×
∫

e
i 1√

K
〈 p(n−n∗)〉 n

∗
j − n∗j√
K

dνK(n) +O
(

1√
K

)
= −

d∑
`=1

B`

(
n∗

K

)
p2
`HK(p)

+

d∑
`=1

p`

d∑
j=1

(
∂jB`

(
n∗

K

)
− ∂jD`

(
n∗

K

))
∂pjHK(p) +O

(
1√
K

)

= −
d∑
`=1

B`(x
∗) p2

`HK(p) +

d∑
`=1

p`

d∑
j=1

M∗`,j ∂pjHK(p) +O
(

1√
K

)
.

We conclude that every accumulation point H̆ of (HK)K is bounded in C1,
satisfies H̆(0) = 1, and is a solution of the equation

−
d∑
`=1

B`(x
∗) p2

` H̆(p) +

d∑
`=1

p`

d∑
j=1

M∗`,j ∂pjH̆(p) = 0.

Then (4.15) follows from Lemma 4.8 (stated and proved right after this
proof) with A = M∗.

Lemma 4.8. Let (Bj) be d strictly positive numbers and A a real d × d
matrix such that Sp(A) ⊂ {z ∈ C : Re(z) < 0}. Then there exists a unique
C1(Rd,R) function H satisfying H(0) = 1 and

−
d∑
`=1

B` p
2
` H(p) +

d∑
`=1

p`

d∑
j=1

A`, j ∂pjH(p) = 0, p ∈ Rd. (4.16)

This function is given by
H(p) = e−〈 p,Sp〉

where

S =

∫ ∞
0

eτAB eτ
tA dτ

where B is the diagonal matrix with entries (Bj). The matrix S is also the
unique symmetric solution of the equation

AS + S tA = −B.
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Proof. We use the method of characteristics. For all p ∈ Rd, we define the
function p(s), s ≥ 0 as the solution of

dp

ds
(s) = tAp(s), p(0) = p.

Let

b(s) = −
d∑
`=1

B`

∫ s

0
p`(τ)2 dτ.

Let H be a solution of (4.16). It is easy to check that for all p ∈ Rd+ and
s ∈ R

d

ds

(
H
(
p(s)

)
eb(s)

)
= 0.

Integrating from 0 to u yields

H( p) = H
(
p(u)

)
eb(u) .

From the spectral properties of A we get

lim
u→+∞

H
(
p(u)

)
= H(0) = 1.

Therefore
H( p) = eb(∞)

and

b(∞) = −
∫ ∞

0

〈
p, eτAB eτ

tA p
〉

dτ = −〈 p, Sp〉.

Finally we get from the spectral properties of A

AS + S tA =

∫ ∞
0

(
A eτAB eτ

tA + eτAB eτ
tA tA

)
dτ

=

∫ ∞
0

d

dτ

(
eτAB eτ

tA
)

dτ = −B.

This finishes the proof of the lemma.

5 Controlling time averages

For T > 0, we define the time average of a function f : Zd+ → R by

Sf (T,K) =
1

T

∫ T

0
f(NK(s)) ds. (5.1)

The goal of this section is to obtain a control of |Sf (T,K) − νK(f)| for a
suitable class of functions.

We recall the following result from [3, Theorem 3.1].
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Theorem 5.1 ([3]). There exist a > 0, K0 > 1 such that, for all t ≥ 0 and
for all K ≥ K0, we have

sup
n∈Zd+\{0}

∥∥Pn(NK(t) ∈ · , t < T0)− Pn(t < T0) νK(·)
∥∥

TV
≤ 2 e

− at
logK . (5.2)

It is also proved in [3] that, for a time much larger than logK and much
smaller than the extinction time (which is of order exp(O(1)K)), the law of
the process is close to the qsd with a positive probability. The accuracy of
the approximation depends on the initial condition. This suggests to study
the distance between the law of the process at time s and the qsd as a
function of the initial condition, K and s. This will result from (5.2) if we

can estimate Pn

(
T0 ≤ t

)
. In fact we prove a more general result.

Lemma 5.2. For γ ≥ 0, define τγ = inf
{
t ≥ 0 : ‖NK(t)‖1 ≤ γK

}
. There

exist δ > 0, α > 0 and C > 0 such that for all n ∈ Zd+, K ≥ 1, 0 ≤ γ ≤
1 ∧ α

‖x∗‖1
and t ≥ 0, we have

Pn

(
τγ ≤ t

)
≤ C

(
e
−δ
(
ζ
(
‖n‖1
K
∧α
)
−γ‖x∗‖1

)
K

+ t e−δ (α−γ‖x∗‖1)K

)
(5.3)

where
ζ = min

1≤j≤d
x∗j > 0. (5.4)

Taking γ = 0 in (5.3), we get

Pn

(
T0 ≤ t

)
≤ C

(
e
−δ
(
ζ
‖n‖1
K
∧α
)
K

+ t e−αδK
)
. (5.5)

Proof. It follows from H.1 and H.3 (using Taylor’s expansion of X(x) near
0) that there exists α0 ∈ (0, R) (where R was introduced in Assumption
H.3) such that for all x ∈ Rd+ satisfying ‖x‖2 ≤ α0 we have

〈X(x), x∗〉 ≥ β‖x∗‖2
2 ‖x‖2 − 2β ‖x‖2〈x, x∗〉+ β‖x‖3

2 + 〈X(x), x〉

≥ β‖x∗‖2
2 ‖x‖2 +O(1)‖x‖2

2 ≥
β ‖x∗‖2

2

2
‖x‖2. (5.6)

For α ∈ (0, α0] and δ > 0 to be chosen later on, we define

ψ(n) = e−δ(〈n,x
∗〉∧αK) .

It is easy to verify that if 〈n, x∗〉 > αK + ‖x∗‖2 we have

LKψ = 0.

If αK − ‖x∗‖2 ≤ 〈n, x∗〉 ≤ αK + ‖x∗‖2 we have∣∣LKψ
∣∣ ≤ O(1)K e−αδK .
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For 〈n, x∗〉 ≤ αK − ‖x∗‖2, we have ‖n‖1 ≤ 〈n, x∗〉/ζ ≤ αK/ζ, where ζ is
defined in (5.4), and

LKψ(n) = Kg
(
δ,
n

K

)
e−δ〈n,x

∗〉

where the function g is defined by

g(s, x) =
d∑
j=1

Bj(x)
(

e−sx
∗
j −1

)
+

d∑
j=1

Dj(x)
(

esx
∗
j −1

)
.

We have

g(s, x) = −s
d∑
j=1

(
Bj(x)−Dj(x)

)
x∗j

+
d∑
j=1

Bj(x)
(

e−sx
∗
j −1 + sx∗j

)
+

d∑
j=1

Dj(x)
(

esx
∗
j −1− sx∗j

)
.

From the differentiability of the vector fields B and D and using (5.6), it
follows that there exists a constant Γ > 0 such that, for all 0 ≤ s ≤ 1 and
‖x‖2 < α0 we have

g(s, x) = −s 〈X(x) , x∗〉+O(1) s2 ‖x‖2

≤ −s β ‖x
∗‖2

2

2
‖x‖2 + Γs2 ‖x‖2.

Therefore we can choose δ > 0 and 0 < α < α0 such that

sup
‖x‖2≤α

g(δ, x) < 0.

Therefore, for all n
LKψ(n) ≤ O(1)K e−αδK .

For γ̃ > 0 (independent of K), we define

τ̃γ̃ = inf
{
t ≥ 0 : 〈NK(t), x∗〉 ≤ γ̃K

}
.

We apply Ito’s formula to ψ to get

En
[
ψ
(
NK(t ∧ τ̃γ̃)

)]
= ψ(n) + En

[ ∫ t∧τ̃γ̃

0
LKψ(NK(s)) ds

]
.

We have
γ̃K − ζ ≤ 〈NK(τ̃γ̃), x∗〉 ≤ γ̃K

hence
ψ(NK(τ̃γ̃)) ≥ e−δ(γ̃∧α)K e−δζ .
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We have

En
[
ψ
(
NK(t ∧ τ̃γ̃)

)]
≥ Pn

(
τ̃γ̃ ≤ t) e−δ (γ̃∧α)K e−δζ .

Therefore

Pn
(
τ̃γ̃ ≤ t) e−δ (γ̃∧α)K e−δζ ≤ e−δ(〈n,x

∗〉∧αK) +tO(1)K e−αδK .

To conclude, observe that

Pn
(
τγ ≤ t) ≤ Pn

(
τ̃γ̃ ≤ t)

for γ̃ = γ ‖x∗‖1 because for all n ∈ Zd+,

0 < ζ ‖n‖1 ≤ 〈n, x∗〉 ≤ ‖n‖1 sup
j=1,...,d

x∗j ≤ ‖n‖1‖x∗‖1

and ‖NK(τγ)‖1 ≤ γK.

We have the following result.

Proposition 5.3. For all bounded functions h : Zd+ → R, t ≥ 0, n ∈ Zd+,
and K > K0, we have∣∣En [h(NK(t)

)]
− νK(h)

∣∣ ≤ O(1)‖h‖∞
(

e
−δ
(
ζ
‖n‖1
K
∧α
)
K

+ t e−αδK + e
− at

logK

)
where α, δ and ζ are defined in Lemma 5.2, and a and K0 are defined in
Theorem 5.1.

Proof. From the bound (5.2) we get∣∣∣En [h(NK(t)
)
1{T0>t}

]
− Pn(t < T0) νK(h)

∣∣∣ ≤ O(1)‖h‖∞ e
− at

logK .

This implies∣∣En [h(NK(t)
)]
− νK(h)

∣∣
≤
∣∣∣En [h(NK(t)

)
1{T0≤s}

]∣∣∣+ Pn(t ≥ T0) νK(h) +O(1)‖h‖∞ e
− at

logK

≤ O(1)‖h‖∞
(
Pn(t ≥ T0) + e

− at
logK

)
≤ O(1)‖h‖∞

(
e
−δ
(
ζ
‖n‖1
K
∧α
)
K

+s e−αδK + e
− at

logK

)
using (5.5).

We now extend Proposition 5.3 to more general functions. For q ∈ Z+,
we define the Banach space FK,q by

FK,q =

{
f : Zd+ → R : ‖f‖K,q := sup

n6=0

|f(n)|
Kq + ‖n‖q2

< +∞

}
. (5.7)

We have the following result for time-averages of function in FK .
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Theorem 5.4. For all K > K0, f ∈ FK,q, T > 0, and n ∈ Zd+, we have∣∣En[Sf (T,K)
]
− νK(f)

∣∣ ≤ O(1)‖f‖K,q (Kq + ‖n‖q2 )

×
(

1

T
+ e
−δ
(
ζ
‖n‖1
K
∧α
)
K

+T e−αδK +
logK

aT
+
(
1− e−λ0(K)

) 1
2

)
where α, δ and ζ are defined in Lemma 5.2, and λ0(K) is defined in (4.1).

Remark 5.1. One can check that if one modifies slightly the definition of
the time average (5.1) by integrating from 1 to T + 1, then one can remove
the term ‖n‖q2 from the previous estimate.

Proof. For f ∈ FK,q, Corollary 4.2 gives∣∣νK(f)
∣∣ ≤ O(1)Kq‖f‖K,q.

By Proposition 3.3 we have∣∣∣∣ 1

T
En

[ ∫ 1∧T

0
f
(
NK(s)

)
ds

]∣∣∣∣ ≤ O(1)‖f‖K,q
Kq + ‖n‖q2

T
.

Hence for T ≤ 1 we get

∣∣En[Sf (T,K)
]
− νK(f)

∣∣ ≤ O(1)‖f‖K,q
(
Kq + ‖n‖q2

)( 1

T
+ 1

)
.

For T > 1, we have by the Markov property that

1

T
En

[∫ T

1
f
(
NK(s)

)
ds

]
=

1

T

∫ T

1
En

[
ENK(s−1)

[
f
(
NK(1)

)]]
ds

=
1

T

∫ T−1

0
En
[
g
(
NK(s)

)]
ds

where
g(m) := Em

[
f
(
NK(1)

)]
. (5.8)

By Corollary 3.2, the function g is bounded and

‖g‖∞ ≤ O(1)‖f‖K,qKq. (5.9)

Applying Proposition 5.3 to g thus gives∣∣En [g(NK(s)
)]
− νK(g)

∣∣
≤ O(1)‖f‖K,qKq

(
e
−δ
(
ζ
‖n‖1
K
∧α
)
K

+s e−αδK + e
− as

logK

)
.
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Integrating over s ∈ [0, T − 1] yields∣∣∣∣ 1

T

∫ T−1

0
En
[
g
(
NK(s)

)]
ds− T − 1

T
νK(g)

∣∣∣∣
≤ O(1)‖f‖K,q

Kq

T

(
(T − 1) e

−δ
(
ζ
‖n‖1
K
∧α
)
K

+ (T − 1)2 e−αδK +
logK

a

)
.

Using Lemma 5.5 (stated and proved right after this proof), we finally obtain∣∣En[Sf (T,K)
]
− νK(f)

∣∣
≤ O(1)‖f‖K,q

Kq + ‖n‖q2
T

+O(1)‖f‖K,q
Kq

T

(
(T − 1) e

−δ
(
ζ
‖n‖1
K
∧α
)
K

+ (T − 1)2 e−αδK +
logK

a

)
+O(1)‖f‖K,qKq

(
1− e−λ0(K)

) 1
2 +

1

T
νK(g) + νK(f)1{T≤1}

≤ O(1)‖f‖K,q
(
Kq + ‖n‖q2

)( 1

T

(
2 +

logK

a

)
+ e
−δ
(
ζ
‖n‖1
K
∧α
)
K

+T e−δ αK

+
(
1− e−λ0(K)

) 1
2 + 1{T≤1}

)
.

This finishes the proof of the theorem.

We use the following lemma in the previous proof.

Lemma 5.5. For f ∈ FK,q and g defined in (5.8) we have

|νK(g)− νK(f)| ≤ O(1)Kq ‖f‖K,q
(
1− e−λ0(K)

) 1
2 .

Proof. We write

νK(g) = EνK
[
f(NK(1))1{T0>1}

]
+ EνK

[
f(NK(1))1{T0≤1}

]
.

Since νK is a qsd, using Cauchy-Schwarz inequality, it follows that

|νK(g)− νK(f)|

≤
(
1− e−λ0(K)

)∣∣νK(f)
∣∣+
(
EνK

[
f2(NK(1))

]) 1
2

(
EνK

[
1{T0≤1}

]) 1
2

≤ O(1)Kq ‖f‖K,q
(
1− e−λ0(K)

) 1
2

where we used Corollaries 3.2 and 4.2 and the fact that under νK the law of
T0 is exponential with parameter λ0(K). The lemma is proved.
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6 Fluctuation and correlation relations

6.1 Proof of Relation (1.5)

Let

Σ̃K
i,j =

∫
(ni − n∗i )(nj − n∗j ) dνK(n).

On the one hand we have by (4.3)〈
L †
KνK , (ni − n∗i )(nj − n∗j )

〉
= −λ0(K)

〈
νK , (ni − n∗i )(nj − n∗j )

〉
. (6.1)

By Theorem 4.3 and (4.1) the right-hand side of this equation is exponen-
tially small in K. On the other hand we have using formula (3.1)〈

L †
KνK , (ni − n∗i )(nj − n∗j )

〉
=
〈
νK ,LK

(
(ni − n∗i )(nj − n∗j )

)〉
= K

d∑
`=1

〈
νK , B`

( n
K

) (
(nj − n∗j ) δi,` + (ni − n∗i ) δj,` + δi,` δj,`

)〉
+K

d∑
`=1

〈
νK , D`

( n
K

) (
− (nj − n∗j )δi,` − (ni − n∗i )δj,` + δi,`δj,`

)〉
= K

〈
νK ,
(
Bi

( n
K

)
−Di

( n
K

))
(nj − n∗j )

〉
+K

〈
νK ,
(
Bj

( n
K

)
−Dj

( n
K

))
(ni − n∗i )

〉
+K

〈
νK , Bi

( n
K

)
+Di

( n
K

)〉
δi,j .

We split each integral by separating integration over D (defined in (4.4))
and integration over Dc. Inside Dc, we apply Corollary 4.2 and use the
assumption that B and D are polynomially bounded. Inside D, we use
Taylor’s formula around x∗ for the functions Bi(n/K) − Di(n/K), and
Bi(n/K) + Di(n/K). We also use that Bi(x

∗) = Di(x
∗), 1 ≤ i ≤ d, and

n∗/K − x∗ = O(1)/K. The error terms are bounded by

O(1)

K

∫
‖n−Kx∗‖3

2 dνK(n) and O(1)

∫
‖n−Kx∗‖2 dνK(n)

respectively. Using Theorem 4.3, both bounds are of order
√
K. We obtain

d∑
`=1

M∗i,` Σ̃K
`,j +

d∑
`=1

M∗j,` Σ̃K
`,i + 2KBi (x∗) δi,j = O

(√
K
)

which can be written in the more compact form

M∗Σ̃K + Σ̃K tM∗ + 2DK = O
(√
K
)

(6.2)

where DK is the diagonal matrix of averages birth (or death) rates. To finish
the proof, use (4.13).
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Remark 6.1. Note that each term on the left hand side is of order K, see
Corollary 4.5.

Remark 6.2. Dividing out (6.2) by 2K and taking the limit K → ∞, we
recover (4.14), as expected.

6.2 Proof of Relation (1.6)

Let
Σ̃K
i,j(t) = EνK

[
(NK

i (t)− n∗i )(NK
j (0)− n∗j )

]
, i, j = 1, . . . , d.

For 1 ≤ i ≤ d, let fi(n) = 〈n−n∗, e(i)〉. We have, since Bi(x
∗) = Di(x

∗), 1 ≤
i ≤ d, and n∗/K − x∗ = O(1)/K,

d

dt
Σ̃K
i,j(t)

= EνK
[
LKfi(N

K(t))(NK
j (0)− n∗j )

]
= KEνK

[
Bi

(
NK(t)

K

)(
NK
j (0)− n∗j

)]
−KEνK

[
Di

(
NK(t)

K

)(
NK
j (0)− n∗j

)]
= KEνK

[(
Bi

(
NK(t)

K

)
−Bi

(
n∗

K

))(
NK
j (0)− n∗j

)]
−KEνK

[(
Di

(
NK(t)

K

)
−Di

(
n∗

K

))
(NK

j (0)− n∗j )
]

+O(1).

As in the previous proof, we split the integrals according to whether NK(t) ∈
D or NK(t) ∈ Dc. Using Cauchy-Schwarz inequality, Corollary 4.2, and the
fact that νK is a qsd, the second contribution is exponentially small in K. In
the first contribution, we use Taylor expansion around x∗. The error terms
are bounded by

O(1)

K
EνK [‖NK(t)−Kx∗‖2

2‖NK(0)−Kx∗‖2] +O(1).

Now we use Cauchy-Schwarz inequality, Theorem 4.3 and that νK is a qsd
to obtain

d

dt
Σ̃K
i,j(t)

=
d∑
`=1

(∂`Bi(x
∗)− ∂`Di (x∗))EνK

[
(NK

` (t)− n∗` )(NK
j (0)− n∗j )

]
+O(

√
K)

=

d∑
`=1

M∗i,` Σ̃K
`,j(t) +O

(√
K
)

Since M∗ has a spectrum contained in the open left half-plane by H.3, we
integrate the equation

d

dt
Σ̃K(t) = M∗Σ̃K(t) +O

(√
K
)
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from 0 to τ to get

Σ̃K(τ) = eτM
∗

Σ̃K(0) +O
(√
K
)
.

We arrive at the desired relation by using (4.12).

7 Variance estimates of the statistics

The matrices ΣK(τ) and ΣK can be estimated using Theorem 5.4 with SC(τ)
to infer ΣK(τ) and SΣ, respectively.

Here we prove two variance estimates to complement this result. In
the first one, one starts from anywhere in Zd+, while in the second one the
starting distribution is the qsd.

Proposition 7.1. There exist positive constants δ′, ζ ′, α′, θ′, C ′ and K0 ≥ 2
such that, for all K ≥ K0, f ∈ FK,q (see Definition 5.7), T ≥ 0, and n 6= 0,
we have

En

[(
Sf (T,K)− νK(f)

)2] ≤ C ′‖f‖2K,q(cq‖n‖q1 +Kq)

×
(
‖n‖q1 +Kq logK

T ∨ 1
+Kq e−δ

′
(
ζ′
‖n‖1
K
∧α′
)
K +TKq e−θ

′K

)
where cq is defined in Proposition 3.3.

One can use Chebyshev inequality to bound Pn
(∣∣Sf (T,K)−νK(f)

∣∣ > δ
)
,

for any δ > 0.
The proof of Proposition 7.1 is postponed to Appendix A. The previous

estimate and all the estimates below have the same behaviour in their de-
pendence in K, n and T . They display the qualitative behaviour that we
met several times, namely

1. The bounds are not useful for K too small.

2. If K is large, the bounds are not useful if n is small (order one) because
the process can be absorbed at 0 in a time of order one with a sizeable
probability.

3. Finally for K large and n of order K, the time T must be large enough
(polynomial in K in our bounds) but not too large (less than an ex-
ponential in K because again the process can reach the origin in such
large times).

Under these assumptions the statistics of the process are well approximated
by the qsd.
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Corollary 7.2. There exist two positive constants C ′′ > 0 and θ′′ such that
for all K ≥ K0, for all f ∈ FK,q and for all T ≥ 0, we have

EνK

[(
Sf (T,K)− EνK

(
f
))2] ≤ C ′′‖f‖2K,qK2q

×
(

(1 + C2q)(1 + cq)
logK

T ∨ 1
+ (1 + Cq)(1 + T ) e−θ

′′K

)
where K0 is as in the previous proposition, cq is defined in Proposition 3.3,
and Cq is defined in Corollary 4.2.

Observe that the previous inequality is only useful in the range 0 ≤
T ≤ eθ

′′K . The proofs of the two previous estimates are postponed to the
Appendix.

We now apply the previous results to our statistics (see Definition (1.1)).

Proposition 7.3. We have for all 1 ≤ p ≤ d

En
[∣∣Sµp (T,K)− µKp

∣∣2] ≤ O(1)(c1‖n‖1 +K)

×
(
‖n‖1 +K logK

T ∨ 1
+K e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K +TK e−θK

)
and

EνK

[∣∣Sµp (T,K)− µKp
∣∣2] ≤ O(1)K2

(
1 + logK

T ∨ 1
+ (1 + T ) e−θ

′′K

)
.

Proof. The proof follows by applying Proposition 7.1 and Corollary 7.2 to
the functions f(n) = nj , 1 ≤ j ≤ d, which belong to FK,1.

Proposition 7.4. For 1 ≤ p, p′ ≤ d and for all n 6= 0, we have

En
[(
SΣ
p,p′(T,K)− ΣK

p,p′
)2] ≤ O(1)(c2‖n‖21 +K2)2

×
(

1 + logK

T ∨ 1
+ e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K +T e−θK

)
and

EνK

[(
SΣ
p,p′(T,K)− ΣK

p,p′
)2] ≤ O(1)K4

(
1 + logK

T ∨ 1
+ (1 + T ) e−θ

′′K

)
.

Proof. The proof follows by applying Proposition 7.1 and Corollary 7.2 to
the functions f(n) = npnp′ , 1 ≤ p, p′ ≤ d, which belong to FK,2.

Proposition 7.5. There exist positive constants C̃, θ̃, δ̃, ζ̃ and β̃ such that
for all K ≥ 2, T > 0 and 1 ≤ ` ≤ d,

En

[(
SD

` (T,K)−KB`(x
∗)
)2] ≤

C̃
(
K +

A`(1 + Cq`)K

T
+K1−q`A`

T
(K + ‖n‖1)

q`R`

+K2−2q`A2
` (K + ‖n‖1)

2q`(R2
` + R`)

)
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where

R` = (1 + cq`)

(
1 + logK

T
+ T e−θ̃K + e−δ̃(ζ̃

n

K
∧β̃)K

)
and A` > 0, q` ∈ N, are such that, for all x ∈ Rd+,

|B`(x)| ≤ A`(1 + ‖x‖q`1 ).

The existence of A` and q` follows from the assumptions on B. The constants
Cq` and cq` are defined in Corollary 4.2 and Lemma 3.3, respectively.
We also have

EνK

[(
SD

` (T,K)−KB`(x
∗)
)2] ≤

C̃

(
K +

A`(1 + Cq`)K

T
+
A`
T
KR̃` +K2A2

` (R̃
2
` + R̃`)

)
where

R̃` = (1 + Cq`)

(
(1 + C2q`)(1 + cq`)

logK

T
+ (1 + T ) e−θ̃K

)
.

Proof. First observe that

SD

` (T,K) =
1

T
NK
` (0, T )

where NK
` (0, T ) is defined in Appendix B. By assumption, the function

f`(n) = Kq` B`
( n
K

)
∈ FK,q` . Let m be any probability measure on Zd+

having all its moments finite. We apply Theorem 5.4 to the function f`, and
then using integration against m we get∣∣Em

[
Sf`(T,K)

]
− νK(f`)

∣∣ ≤ O(1)‖f`‖K,q`

×
∫ (

(K + ‖n‖2)
q`

(
e
−δ
(
ζ
‖n‖1
K
∧β
)
K

+T e−δ β K +
1 + logK

T

))
dm(n).

We now apply the identity in Proposition B.1 and divide by Kq`−1. We
obtain∣∣∣Em

[
SD

` (T,K)
]
− νK

(
KB`

( n
K

))∣∣∣ ≤ O(1)‖f`‖K,q` K
1−q` (7.1)

×
∫ (

(K + ‖n‖2)
q`

(
e
−δ
(
ζ
‖n‖1
K
∧β
)
K

+T e−δβK +
1 + logK

T

))
dm(n).

We now estimate∫
B`

( n
K

)
dνK(n) =

∫
D
B`

( n
K

)
dνK(n) +

∫
Dc
B`

( n
K

)
dνK(n).

The second integral is bounded from above by O(1)/K using the polynomial
bound on B` and the first estimate in Corollary 4.2. For the first integral
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we use Taylor expansion around x∗ to first order, then Cauchy-Schwarz
inequality, and finally Theorem 4.3 for q = 1. Therefore we obtain∣∣Em

[
SD

` (T,K)
]
−KB`(x∗)

∣∣ ≤ O(1)
√
K +O(1) ‖f`‖K,q`K

1−q`

×
∫

(K + ‖n‖2)
q`

(
e
−δ
(
ζ
‖n‖1
K
∧β
)
K

+T e−δ β K +
1 + logK

T

)
dm(n). (7.2)

Now we apply the estimate in Proposition B.1 to obtain

Em

[(
SD

` (T,K)− Em

[
SD
` (T,K)

])2]
=

1

T 2
Em

[(
NK
` (0, T )− Em

[
NK
` (0, T )

])2]
≤ Em

[(
1

T

∫ T

0
K1−q` f`(N

K(s)) ds− Em

[
NK
` (0, T )

T

])2
]

+
2

T
Em

[
1

T

∫ T

0
K1−q` f`(N

K(s)) ds

]
≤ 2Em

[(
1

T

∫ T

0
K1−q` f`(N

K(s)) ds−K1−q`νK(f`)

)2
]

+ 2Em

[(
K1−q`νK(f`)− Em

[
SD
` (T,K)

])2
]

+
2

T
Em

[
1

T

∫ T

0
K1−q` f`

(
NK(s)

)
ds

]
.

For the first term we use either Corollary 7.2 or Proposition 7.1. For the
second term we use (7.1). For the third and last term we apply Theorem 5.4,
integrate with respect to m and use (7.2). To finish the proof, we replace m
by either δn or νK .

Recall that Bp(x
∗) = Dp(x

∗), 1 ≤ p ≤ d.

Proposition 7.6. Under the assumptions of Proposition 7.1 and Corollary
7.2, we have, for all 1 ≤ p, p′ ≤ d, and τ ≥ 0,

En

[(
SCp,p′(T, τ,K)− ΣK

p,p′(τ)
)2] ≤ O(1)

(
c2‖n‖21 +K2

)2×(
1 + τ + logK

T ∨ 1
+ e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K +(T + τ) e−θK

)
.

and

EνK

[(
SCp,p′(T, τ,K)− ΣK

p,p′(τ)
)2]

≤ O(1)K4

(
1 + τ + logK

T
+ (1 + T + τ) e−θ

′′K

)
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Proof. The proof requires some simple modifications of the proofs of Pro-
postions 7.1 and 7.2. This is left to the reader.

Remark 7.1. One can check that if one modifies slightly the definition of
the statistics in Definition 1.1 by integrating from time 1, then, in the four
previous propositions, one can replace the factor (‖n‖1 +K) by K, and the
factor (‖n‖21 +K2) by K2.

We now define an empirical matrix M∗emp(T, τ,K) by

eτM
∗
emp(T,τ,K) = SC(T, τ,K)SΣ(T,K)−1

and an empirical resilience by

ρ∗emp(T, τ,K) = − sup{Re(z) : z ∈ Sp
(
M∗emp(T, τ,K)

)
}.

From the above results one can derive various statistical estimates for the
difference between ρ∗emp(T, τ,K) and ρ∗.

Proposition 7.7. For τ of order one, ‖n‖1 of order K, log T � K and K
large enough, we have, with a probability higher than 1− 1/K,

∣∣ρ∗emp(T, τ,K)− ρ∗
∣∣ ≤ O(1)

(
K2

√
T

+
1√
K

)
.

In particular, if T � K5,
∣∣ρ∗emp(T, τ,K)− ρ∗

∣∣ ≤ O(1)/
√
K.

Proof. It follows from Propositions 7.4 and 7.6 and the standing assumptions
that, with a probability higher that 1− 1/K, we have

‖SC(T, τ,K)− ΣK(τ)‖ ≤ O(1)
K3

√
T

and

‖SΣ(T,K)− ΣK‖ ≤ O(1)
K3

√
T
.

We now use Theorem 1.6 and Proposition 4.6 to obtain∥∥∥eτM
∗
emp(T,τ,K)− eτM

∗
∥∥∥ ≤ O(1)

(
1√
K

+
K2

√
T

)
.

The result follows since τ is of order one.
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A Proof of the two variance estimates

A.1 Starting from anywhere: proof of Proposition 7.1

It is enough to prove the result for ‖f‖K,q = 1. We have

En

[(
1

T

∫ T

0
f
(
NK(t)

)
dt

)2
]

=
2

T 2

∫ T

0
dt2

∫ t2

0
En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1.

Step 1 is to estimate the contribution of the range 0 ≤ t1 ≤ t2 ≤ 1. Using
Cauchy-Schwarz inequality and Proposition 3.3 we get∣∣∣∣∫ 1

0
dt2

∫ t2

0
En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1

∣∣∣∣ ≤ O(1)
(
‖n‖q1 +Kq

)2
.

Step 2 is to estimate the contribution in the range 0 ≤ t2 − 1 ≤ t1 ≤ t2.
This implied that T > 1. We have using again Proposition 3.3∣∣∣∣∫ T

1
dt2

∫ t2

t2−1
En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1

∣∣∣∣
≤
∫ T

1
dt2

∫ t2

t2−1

(
En

[
f
(
NK(t1)

)2]
+ En

[
f
(
NK(t2)

)2])
dt1

≤ O(1)T
(
‖n‖q1 +Kq

)2
.

Step 3
(1) Using the Markov property and the definition of g (see (5.8)) we have∫ T

1
dt2

∫ t2−1

0
En

[
f
(
NK(t1)

)
f
(
NK(t2)

)]
dt1

=

∫ T−1

0
ds

∫ s

0
En

[
f
(
NK(t1)

)
g
(
NK(s)

)]
dt1

=

∫ T−1

0
ds

∫ s

0
En

[
f
(
NK(t1)

)
ENK(t1)

[
g
(
NK(s− t1)

)]]
dt1 .

Let us first write

En

[
f
(
NK(t1)

)
ENK(t1)

[
g
(
NK(s− t1)

)]]
as the sum of J1(n) and J2(n) where

J1(n) = En

[
f
(
NK(t1)

)
ENK(t1)

[
1{T0>s−t1}g

(
NK(s− t1)

)]]
and

J2(n) = En

[
f
(
NK(t1)

)
ENK(t1)

[
1{T0≤s−t1}g

(
NK(s− t1)

)]]
.
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We further decompose J1(n) as J1,1(n) + J1,2(n) where

J1,1(n) = En

[
f
(
NK(t1)

)
1{T0≤t1}ENK(t1)

[
1{T0>s−t1}g

(
NK(s− t1)

)]]
and

J1,2(n) = En

[
f
(
NK(t1)

)
1{T0>t1}ENK(t1)

[
1{T0>s−t1}g

(
NK(s− t1)

)]]
.

Since 0 is an absorbing state, we have for all n 6= 0 that

J1,1(n) = 0.

(2) We start by estimating J2(n). Since 0 is an absorbing state, we have

J2(n) = g(0)En

[
f
(
NK(t1)

)
PNK(t1)

(
T0 ≤ s− t1

)]
.

Note that g(0) = E0[f(NK(1))] = f(0). Since we are going to use Lemma
5.2, we write J2(n) = J2,1(n) + J2,2(n) where

J2,1(n) = f(0)En

[
f
(
NK(t1)

)
1{‖NK(t1)‖1>Kα/ζ}PNK(t1)

(
T0 ≤ s− t1

)]
.

and

J2,2(n) = f(0)En

[
f
(
NK(t1)

)
1{‖NK(t1)‖1≤Kα/ζ}PNK(t1)

(
T0 ≤ s− t1

)]
.

We first estimate J2,1(n). Using (5.9), Lemma 5.2 with γ = 0, and since f
belongs to FK,q (see (5.7)), we have

|J2,1(n)| ≤ O(1)En
[
|f(NK(t1))|

]
e−αδK(1 + C(s− t1))

≤ O(1)(‖n‖q1 +Kq) e−αδK(1 + C(s− t1))

where we used Proposition 3.3 for the second inequality.

We now estimate J2,2(n) by splitting it as J2,2,1(n) + J2,2,2(n) where

J2,2,1(n) = f(0)En

[
f
(
NK(t1)

)
1{‖NK(t1)‖1≤Kα/ζ} 1

{
‖NK(t1)‖1>

([
1

2‖x∗‖1

(
ζ
‖n‖1
K
∧α
)]
∧1
)
K
}

PNK(t1)

(
T0 ≤ s− t1

)]
.

and

J2,2,2(n) = f(0)En

[
f
(
NK(t1)

)
1{‖NK(t1)‖1≤Kα/ζ}1

{
‖NK(t1)‖1≤

([
1

2‖x∗‖1

(
ζ
‖n‖1
K
∧α
)]
∧1
)
K
}

PNK(t1)

(
T0 ≤ s− t1

)]
.
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Proceeding as before we get

|J2,2,1(n)| ≤ O(1)KqEn

[
1{
‖NK(t1)‖1>

([
1

2‖x∗‖1

(
ζ
‖n‖1
K
∧α
)]
∧1
)
K
}PNK(t1)

(
1{T0≤s−t1}

)]

≤ O(1)Kq
(

e
−δK

(([
1

2‖x∗‖1

(
ζ
‖n‖1
K
∧α
)]
∧1

)
∧α
)

+(s− t1) e−αδK
)
.

We used Lemma 5.2 with γ = 0.
We now handle J2,2,2(n).

Note that γ ≤ 1∧ α
‖x∗‖1

. We proceed as before with f and g, and we use

Lemma 5.2 with

γ =

(
1

2‖x∗‖1

(
ζ
‖n‖1

K
∧ α
))
∧ 1.

to get

|J2,2,2(n)| ≤ O(1)Kq Pn

(
‖NK(t1)‖1 ≤

((
1

2‖x∗‖1

(
ζ
‖n‖1

K
∧ α
))
∧ 1

)
K

)
≤ O(1)Kq

(
e−δ
(

1
2

(
ζ
‖n‖1
K
∧α
)
∧‖x∗‖1

)
K +C t1 e−

αδK
2

)
.

(3) Let us now estimate for all n 6= 0∣∣J1,2(n)− νK(f)2
∣∣ .

We have∣∣J1,2(n)− νK(f)2
∣∣ ≤ ∣∣∣J1,2(n)− νK(g)En

[
f(NK(t1))1{T0>t1}PNK(t1)

(
T0 > s− t1

)]∣∣∣
+
∣∣∣νK(g)En

(
f
(
NK(t1)

)
1{T0>t1}PNK(t1)

(
T0 > s− t1

))
− νK(g)En

(
f
(
NK(t1)

)
1{T0>t1}

)∣∣∣
+
∣∣∣νK(g)En

(
f
(
NK(t1)

)
1{T0>t1}

)
− νK(g)νK(f)

∣∣∣+
∣∣νK(g)νK(f)− νK(f)2

∣∣
= W1(n) +W2(n) +W3(n) +W4.

(3)-(i) By Theorem 5.1 and since NK(t1) 6= 0, we have∣∣∣ENK(t1)

[
1{T0>s−t1}g

(
NK(s−t1)

)]
−PNK(t1)

(
T0 > s−t1

)
ν(g)

∣∣∣ ≤ O(1)Kq e
−a (s−t1)

logK .

Hence, using Proposition 3.3, we get for all n 6= 0

W1(n) ≤ O(1)Kq
(
cq‖n‖q1 +Kq

)
e
−a (s−t1)

logK .

(3)-(ii) We have∣∣∣νK(g)En

[
f
(
NK(t1)

)
1{T0>t1}PNK(t1)

(
T0 > s− t1

)]
− νK(g)En

[
f
(
NK(t1)

)
1{T0>t1}

]∣∣∣
≤
∣∣νK(g)

∣∣En(∣∣f(NK(t1)
)∣∣ 1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

))
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Define 0 < γ′ < β by

γ′ = γ′(n) =
1

2

(
ζ‖n‖1

K
∧ α
)
.

We split the right hand side in two terms:

En

[∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
= En

[
1{‖NK(t1)‖1≤γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
+ En

[
1{‖NK(t1)‖1>γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
The first term is estimated using the growth property of f , Lemma 5.2, and
Cauchy-Schwarz inequality, namely

En

[
1{‖NK(t1)‖1≤γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
≤ En

[
1{‖NK(t1)‖1≤γ′K}

∣∣f(NK(t1)
)∣∣2] 1

2
Pn
(
‖NK(t1)‖1 ≤ γ′K

) 1
2

≤ O(1)Kq Pn
(
‖NK(t1)‖1 ≤ γ′K

) 1
2

≤ O(1)Kq
(

e
− δ

2

(
ζ
‖n‖1
K
∧α
)
K

+O(1) t1 e−
αδK

2

) 1
2
.

To deal with the second term, we observe using Lemma 5.2 and Proposition
3.3 that, if ‖NK(t1)‖1 > γ′K, then

PNK(t1)

(
T0 ≤ s− t1

)
≤ e
−δ
(
ζ
‖NK (t1)‖1

K
∧α
)
K

+O(1)(s− t1) e−αδK

≤ e−δ(ζγ
′∧α)K +O(1)(s− t1) e−αδK

= e
−δ
(
ζ
(

1
2

(
ζ‖n‖1
K
∧α
))
∧α
)
K

+O(1)(s− t1) e−αδK .

Now

En

[
1{‖NK(t1)‖1>γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}PNK(t1)

(
T0 ≤ s− t1

)]
≤ O(1)En

[
1{‖NK(t1)‖1>γ′K}

∣∣f(NK(t1)
)∣∣1{T0>t1}

]
×
(

e
−δ
(
ζ
(

1
2

(
ζ‖n‖1
K
∧α
))
∧α
)
K

+O(1)(s− t1) e−αδK
)

≤ O(1)
(
‖n‖q +Kq

)(
e
−δ
(
ζ
(

1
2

(
ζ‖n‖1
K
∧α
))
∧α
)
K

+O(1)(s− t1) e−αδK
)

×
(

e
−δ (1∧ζ)

2

(
ζ2‖n‖1

2K
∧α
)
K

+O(1)(s− t1) e−αδK
)
.

37



(3)-(iii) Let us now prove that for all n 6= 0,

W3(n) =
∣∣∣En(f(NK(t1)

)
1{T0>t1}

)
− νK(f)

∣∣∣
≤ O(1)(cq‖n‖q1 +Kq)

(
e
−a(t1−1)

logK + e−λ0(K) e−δ
(
ζ
‖n‖1
K
∧α
)
K

+ C(t1 − 1) e−αδK +1− e−λ0(K)
)
. (A.1)

For 0 ≤ t1 ≤ 1, using Proposition 3.3 we obtain∣∣∣En[f(NK(t1)
)
1{T0>t1}

]∣∣∣ ≤ O(1)(cq‖n‖q1 +Kq).

We now deal with t1 > 1. By the Markov property one has

En

[
f
(
NK(t1)

)
1{T0>t1}

]
= En

[
1{T0>t1−1}ENK(t1−1)

[
f
(
NK(1))1{T0>1}

]]
= En

[
1{T0>t1−1}g̃(NK(t1 − 1))

]
where

g̃(n) = En
[
NK(1)1{T0>1}

]
≤ g(n)

is a function bounded by O(1)Kq. For n 6= 0, we use Theorem 5.1 and
Corollary 3.2 to get∣∣∣En[1{T0>t1−1}ENK(t1−1)

[
f
(
NK(1))1{T0>1}

]]
−Pn

(
T0 > t1 − 1

)
EνK

[
f
(
NK(1))1{T0>1}

]∣∣∣
≤ O(1)Kq e

−a (t1−1)
logK .

Since νK is the qsd, we have

EνK
[
f
(
NK(1))1{T0>1}

]
= e−λ0(K) νK(f).

Using Corollary 4.2, Lemma 5.2 and the properties of f we obtain∣∣∣Pn(T0 > t1 − 1
)
EνK

[
f
(
NK(1))1{T0>1}

]
− νK(f)

∣∣∣
≤ O(1)Kq

(
e−λ0(K) e−δ

(
ζ
‖n‖1
K
∧α
)
K +C(t1 − 1) e−βδK +1− e−λ0(K)

)
and (A.1) is proved.

(3)-(iv) Let us note that

W4 ≤ |νK(f)||νK(f)− νK(g)|.

Proposition 3.3 and Lemma 5.5 give

W4 ≤ O(1)K2q
(
1− e−λ0(K)

) 1
2 .
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(3)-(v) Collecting the informations given in the four previous estimates,
we obtain a precise estimation of

∣∣J1,2(n)− νK(f)2
∣∣ for all n 6= 0.

(3)-(vi) We have∣∣∣En[f(NK(t1)
)
ENK(t1)

[
g
(
NK(s− t1)

)]]
− νK(f)2

∣∣∣
≤ |J2(n)|+

∣∣J1,2(n)− νK(f)2
∣∣ .

Collecting the above relevant estimates we obtain that there exist δ′, ζ ′, β′, θ′

(all being positive and independent of K) such that∣∣∣En[f(NK(t1)
)
ENK(t1)

[
g
(
NK(s− t1)

)]]
− νK(f)2

∣∣∣ ≤ O(1)Kq(cq‖n‖q1 +Kq)

×
(
1{t1≤1} + e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K +(s+ t1 + 1) e−θ

′K + e
−a(s−t1)

logK + e
− at1

logK

)
.

Now we have

2

T 2

∣∣∣∣∫ T−1

0
ds

∫ s

0
En

[
f
(
NK(t1)

)
ENK(t1)

[
g
(
NK(s− t1)

)]]
dt1 − νK(f)2

∣∣∣∣
≤ O(1)Kq(cq‖n‖q1 +Kq)

(
1

T
+ e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K +T e−θ

′K +
logK

T

)
.

The final result for T ≥ 1 follows by collecting all estimates. For T < 1 the
bound follows directly from Proposition 3.3.

A.2 Starting from the qsd: proof of Corollary 7.2

The result follows from Proposition 7.1 by integrating over n with respect
to the qsd. More precisely, we have

En

[∣∣Sf (T,K)− νK(f)
∣∣2] ≤ C ′‖f‖2K,q((cq‖n‖q1 +Kq)‖n‖q1 +Kq logK

T ∨ 1

+ (cq‖n‖q1 +Kq)Kq e−δ
′
(
ζ′
‖n‖1
K
∧β′
)
K +(cq‖n‖q1 +Kq)TKq e−θ

′K

)
.

The integrals of the first and third terms with respect to the q.s.d are esti-
mated using Corollary 4.2. We deal with second term:∫

(cq‖n‖q1 +Kq)Kq e−δ
′
(
ζ′
‖n‖1
K
∧β′
)
K dνK(n) =∫

1{{‖n‖1<β′K/ζ′}}∩D}(cq‖n‖
q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K dνK(n)

+

∫
1{{‖n‖1<β′K/ζ′}}∩Dc}(cq‖n‖

q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K dνK(n)

+

∫
1{‖n‖1≥β′K/ζ′}(cq‖n‖

q
1 +Kq)Kq e−δ

′
(
ζ′
‖n‖1
K
∧β′
)
K dνK(n).
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The third integral is estimated using the fact that the integrand is exponen-
tially small in K. The second integral is estimated using the first estimate
in Corollary 4.2. We finally deal with the first integral. If n ∈ D then
‖n‖1 ≥ ‖n‖2 ≥ ‖n∗‖2/2. If {‖n‖1 < β′K/ζ ′} ∩ D 6= ∅, on this set we have

e−δ
′
(
ζ′
‖n‖1
K
∧β′
)
K ≤ e−δ

′ζ′‖n∗‖2/2 (exponentially small in K). The estimate
follows.

B Counting the number of births

Denote by NK
` (t1, t2) the number of births of species of type ` between the

times t1 and t2 (1 ≤ ` ≤ d, 0 ≤ t1 ≤ t2).

Proposition B.1. For any probability measure m on Zd+, we have

Em

[
NK
` (t1, t2)

]
= K

∫ t2

t1

Em

[
B`

(
NK(s)

K

)]
ds

and

Em

[(
NK
` (t1, t2)− Em

[
NK
` (t1, t2)

])2
]
≤ 2KEm

[ ∫ t2

t1

B`

(
NK(s)

K

)
ds

]
+ Em

[(∫ t2

t1

KB`

(
NK(s)

K

)
ds− Em

[
NK
` (t1, t2)

])2
]
.

Proof. Recall that the generator of the process is given in (3.1). Let us now
give a pathwise representation of the process. We introduce d independent
point Poisson measures M`(ds, dθ) on R+×R+ with intensity ds dθ. We
define the d-dimensionnal càd-làg process (Nt, t ∈ R+)

Nt = N0 +
d∑
`=1

∫ t

0

∫
M`(ds, dθ)

×

(
1{

θ≤KB`
(
NK (s)

K

)} − 1{
KB`

(
NK (s)

K

)
≤θ≤K

(
B`

(
NK (s)

K

)
+D`

(
NK (s)

K

))}
)
.

Then the number of births of species between the times t1 and t2 is given
by

NK
` (t1, t2) =

∫ t2

t1

∫
1{

θ≤KB`
(
NK (s)

K

)}M`(ds, dθ).

Using the Markov property we get at once the first identity.
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We now establish the estimate. Indeed

Em

[(
NK
` (t1, t2)− Em

(
NK
` (t1, t2)

)2
]

≤ 2Em

[(
NK
` (t1, t2)−

∫ t2

t1

KB`

(
NK(s)

K

)
ds
)2
]

+ 2Em

[(∫ t2

t1

KB`

(
NK(s)

K

)
ds− Em

[
NK
` (t1, t2)

])2
]
.

By the L2-isometry for jump processes (see [7] Formula (3.9) p.62), we have

Em

[(
NK
` (t1, t2)−

∫ t2

t1

KB`

(
NK(s)

K

)
ds
)2
]

=

∫ t2

t1

∫
Em

((
1{

θ≤KB`
(
NK (s)

K

)})2
)

ds dθ

=

∫ t2

t1

Em

[
KB`

(
NK(s)

K

)]
ds.

This finishes the proof.

C A numerical example

We consider the two-dimensional vector fields

B(x1, x2) =

(
a x1 + b x2

e x1 + f x2

)
and

D(x1, x2) =

(
x1

(
c x1 + d x2

)
x2

(
g x1 + hx2

))
where all the coefficients are positive. This is a model of competition between
two species of Lotka-Volterra type. We have taken

a = 0.4569, b = 0.2959, e = 0.5920, f = 0.6449

c = 0.9263, d = 0.9157, g = 0.9971, h = 0.2905.

Assumptions H.1 and H.4 are easily verified numerically. Assumptions H.5
and H.6 are true because B̂(y) ≤ a + b + e + f and D̂(y) ≥ (c ∧ h)y2/4.
Concerning H.2, we checked numerically that there is a unique fixed point
inside the positive quadrant, namely x∗ = (0.3567, 1.4855). It remains to
check H.3, namely that

−β = sup
x∈R2

+

R(x) < 0
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where

R(x) =
〈X(x), (x− x∗)〉
‖x‖2‖x− x∗‖2

2

.

We first checked that the numerator N(x) = 〈X(x), (x − x∗)〉 is negative
and vanishes only in 0 and x∗. It is easy to check that N(x) < 0 for
‖x‖2 large enough. We have verified numerically that the only solutions
of the equations ∂x1N = ∂x2N = 0 in the closed positive quadrant are x∗

and z = (0.1739, 0.4361), with N(z) = −0.2852, thus this is negative local
minimum. This implies that N(x) < 0 in the closed positive quadrant,
except at 0 and x∗ where it vanishes. This implies that R ≤ 0 in the closed
positive quadrant. It is easy to check that

lim sup
‖x‖2→+∞

R(x) ≤ −(c ∧ h)/
√

2.

This implies that R < 0 except perhaps in 0 and x∗. Near 0 we have by
Taylor expansion

R(x) = −〈DX(0)x, x∗〉
‖x‖2‖x∗‖2

2

(
1 +O

(
‖x‖2

))
= −〈x,

tDB(0)x∗〉
‖x‖2‖x∗‖2

2

(
1 +O

(
‖x‖2

))
and, since the vector tDB(0)x∗ has positive components, there exists % > 0
such that for all x ∈ R2

+

〈x, tDB(0)x∗〉 ≥ % ‖x‖2.

If y = x− x∗ is small, we have by Taylor expansion (since X(x∗) = 0)

R(x) =
〈M∗y, y〉
‖x∗‖2 ‖y‖2

2

(
1 +O

(
‖y‖2

))
=

〈
y, 1

2

(
tM∗ +M∗

)
y
)〉

‖x∗‖2 ‖y‖2
2

(
1 +O

(
‖y‖2

))
.

One can check numerically that the two real eigenvalues of the symmetric
matrix

tM∗ +M∗

are strictly negative, the largest being numerically equal to −0.786. This
completes the verification of hypothesis H.3.

We have chosen K = 105 and simulated a realization of the process
with T = 100 which contains about 5.107 jumps. The resilience computed
from the vector field is numerically equal to 0.547. We have computed
ρ∗emp(100, 1, 105). The relative error, that is |ρ∗emp(100, 1, 105) − ρ∗|/ρ∗, is
equal to 0.022.

We have also checked the size of the error in (1.5). We have computed

ε =
1√
K

∥∥M∗SΣ(T,K) + SΣ(T,K) tM∗ + 2DK
∥∥
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where ‖ · ‖ stands for Hilbert-Schmidt norm. For the above values of T and
K, ε = 68, which corresponds to a rather large error term. However, we
have also checked that this quantity depends strongly on T . Namely, for
K = 2000 and T = 2000 (which has roughly the same computational cost),
we have found ε = 3.19.
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