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Abstract

A novel theory of time discounting is proposed in which future con-

sumption is less valuable than present consumption because of waiting

costs. Waiting is intermittent as individuals' attention is periodically dis-

tracted away from future grati�cations. The more individuals expect to

pay attention to the reward, the more they are impatient. The model re-

visits the fundamental link between short and long-term impatience and

solves two behavioral anomalies: impatience over short durations and sub-

additive discounting.
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1 Introduction

Impatience is a key feature of intertemporal decisions. It is also a versatile prop-

erty. People do not like waiting two minutes at a stoplight, but are willing to

save for their retirement occurring in several decades. These contrasting atti-

tudes suggest that the horizon of choice interacts non-linearly with individuals'

propensity to discount future outcomes. This article explores this possibility and

proposes a novel theory of time discounting which starts from the observation

that waiting for a reward requires a mental e�ort to resist temptation and cope

with some amount of frustration. The more delayed the grati�cation, the longer

the waiting period and the less valuable future utility. Moreover, people do not

permanently experience waiting as they spend most of their time absorbed in

daily activities during which future grati�cations are not reminded. Waiting

episodes can be triggered by an external event or a cue, like discussing a new

model of cell-phone with a colleague, watching a tv advertisement or contem-

plating a piece of chocolate fudge cake at a friend's birthday.1 Reminding may

also spontaneously occur when the image of a grati�cation springs to mind, or

when a need is felt, out of boredom, discomfort, stress, hunger, thirst or craving.

To investigate implications of intermittent waiting for time preferences, I pose

a multi-period setting in which an agent derives utility from a good which may

be consumed now or later. Waiting is both costly and intermittent, as reminding

future consumption occurs with some probability every period. When individuals

experience intermittent reminding, both the waiting costs and frequency of wait-

ing periods undermine consumer's willingness to delay consumption. Whereas

most models of discounting focus on the extent to which people discount future

1The frequency of reminders may be reinforced by biased attention toward temptation cues.

For example, smokers have been found to display selective attention for smoking-related cues

(Mogg, Field, and De Houwer, 2003), and heavy drinkers toward alcohol-related cues (e.g.

Townshend and Duka, 2001). See Bernheim and Rangel (2004) for a theoretical analysis.
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utilities, implications of intermittent waiting have not been investigated so far.

This second dimension of discounting is arguably as important as the size of

discounting. For example, a typical question asked to people who su�er from

addiction is �how many times a day do you think about ...�. In less extreme sit-

uations, repeated exposure to temptation goods may lead consumers to indulge,

which is routinely exploited by the advertising industry.

I then use the model to investigate the under-explored yet important issue of

how short-term discounting is connected to long-term discounting. Several stud-

ies have shown that people tend to express strong impatience over short periods

(Frederick, Loewenstein and O'Donoghue, 2002). Even small deviations from

perfect patience over short durations lead to excessive impatience over long dura-

tions due to the power of compounding (Rabin, 2002; Shapiro, 2005; O'Donoghue

and Rabin, 2015). Another branch of the literature has reported in experiments

sub-additive discounting, i.e. people discount more future payo�s in a sequence

of short-duration trade-o�s than in a single trade-o� over the same time interval

(Read, 2001, Read and Roelofsma, 2003, Scholten and Read, 2006 and Kinari

et al., 2009). Dohmen et al., (2012) and Dohmen et al. (2017) also �nd sub-

additivity in German representative samples. Present bias models provide only

a partial explanation for excessive short-term impatience. Even after controlling

for the possibility of present bias, Andreoni and Sprenger (2012) estimate an-

nualized discount rates between 25 and 38 percent and Balakrishnan, Haushofer

and Jakiela (2020) between 77 and 96 percent. These values are far in excess

than those obtained from introspection or routinely used in macroeconomic mod-

els. Moreover, present bias models belong to the class of additive models and

therefore cannot account for sub-additivity.

The intermittent discounting model proposes a theory of short-term impa-

tience and sub-additivity based on the premise that individuals expect relatively
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more waiting and therefore are more impatient in short-delay trade-o�s than in

a long-delay trade-o� during which they expect to spend most of their time for-

getting the reward. I also show that when reminding probabilities are stationary

and waiting costs are exponentially discounted, the discount function takes a

simple two-parameter functional form D(0) = 1 and D(t) = πβt +(1−π)β, with

π the probability of reminding consumption at any future date and β ∈ (0, 1) an

inverse measure of waiting costs. The formulation distinguishes two dimensions

of impatience: the waiting intensity and its frequency. It boils down to the expo-

nential model of Samuelson (1937) when reminding repeats every period (π = 1).

Exponential discounters are strongly impatient in terms of reminding frequency.

The remainder of the paper is organized as follows. Section 2 reviews the

related literature. Section 3 explains why previous models of discounting have

di�culties in properly relating short and long-duration impatience. Section 4

lays out an axiomatically founded model of consumption with intermittent wait-

ing. Section 5 presents an analytically tractable two-parameter version of the

model. The two next sections explain why intermittent waiting is consistent

with impatience over short durations (Section 6) and sub-additive discounting

(Section 7). Section 8 concludes.

2 Related Literature

The paper is related to the vast literature in psychology on waiting, distractions,

and time perception. A body of consistent evidence shows that the perception

of duration is a�ected by attention. The father of American psychology William

James already noted in 1890: �The tracts of time (...) shorten in passing when-

ever we are so fully occupied with their content as not to note the actual time

itself. (...) On the contrary, a day full of waiting, of unsatis�ed desire for change,
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will seem a small eternity�. Closer to us, experimental evidence shows that the

ratio of judged to real duration increases when attention is stimulated.2 People

who are paying attention to time itself, e.g. when they are waiting in a queue, or

when they have been told in advance to estimate a period of time, feel the time

passing more slowly. On the contrary, the ratio of judged to real time decreases

when subjects are kept busy by a cognitively demanding task (Zakay and Block,

1997). If attention is distracted by non-temporal information, less capacity is

available for processing temporal information (Kahneman, 1973). Katz, Larson

and Larson (1991) �nd that distractions like watching a news board or television

while waiting make the wait more acceptable for customers. The evidence is

consistent with the model's assumption that consumers pay attention to time

in waiting states. The process of waiting causes a lengthening of the perceived

temporal distance, which deepens the discount on delayed utility.

Existing models of discounting have di�culties in explaining why waiting is

more aversive when the reward is physically close, visible, or can be examined.

As already noted by Senior (1836)3, resisting is particularly di�cult when one is

in the �actual presence of the immediate object of desire.� In the famous �marsh-

mallow experiment� by Mischel and Ebbesen (1970) and Mischel, Ebbesen and

Rasko� Zeiss (1972), pre-school children were given the choice between one treat

immediately or two if they waited for a short period. They found that children

waited much longer for a preferred reward when they were distracted from it than

when they attended to them directly. When the rewards were out of sight, 75%

of children were able to wait the full time (15 minutes). When it was exposed,

the mean delay time was only about 1 minute. Successful children developed

2See Fraisse (1963) and Thomas and Brown (1974) for evidence. Hicks, Miller and Kins-

bourne (1976) and Thomas and Weaver (1975) provide an attention-based theory of this phe-

nomenon. Another interpretation is that people use a subjective internal timer which is slowed

down when they are kept busy (Taatgen, Hedderik and Anderson, 2007).
3Quoted in Frederick, Loewenstein and O'Donoghue (2002).

5



strategies of diversion like singing songs or thinking aloud. Mischel, Ebbesen

and Rasko� Zeiss (1972) conclude that �attentional and cognitive mechanisms

which enhanced the salience of the rewards shortened the length of voluntary

delay, while distractions from the rewards, overtly or cognitively, facilitated de-

lay.� Multiple follow-up studies have con�rmed that keeping in mind the reward

hinders the ability to control one-self (Metcalfe and Mischel, 1999).

More recently, Hofmann et al. (2012) investigate with an experience sampling

method how often desires in everyday life, like eating, sleeping or drinking, are

felt and how often they are enacted or inhibited. They �nd that people who were

the best at self-control reported fewer episodes of temptation rather than better

ability to resist temptations. Ent et al. (2015) also show that self-control is

linked to avoiding, rather than merely resisting temptation. Traditional theories

of intertemporal choice have di�culties in accounting for those observations as

pure time preferences are not distinguished from the frequency of temptations.

Relatedly, some researchers argue that decreasing impatience re�ects non-

linear perception of time. Ebert and Prelec (2007) report that making people

pay more attention to the time dimension of the choice (e.g. by letting people

focus on the arrival date of an item) has the e�ect of increasing discounting of

the far future. Zauberman et al. (2009) �nd that making duration more salient

to participants lead them to be more sensitive to time horizon, resulting in less

similar preference between short and long time horizons.4

4See also Radu et al. (2011).
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3 Relation between short and long-run rates

This section presents two related behavioral anomalies: impatience over short

delays and sub-additive discounting.

3.1 Short-run impatience

In experiments, people tend to express strong impatience over short durations

(Frederick, Loewenstein and O'Donoghue, 2002). Short-run impatience is hard

to reconcile with reasonable long-run impatience. To understand why, consider

an exponential discounter whose discount rate and discount factor over a short

period of time (e.g. a day or a week) are ρ ≥ 0 and D(1) = (1+ρ)−1 respectively.

Compounded over a full year, the psychological long-run rate is R = (1+ρ)−t−1,

with t the number of unit periods in a year. Small levels of short-term impatience

translate into potentially extreme degrees of impatience. For instance, a tiny

discount rate of ρ = 0.1 percent over one day leads to a strong annualized discount

rate of 44 percent. Such value seems incompatible with individuals engaging in

pro�table long-term investments like saving for their long term standard of living.

More reasonable levels of long-term impatience compatible with short-term

impatience are obtained by including a bias for the present. This can be done

with the quasi-hyperbolic model (Phelps and Pollak, 1968, Laibson, 1997) where

future utility is exponentially discounted (D(t) = (1 + ρ)−t) and an extra weight

D(0) = 1/α > 1 applies to present utility. The property is interpreted as a

consequence of and a validity test for present bias (Rabin, 2002; Shapiro, 2005;

O'Donoghue and Rabin, 2015). Hyperbolic models of discounting (e.g. Har-

vey, 1986, Mazur, 1987, Loewenstein and Prelec, 1992, Bleichrodt, Rohde and

Wakker, 2009 and Ebert and Prelec, 2007) display decreasing impatience and are
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also consistent with short-run impatience as a result.

However these models do not entirely close the gap between micro and macro

estimates of time discounting. Even after controlling for present bias, Andreoni

and Sprenger (2012) estimate average annualized discount rates between 25 and

38 percent and Balakrishnan, Haushofer and Jakiela (2020) between 77 and 96

percent. These values contradicts introspection and are at odds with discount

rates used in macroeconomic models.

Moreover, in the quasi-hyperbolic model, the DM behaves like an exponential

discounter in intertemporal trade-o�s which do not involve an immediate con-

sumption. Hence any departure from perfect patience in delayed trade-o�s over

short time intervals like a day or a week leads to implausible long-term impa-

tience, as in the exponential model. For instance, assume the DM is indi�erent

between consuming 1 at date s and y > 1 at date k > s, where k is temporally

close to s. With quasi-hyperbolic preferences: α(1 + ρ)−su(1) = α(1 + ρ)−ku(y),

which is equivalent to being indi�erent between 1 now and y in k periods in

the exponential model: u(1) = (1 + ρ)−ku(y). We are back to the quantitative

impossibility and 'compounding curse'.

3.2 Subadditivity

Let us de�ne a dated consumption (y, t) with y the quantity consumed and t the

consumption date. The immediate quantity x is determined by the indi�erence

condition (x, 0) ∼ (y, t). By transitivity of indi�erence, there exists a payo� z

such that (x, 0) ∼ (z, s) ∼ (y, t). With a discounted utility formulation and the

notation φ(0, t) = D(t)/D(0), the long-term discount factor can be decomposed

into the product of two discount factors over shorter time intervals:

φ(0, t) = φ(0, s)φ(s, t) (1)
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The relation holds for all usual time-separable discount functions D(t). How-

ever, people tend to be more impatient when confronted with multiple short-delay

trade-o�s in a sub-divided interval than with a single trade-o� over the whole

interval (Read, 2001, Read and Roelofsma, 2003, Scholten and Read (2006),

Dohmen et al., 2012, Dohmen et al. 2017):

φ(0, t) > φ(0, s)φ(s, t) (2)

Sub-additivity and its opposite, super-additivity, are de�ned in accordance:

De�nition 1 For all x, y, y′, z ∈ X and s, t ∈ T , 0 < s < t, such that (x, 0) ∼

(y′, t), (x, 0) ∼ (z, s) and (z, s) ∼ (y, t). Preferences are additive if y = y′,

sub-additive if y > y′ and super-additive y < y′.

A higher payo� y signals more impatience over repeated short delays than

over long horizons. Moreover, the relation (2) can be expanded by subdividing

further the whole interval, assuming that the behavioral pattern repeats over

smaller intervals:

φ(0, t) < φ(0, s)φ(s, t) < φ(0, s− 1)φ(s− 1, s)φ(s, t)

< φ(0, s− 2)φ(s− 2, s− 1)φ(s− 1, s)φ(s, t)

< ...

< φ(0, 1)φ(1, 2) ... φ(t− 2, t− 1)φ(t− 1, t)

Because the discount factor gaps between every interval and its subdivisions

compound, the long-run discount factor can potentially be signi�cantly lower

than the product of short-term factors.

To sum up, short-run impatience and sub-additive discounting share a sim-

ilar property: short-duration discount rates are 'too large' to square with long-

duration discount rates. Hyperbolic or quasi-hyperbolic models of discounting
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are consistent with short-run impatience but have di�culty in explaining impa-

tience over delayed short durations and cannot account for sub-additive discount-

ing. The rest of the paper proposes a uni�ed theory of short-run impatience, and

sub-additivity based on intermittent waiting costs.

4 Time preference with waiting

4.1 Expected utility with waiting

I proceed in two steps. I �rst pose a general expected utility model of consump-

tion and random waiting before presenting a full-�edged model of intertemporal

choice. A consumer decides at which date t ∈ T = {0, ..., t̄} a good, which quan-

tity is x ∈ X = (0, x̄], is consumed. Let θ = (θs, s = 0, ..., t̄) ∈ Θ = {0, 1}t̄+1 be

an exogenous temporal sequence of reminding. θs = 1 if the DM pays attention

to the consumption good in period s. A reminding period is a waiting period if

the good has not already been consumed in the past and is not consumed during

the current period. θs = 0 if s is not a reminding period and consequently not

a waiting period. The objects of choice are lotteries with �nite support. De�ne

the set of lotteries

L =
{
P : (X,T,Θ)→ [0, 1] ;

∑
Θ

P (x, t, θ) = 1
}

Choices expressed at time 0 are modeled by a binary relation < on L.5 De�ne

the mixing operation of lotteries P and Q with a ∈ [0, 1], as aP + (1 − a)Q =

a
∑

Θ P (x, t, θ) + (1− a)
∑

ΘQ(x′, t′, θ). The vNM axioms are:

A1. Weak order < is complete and transitive.

5The issue of time-consistency is sidestepped by focusing on time preferences from date 0

perspective, as if the DM could commit to them.
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A2. Continuity For all P , Q, R ∈ L, if P � Q � R, there exist a, b ∈ (0, 1)

such that

aP + (1− a)R � Q � bP + (1− b)R

A3 Independence For all P , Q, R ∈ L, and a ∈ (0, 1), P < Q i�

aP + (1− a)R < aQ+ (1− a)R

The DM behaves as if she is maximizing the expected value of some function

uvNM de�ned over the potential outcomes.

Theorem 1 (vNM Preference) < satis�es A1-A3 if and only if there exists

uvNM : (X,T,Θ)→ R such that, for every P , Q ∈ L, P < Q i�∑
Θ

P (x, t, θ)uvNM(x, t, θ) ≥
∑

Θ

Q(x′, t′, θ)uvNM(x′, t′, θ)

The proof is not reproduced and can be found for instance in Mas-Colell,

Whinston, and Green (1995, pp. 176-178). The model, which does not impose

at this stage meaningful properties on the utility function, is specialized in the

next section.

4.2 Time preferences

We now put more structure on admissible lotteries and time preferences. Given

lottery P , probability ps ∈ [0, 1] of reminding the reward in period s = 0, 1, ..., T

is de�ned by ps =
∑

Θ P (x, t, θ | θs = 1). The sequence of dated reminding

probabilities is denoted p = (p0, p1, ..., pt̄) ∈ [0, 1]t̄+1. For convenience, time

preferences are now de�ned by <′ over dated consumptions and reminding prob-

abilities (x, t, p) ∈ X × T ×[0, 1]t̄+1. The relation entails the same ordering

as <: P < Q ⇐⇒ (x, t; p) <′ (y, s; q) with pr =
∑

Θ P (x, t, θ | θr = 1) and

qr =
∑

ΘQ(y, s, θ | θr = 1) for all r ∈ T .
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Time preferences are restricted by the following axioms. Axiom A4 ensures

that the good is valuable to the DM for any sequence of reminding probabilities.

A4. Monotonicity For all x, y ∈ X, y > x, t ∈ T and p ∈ [0, 1]t̄+1,

(y, t; p) �′ (x, t; p).

The next axiom is an adaptation of the Thomsen condition. It ensures the

multiplicative separability of the discount factor and the utility function and is

weaker than the stationarity axiom (Fishburn and Rubinstein, 1982).

A5. Thomsen separability For all x, y, z ∈ X, t, s, r ∈ T and p ∈ [0, 1]t̄+1,

(x, t; p) ∼′ (y, s; p) and (z, t; p) ∼′ (y, r; p) =⇒ (x, r; p) ∼′ (z, s; p).

With words, if y−x is needed to compensate for the additional delay of s− t,

and z − y for the additional delay of t − r, then (y − x) + (z − y) = z − x is

needed to compensate for the additional delay of (s− t) + (t− r) = s− r.

According to A6, a preference between two dated consumptions with a com-

mon reminding probability is not a�ected by variations of this probability. The

axiom ensures that waiting costs are time additively separable.

A6. Time additivity For all x ∈ X, t, r ∈ T and p, p′, q, q′ ∈ [0, 1]T+1

such that p′ = p and q′ = q except p′r 6= pr and q′r 6= qr, if pr = qr then

(x, t; p) <′ (x, t; q) =⇒ (x, t; p′) <′ (x, t; q′) for all p′r = q′r ∈ [0, 1].

The DM is 'wait-averse'. She prefers waiting to be less likely all else equal:

A7. Waiting aversion For all x ∈ X, t ∈ T and p ∈ [0, 1]t̄+1, p′ = p except

p′s > ps, (x, t; p) �′ (x, t; p′) if ∀s < t and (x, t; p) ∼′ (x, t; p′) if ∀s ≥ t.

By de�nition of waiting, reminding is costly before but not during or after

consumption. The next axiom is a key axiom for the theory. It makes the DM

time neutral in absence of reminding.

A8. Temporal indi�erence For all x ∈ X, t ∈ T − {t̄} and p ∈ [0, 1]t̄+1,
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(x, t; p) ∼′ (x, t+ 1; p) if pt = 0.

A8 states that if date t cannot be a reminding period, the DM is indi�erent

between consuming at this period or next one. It formalizes the intuition that

people may delay consumption e�ortlessly if they are distracted by unrelated

activities. For instance the DM may be willing to postpone watching the last

James Bond until evening if she expects no to remind the movie during the day.

By extension, if periods t to t+ k have zero probability of reminding, the DM is

indi�erent between consuming at dates t, t+ k + 1, or any date within the time

interval.

Axioms A7-A8 de�ne together a weak form of impatience. They are equiva-

lent to A7-A8b with:6

A8b. Weak impatience For all x ∈ X, t ∈ T − {t̄} and p ∈ [0, 1]t̄+1,

(x, t; p) � (x, t+ 1; p) i� pt > 0.

As in traditional models of time discounting, an impatient DM prefers con-

suming the earliest period. She is only weakly impatient here as impatience is

conditional on the good to be recalled to mind with a strictly positive probability.

While waiting is only felt during reminding periods, consumption is iden-

tically valued regardless whether the period is a reminding or non-reminding

state:

A9. Static indi�erence For all x ∈ X, t ∈ T , p ∈ [0, 1]t̄+1, p′ = p except

p′t 6= pt, (x, t; p) ∼′ (x, t; p′) for all p′t ∈ [0, 1].

6(x, t; p) ∼ (x, t + 1; p) if pt = 0 (A7) and (x, t + 1; p) � (x, t + 1; q) with q = p except

qt > pt = 0 (A8). Obviously (x, t+ 1; p) ∼ (x, t+ 1; q) if qt = pt.
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4.3 Utility representation

Axioms A1-A9 are consistent with a theory of discounted expected utility with

waiting costs (see Proof in Appendix):

Proposition 1 <' satis�es A1-A9 if there exists u : X → R+ such that, for all

(x, t, p), (y, s, q) ∈ X × T ×[0, 1]t̄+1, (x, t, p) < (y, s, p) if

−
t−1∑
j=0

pjδju(x) + u(x) ≥ −
s−1∑
j=0

qjδju(y) + u(y)

with δj, j = 0, 1, ..., T , satisfying

1 > 1− δ0 > 1− δ0 − δ1 > ... > 1− δ0 − ...− δT−1 > 0 (3)

Date 0 intertemporal utility of (x, t, p) is the sum of expected waiting costs

δju(x) accumulated before the good is consumed and utility u(x) from consuming

x at date t. When consumption is postponed to date t, the DM may remind

the reward and incur waiting costs with probability pj every period before t.

In accordance with A5 (Thomsen separability), the disutility is proportional to

deferred utility u(x), with the intuition that the more pleasurable the outcome,

the more unpleasant the waiting.

Note also that absent waiting costs, utility of consumption would be valued

the same way whatever the consumption date. Likewise, waiting costs depend

on the date at which they are incurred, but not on the remaining delay until

consumption. Both results stem from A8 (temporal indi�erence) which states

that delaying consumption from date t − 1 to t is harmless if the DM does not

expect to pay attention to the reward at t − 1 (pt−1 = 0). The two outcomes

(x, t− 1, p) and (x, t, p) are identically valued by the DM despite varying delays

between the present and the consumption date or between the waiting periods

and the consumption date. Since utility is not time discounted per se, impatience

entirely rests on anticipated waiting costs.
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From A5 (Thomsen separability), the intertemporal utility function can be

expressed as the product of a discount function D and period utility u:

D(t)u(x) =
(

1−
t−1∑
j=0

pjδj

)
u(x)

with D(0) = 1. In accordance with A4 (monotonicity), condition (3) requires

that consumption is valuable at every horizon, i.e. D(t) > 0 for all t ∈ T ,

even in the most unfavorable environment in which the DM waits every period

before consuming (all pj = 1). (3) also implies that the longer the delay before

consuming, the smaller the sum of temporal weights attached to utility: D(0) ≥

D(1) ≥ D(2) ≥ ... ≥ D(T ) ≥ 0, whatever reminding probabilities. The decrease

of the discount factor with delay is the classical de�nition of impatience. The

further away consumption is delayed, the greater the number of periods during

which the DM may remind future consumption and the lower expected utility.

The decrease is non-linear however, as she may expect (possibly long) periods

during which consumption is not recalled.

Proposition 1 should be valid for an arbitrarily large number of periods,

especially when the unit of time is short, like a day or an hour. Let us de�ne

the asymptotic minimal utility Dminu(x) as the in�nitely postponed discounted

utility with maximal waiting costs with all probabilities set to 1:

Dminu(x) = lim
T→∞

(1− δ0 − δ1 − ...− δT−1)u(x) (4)

Condition Dminu(x) ≥ 0 extends condition (3) to the in�nite horizon case.

The condition implies that temporal weights δs become arbitrarily close to each

other as the sequence progresses.7

7Using the fact that any convergent sequence is a Cauchy sequence, for any given ε > 0,

there exists a date T0 such that for any pair of dates (s, t) satisfying T0 < s < t, we have

|D(t)−D(s)| < ε or δs + δs+1 + ...+ δt−1 < ε.
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5 A two parameter discounting model

This section presents a simpli�ed and more tractable model of discounting. Al-

though the results of the next sections do not rely on the simpli�ed model, it is

worth presenting for three reasons. First, it makes clear how interact the two

dimensions of discounting: the waiting costs and the frequency with which con-

sumption is reminded. Second, the model nests the canonical exponential model

as a special case and allows interesting cross-interpretations. Third, it reduces

the number of free parameter to two, which eases the calibration of the model.

It is obtained by adding two axioms and two assumptions.

First, the DM prefers waiting as late as possible.

A10. (Preference for late waiting) For all x ∈ X, t ∈ T and p ∈ [0, 1]t̄+1,

(x, t; p) � (x, t; q) if q = p except qj+1 = pj < pj+1 = qj for all j < t− 2.

The DM prefers to swap two temporally adjacent reminding probabilities if

it results in delaying the higher probability. The axiom is supported by the

common observation that people tend to postpone unpleasant feelings or tasks.

Note that the alternative property, not explored further in the paper, would be

consistent with the DM experiencing craving for the good. Early waiting would

be preferred in this case as the feeling of deprivation is expected to build up.

The second axiom allows a smooth evolution of waiting costs with delay. It

states that DM's preference relative to the timing of waiting evolves smoothly

with delay.

A11. (Preference smoothness) For all x ∈ X, t ∈ T and p ∈ [0, 1]t̄+1,

there exists β > 0 such that (x, t, p) ∼ (x, t; q), q = p except qj = pj + ∆ and

qj+1 = pj+1 −
∆

β
for all ∆ ∈ (0,min(1− pj, βpj+1)) and j < t− 2.

An increase of the waiting probability at date j by the margin ∆ leaves the
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DM indi�erent if one period later, the waiting probability is decreased by the

margin ∆/β, where β is a common coe�cient for all dates.

A10 and A11 makes explicit the discounting of waiting costs (see Proof in

Appendix):

Proposition 2 Under A1-A11, there exists β ∈ (0, 1) such that δt = βtδ0, with

δ0 <
1− β
1− β t̄

.

Waiting costs are discounted by the exponential factor βt when A11 is added.

A10 (preference for late waiting) restricts β < 1. Condition δ0 <
1− β
1− β t̄

ensures

that utility delayed arbitrarily far in the future, net of waiting costs, remains

positive.

Next, minimal utility (4) with in�nite horizon is normalized to zero: Dminu(x)

= 0 for all x ∈ X. The assumption is consistent with the requirement that in-

�nitely delayed utility is useless.8 Together with A1-A11, it implies the parameter

restriction:9

Assumption 1 δ0 = 1− β.

The higher the immediate waiting costs δ0, the heavier future waiting costs

must be discounted so as intertemporal utility remains non-negative.

Last, all periods but the present have a common probability of reminding.

Assumption 2 pj = π ∈ [0, 1], for all j ∈ T , except p0 = 1.

8limt→∞D(t) is satis�ed by all common models of intertemporal choice, including the ex-
ponential speci�cation and the hyperbolic and quasi-hyperbolic models. With generalized
hyperbolic preferences: limt→∞(1 + ht)−r/hu(x) = 0, with h, r > 0. With quasi-hyperbolic
discounting: limt→∞ αβtu(x) = 0, given 0 < α, β < 1.

9Since limt→∞D(t) = 1− δ0 − βδ0 − β2δ0 − ...− βt−1δ0 = 1− δ0/(1− β) = 0.
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The present is a special date. Conditional on not consuming the good, it is

either a waiting period with certainty or a forgetful period. Examples of present

reminding periods are decision or planning dates. Even if consumption is not yet

available, choosing between alternative plans may act as a cue to consume and

trigger waiting costs. Many present periods are certainly not decision periods,

but, as a practical matter, we only need to specify DM's preferences when in a

decision or reminding state.

The additional axioms and assumptions lead to a simple and intuitive dis-

count function (see Proof in Appendix):

Proposition 3 Under A1-A11 and Assumptions (1)-(2), D(0) = 1 and

D(t) = πβt + (1− π)β (5)

with β ∈ (0, 1) and π ∈ [0, 1] a constant probability of reminding.

The parameter β is the rate used to discount future waiting costs in Propo-

sition 2 but is also an inverse measure of waiting costs (Ass. 1). The discount

factor D(t) is a probability-weighted mean of two discount functions in which the

reminding frequency π plays a pivotal role.10 The smaller π, the more patient

the DM. Patience is maximal if the DM does not expect to remind the reward

in the future (π = 0), implying a constant discount D(t) = β after date 0.

To the opposite, if the DM is so impatient that she expects to remind the

reward every period (π = 1), discounting is exponential. Preferences inherit

the normative features of the exponential model: constant impatience and time

10The duality may also be interpreted as re�ecting the con�ict of two selves or systems. One

self is impatient and discounts exponentially. The second is more patient and equally discounts

all future utilities. The higher the reminding probability, the greater the weight given to the

impatient self. McClure et al. (2007) o�er a similar interpretation for the quasi-hyperbolic

model. See also Ainslie (1992) and Metcalfe and Mischel (1999).
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consistency. However, when not only the discount factor β but also the waiting

frequency are considered, exponential discounting signals an extreme form of

impatience. This is is consistent with the fact that even small deviations from

perfect patience make discounted utility rapidly converging to zero with the

passage of time. From a normative perspective, the DM would like to minimize

waiting costs by avoiding reminding future consumption too often, which an

exponential discounter fails to do.

At a more fundamental level, the reminding probability π re�ects individuals'

attitude toward time. Individuals with a small π choose as if temporally distant

payo�s were close to the present. Opting for a larger and late reward does not

look like a high sacri�ce. Conversely, individuals with a high π behave as if tem-

porally close payo�s were delayed far in the future. It is as if time is stretching in

the �rst case and accelerating in the second case. In extreme situations of sub-

stance addiction, a high reminding frequency coupled with a hourly or daily time

frame make individuals strongly impatient. Drug abusers demonstrate shortened

time horizons and decreased sensitivity to delayed consequences (Petry, Bickel

and Arnett, 1998). Smokers (Baker, Johnson and Bickel, 2003), alcoholics (Vu-

chinich and Simpson, 1998) or substance-dependent individuals (Kirby, Petry,

and Bickel, 1999) show large discounting of delayed rewards.

Having laid the foundations of the wait-based model, we now turn to its

behavioral implications.

6 Short-delay impatience

The wait-based model of discounting is consistent with short-delay impatience

described in Section 3 and proposes a behaviorally founded interpretation of the
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property. Two types of trade-o�s are distinguished: those with an immediate

payo� and those in which all alternatives are in the future.

6.1 Impatience with an immediate payo�

Under A1-A9, DM's short-term preferences are given by D(1)/(D(0) = 1− p0δ0,

whereas the long-term discounting function is:

D(t)/(D(0) = 1− p0δ0 − p1δ1...− pt−1δt−1

Signi�cant impatience over short-delays (as measured by D(1)−1 − 1) and

moderate impatience over long delays (as measured by D(t)−1−1) can be jointly

obtained if (i) the present is a reminding period (p0 = 1) and (ii) subsequent

episodes of reminding are infrequent, i.e. ps are small for all s > 0. Condition (i)

is consistent with Assumption 2 and is motivated by the immediate availability of

the reward. It is consistent with a bias for present consumption since waiting is

felt in the present as opposed to anticipated with some probability in the future.

Condition (ii) is realistic given that most individuals spend a small fraction of

their time thinking about future consumption. Long-term impatience remains

bounded as a result, even though present waiting costs δ0 are large.

The relation between short-run and long-run discounting can be investigated

further by using the simpli�ed model with exponentially discounted waiting costs

(see Proposition 3): D(t) = πβt + (1 − π)β. If π = 1, reminding repeats over

and over, with the consequence that present and future periods look alike. The

symmetry leads to the exponential model and its inability to plausibly account for

both short-run and long-run impatience. If reminding is infrequent, the discount

factor is close to β whatever time horizon t. The actual frequency of reminding is

therefore a key factor determining to what extent short-run impatience translates

into long-run impatience.
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To get a quantitative assessment of the relationship between short and long-

run impatience, let us start wit a daily time unit. With costly waiting, the

implicit psychological short-term rate ρ is de�ned by (1 + ρ)−1 = D(1) = β.

The implicit long-run rate R is de�ned by (1 + R)−1 = D(365) = πβ365 + (1 −

π)β. Table 1 shows long-run rates R for various values of short-run rates ρ and

reminding probabilities π.

Table 1: Implicit long-run rate R (in percent) in function of the short-run rate

ρ (in percent) and reminding probability π

π = 1 0.5 0.3 0.1 0.05 0.01 0

ρ = 0.1 44 18.1 10.2 3.2 1.65 0.41 0.10

1 3,678 96.7 42.7 11.9 6.17 1.99 1

2 1.37× 105 103.8 45.7 13.3 7.36 3.03 2

5 5.42× 109 110.0 50.0 16.7 10.5 6.06 5

10 1.28× 1017 120.0 57.1 22.2 15.8 11.1 10

The lower the reminding probability, the closer the long-run rate to the short-

run rate. The limit case π = 1 corresponds to the present-neutral exponential

model in which long-run rates take implausible high values. To the contrary, the

intermittent wait-based model is able to account for both non-trivial short-term

impatience and reasonable long-run impatience. Even for daily short-run rates

as large as 10%, the long-run rate is only 5 percentage points higher when the

DM reminds the future reward 5% of the time.

The wait-based model puts forth a fundamental reason why long-run rates

do not reduce to a compound of short-run rates. The latter are generally elicited

with subject's attention caught and oriented toward a concrete choice in which

immediate consumption is feasible. It is therefore not surprising that short-

21



run impatience is not trivial. Yet, extrapolating long-run rates by repeatedly

compounding the obtained short-run rate is like presuming that the DM is placed

in the same short-term decision situation over and over. Instead, it is more

realistic to expect that she forgets the reward most of the time. This provides a

strong intuition of why impatience over long-delay trade-o�s is likely to remain

in a reasonable range.

6.2 Impatience over delayed short-durations

Because present bias models put an extra weight on present utility, they can-

not account simultaneously for signi�cant impatience over short time intervals

starting in the future and reasonable impatience over long periods (see Section

3). With intermittent waiting, suppose the DM is indi�erent between 1 unit in

s periods and y units in k periods:

(
1−p0δ0−p1δ1−...−ps−1δs−1

)
u(1) =

(
1−p0δ0−...−psδs−...−pk−1δk−1

)
u(y) (6)

In long-term trade-o�s, let us de�ne y′ such that she is indi�erent between 1

unit immediately and y′ units at date t ≥ k:

u(1) =
(
1− p0δ0 − ...− psδs − ...− ptδt

)
u(y′) (7)

When pondering her choice in the delayed trade-o� (6), the date s stands

out from other dates. The DM may picture herself at date s and anticipate

the waiting costs associated with postponing consumption to date k. Imagining

a hypothetical event makes the event seem more likely through the use of the

availability heuristic (Carroll, 1978, Kahneman et al., 1982). Moreover, the

probability may be objectively high if the DM anticipates that the reward will

be ostensibly displayed at date s. It follows that the reminding probability in
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the �rst date of the trade-o� is likely to be high compared to probabilities in

other dates. This will also be the case if the propensity to imagine the future

vividly makes delayed goods appear to be temporally closer than they actually

are (Becker and Mulligan, 1997). In the model, this e�ect means that reminding

probabilities are low until the consumption date. The argument is formalized in

the following assumption with ←→ a shortcut for 'is compared to':

Assumption 3 For all z, y, x ∈ X and r, s, k, t ∈ T , 0 ≤ r < s < k ≤ t, if

(z, s, p)←→ (y, k, p) and (x, r, p′)←→ (y′, t, p′) then ps > p′s.

The time intervals of the two trade-o�s overlap and share the common period

s. But whereas s is the �rst date of the trade-o� in the �rst choice, it is an

ordinary period in the second one. Assumption 3 can be applied to trade-o�s (6)

and (7) with r = 0 and z = x = 1. Although a high reminding probability at date

s makes the DM impatient over a short time interval, it does not mean that she

is also excessively impatient over long durations if other reminding probabilities

pj, j 6= s, are low enough.

To illustrate the point, let us reinterpret the estimates found by Balakrishnan,

Haushofer and Jakiela (2020). After controlling for utility curvature and present

bias, they estimate an average discount rate between 5.52 and 7.65 percent over

two and four-week time intervals. Since the trade-of is delayed by roughly a day

(from morning to end of the day), such high discount rates are not explained

by present bias. Compounded over a full year, the annualized discount rate is

between 327 and 632 percent, which seems implausible. Let us use the simpli�ed

version of the model with exponentially discounted waiting costs (see Proposition

2). The DM is indi�erent between obtaining 1 unit of money at the end of the

day and y = 1.0765 units in two weeks. Assuming a daily frequency, Condition
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(6) with s = 1 and k = 14 becomes

β =
u(y)

u(1)

(
πβk + (1− π)β − (p1 − π)β(1− β)

)
The condition simpli�es with sure reminding the �rst date of the trade-o�

(p1 = 1) to

β =
u(y)

u(1)

(
πβk + (1− π)β2

)
(8)

The corresponding long-term trade-o� o�ers 1 unit in one period (at the end

of the day) and y′ units in one year (t = 365). The indi�erence condition is:

β =
u(y′)

u(1)

(
πβt + (1− π)β

)
(9)

Conditions (8) and (9) can be easily compared. If reminding repeats every

period (π = 1), we are back to the exponential case and the 'compounding curse'.

The term βt rapidly converges to zero with horizon t, leading to a rapidly increas-

ing ratio u(y′)/u(1) and in�ating impatience. To the contrary, when reminding is

unlikely at all future dates but date 1, reasonable impatience over long durations

is compatible with departure from perfect patience over short durations.

To continue with the example, a relative risk aversion coe�cient equal to

0.619 is assumed, which is the value estimated by by Balakrishnan, Haushofer

and Jakiela (2020):
u(y)

u(1)
= 1.07651−0.619

Suppose that the DM expects to remind the reward 5 percent of the time

(π = 0.05). From the indi�erence condition (8), we obtain β = 0.982. Once those

values are plunged into condition (8), we �nd
u(y′)

u(1)
= 1.0530 and an annualized

rate of return equal to 14.5 percent. The rate is only twice the rate found over a

two week time interval and is much lower that the rate of 632 percent computed

by the authors.
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7 Subadditive discounting

Assume indi�erence between z in s > 0 periods and y in t > s periods. With

multiplicatively separable utility function, D(s)u(z) = D(t)u(y). Likewise, the

DM is indi�erent between x now and y′ in t periods if D(0)u(x) = D(t)u(y′). If

preferences are additive in the sense of De�nition 1, assuming the third equiva-

lence D(0)u(x) = D(s)u(z) guarantees y = y′. Note that additivity necessitates

that in both trade-o�s, u(y) and u(y′) are discounted by the same factor D(t).

Suppose now that discounting is the result of waiting costs. When choosing

between dates s and t, the date s of the trade-o� is a pivotal date, for the same

reasons as was date s in trade-o� (6) with a delayed short duration.The DM

is induced to think about consuming the reward at date s, which increases the

reminding probability. To the contrary, when choosing between dates 0 and t,

nothing special happens in period s during which the DM may be distracted

by other occupations. The probability p′s of reminding the good in this case is

most likely lower than the probability ps in the �rst trade-o�. The assumption

is consistent with Read (2001)'s interpretation according to whom sub-dividing

a delay undermines people propensity to withstand waiting by making them pay

more attention to every part of the delay. In other words, Assumption 3 applies

with r = 0 and k = t. It follows that the two discount factors, respectively

denoted D(t) and D′(t), although referring to the same delay, may di�er in a

systematic way:

D(t) = 1− p0δ0 − ...− psδs − ...− pt−1δt−1

D′(t) = 1− p0δ0 − ...− p′sδs − ...− pt−1δt−1

with D(t) < D′(t) since pt > p′t. Wait-based preferences are sub-additive accord-

ing to De�nition 1 (see Proof in Appendix):

25



Proposition 4 Under A1-A9 and Assumption 3, preferences are sub-additive.

The proposition is obtained for common reminding probabilities across trade-

o�s except date s. Since the DM jointly considers the two trade-o�s, her beliefs

should be consistent across her options. Intuitively, the DM expects less waiting

in a long-term trade-o� than in a sequence of short-term trade-o�s of same length.

It follows that the DM is more willing to delay a reward in the �rst situation

than in the second one.

8 Conclusion

A novel theory of time discounting is proposed in which disutility of waiting

explains why future utilities are depreciated. It adopts a nonlinear approach of

time, more familiar to psychologists, in which experienced time elapses only when

attention to future grati�cations is paid. As stressed by Stout (1932): �In general,

temporal perception is bound up with the process of attention... What measures

the lapse of time is the cumulative e�ect of the process of attending". When

discounting is tied to expected episodes of waiting, long duration discount rates

are only weakly connected to short duration discount rates. Compounding and

annualization of discount rates, should be used with caution. The unit of time

over which choices are made becomes important. The model helps bridge the gap

between high short-term impatience found in experiments and low interest rates

at the macroeconomic level, a point stressed by Cochrane (2011): �People report

astounding discount rates in surveys and experiments, yet still own long-lived

assets, houses, and durable goods.�

If perception of durations is elastic, discounting is exposed to manipulation,

a possibility explored in experiments by Mischel, Ebbesen and Rasko� Zeiss
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(1972) or Ebert and Prelec (2007). A more direct test of the theory would

consist in proposing trade-o�s between smaller rewards now and a larger ones

later. Subjects in the treatment group would be informed to be recalled the

reward during the waiting time, for instance by watching a video related to it,

by letting the reward in plain sight, or, over longer time intervals, by periodically

receiving messages about it. The theory predicts that treated subjects should

express more impatience than subjects without recalls.

The paper does not investigate why some people experience more temptation

episodes than others. Addiction, weak habits, or genetic predispositions may be

part of the story. Some people seem better able to avoid potential con�icts, e.g.

by installing adaptive routines (Gillebaart and de Ridder, 2015). To this regard,

it would be interesting to design experiments which would separately estimate

pure discount rates and propensity of forgetting future rewards.
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Appendix Proofs of Propositions

Proof of Proposition 1 Using vNM Theorem 1 and A6 (time additivity),

(x, t; p) <′ (x, t; q) is equivalent to

∑
Θ

P (x, t, θ)uvNM(x, t, θ) ≥
∑

Θ

Q(x, t, θ)uvNM(x, t, θ) (10)

where r ∈ T exists such that
∑

Θ P (x, t, θ|θr = 1) =
∑

ΘQ(x, t, θ|θr = 1), or with

short notations pr = qr. The only case in which the inequality is not a�ected by

arbitrary variations of pr = qr is uvNM(x, t, θ) =
∑T

j=0 uadd(x, t, θj), that is

∑
Θ

P (x, t, θ)uvNM(x, t, θ) =
∑

Θ

P (x, t, θ)
T∑

j=0

uadd(x, t, θj)

=
T∑

j=0

(∑
Θ

P (x, t, θ|θj = 1)uadd(x, t, θj = 1) +
∑

Θ

P (x, t, θ|θj = 0)uadd(x, t, θj = 0)

)

=
T∑

j=0

(
pjuadd(x, t, θj = 1) + (1− pj)uadd(x, t, θj = 0)

)

Moreover, A8 (temporal indi�erence) implies for all x ∈ X, t, s 6= t ∈ T

uadd(x, t, θs = 0) = 0 and A7 (waiting aversion) uadd(x, t, θs = 1) < 0 for all

s < t and uadd(x, t, θs = 1) = 0 for all s > t. A4 (monotonicity) implies

uadd(x, t, θt) > 0 for all θt ∈ {0, 1} and A9 (static indi�erence) uadd(x, t, θt =

0) = uadd(x, t, θt = 1).

To repeat with shorter notations: if reminding, waiting costs are uadd(x, t, θj =

1) = uadd(x, t, j) < 0, j < t and discounted utility of consumption uadd(x, t, θt =

1) = uadd(x, t, t) > 0. If not, uadd(x, t, θj = 0) = 0 if j 6= t and uadd(x, t, θt =

0) = uadd(x, t, t). The vNM Theorem 4.1 simpli�es to (x, t, p) <′ (y, s, q) if

uadd(x, t, t) +
t−1∑
j=0

pjuadd(x, t, j) ≥ uadd(y, t, t) +
t−1∑
j=0

qjuadd(y, t, j)

Now, according to A5 (Thomsen separability), for all x, y, z ∈ X, t, s, r ∈ T and
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p ∈ [0, 1]t̄+1,

uadd(x, t, t) +
∑t−1

j=0 pjuadd(x, t, j)

uadd(y, s, s) +
∑s−1

j=0 pjuadd(y, s, j)
=

uadd(z, t, t) +
∑t−1

j=0 pjuadd(z, t, j)

uadd(y, r, r) +
∑r−1

j=0 pjuadd(y, r, j)
= 1

is equivalent to

uadd(x, r, r) +
r−1∑
j=0

pjuadd(x, r, j) = uadd(z, s, s) +
s−1∑
j=0

pjuadd(z, s, j)

i� uadd(x, t, j) = u(x)δ(t, j) for all x ∈ X and t ∈ T . The vNM Theorem 4.1

simpli�es further to (x, t, p) <′ (y, s, q) if

δ(t, t)u(x) +
t−1∑
j=0

pjδ(t, j)u(x) ≥ δ(s, s)u(y) +
s−1∑
j=0

qjδ(s, j)u(y)

δ(t, j)u(x), j 6= t are date j waiting costs, proportional to deferred utility, whereas

δ(t, t)u(x) is discounted utility of consumption. According to A8 (Temporal

indi�erence), for all t ∈ T − {t̄}, if pt = 0

δ(t, t) +
t−1∑
j=0

pjδ(t, j) = δ(t+ 1, t+ 1) +
t−1∑
j=0

pjδ(t+ 1, j)

For t = 0, consuming x at date 0 or 1 are equivalent if δ(0, 0) = δ(1, 1). Consum-

ing x at date 1 or 2 are equivalent if δ(2, 2) − δ(1, 1) + p0

(
δ(2, 0) − δ(1, 0)

)
= 0

for all p0 ∈ [0, 1], hence δ(1, 0) = δ(2, 0) and δ(1, 1) = δ(2, 2). Likewise, indif-

ference between dates t = 2, ..., T − 1 and t + 1, with pt = 0, implies for all

{p0, p1, ..., pt−1} ∈ [0, 1]t:

δ(t+ 1, t+ 1)− δ(t, t)− p0

(
δ(t+ 1, 0)− δ(t, 0)

)
− p1

(
δ(t+ 1, 1)− δ(t, 1)

)
− ...− pt−1

(
δ(t+ 1, t− 1)− δ(t, t− 1)

)
= 0

Hence, ∀t = 1, ..., T − 1, δ(t, t) = δ(t + 1, t + 1), and δ(t, s) = δ(t + 1, s),

∀s = 0, ..., t − 1. Blocking the reminding date s = 0, ..., T − 1 and varying the
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consumption date t = 1, ..., T gives δ(s + 1, s) = δ(s + 2, s) = ... = δ(T, s).

Normalizing δ(t, t) = 1 for all t ∈ T and simplifying notations: δ(t, s) = −δs for

all s, t = 1, ..., T , s 6= t, it follows that (x, t, p) <′ (y, s, q) if

u(x)− u(x)
t−1∑
j=0

pjδj ≥ u(y)− u(y)
s−1∑
j=0

qjδj

Next, according to A4 (Monotonicity), for all x, y ∈ X, y > x, t ∈ T and

p ∈ [0, 1]t̄+1 (
u(y)− u(x)

)(
1−

t−1∑
j=0

pjδj

)
> 0

which is satis�ed if, setting all probabilities to 1, 1 −
∑t−1

j=0 δj > 0. Moreover,

since all δt−1 > 0 (A7), we have 1 > 1− δ0 > ... > 1− δ0 − ...− δT−1 > 0. �

Proof of Proposition 2 D(t) = 1 − p0δ0 − pδ1 − ... − pδt−1 (Proposition 1).

A11 implies pjδj + pj+1δj+1 = (pj + ∆)δj + (pj+1 −
∆

β
)δj+1, for all j < t− 2 and

∆ ∈ (0,min(1 − pj, βpj+1)), hence δj+1 = βδj, or δj+1 = βj+1δ0. A10 implies

β ∈ (0, 1). Last, D(t) > 0 for all t ∈ T and p ∈ [0, 1]t̄+1 (A4). D(t) is minimal

for t = t̄ and pj = 1 for all j ∈ T , hence δ0 <
1− β
1− β t̄

. �

Proof of Proposition 3 Applying Proposition 2 with all pj = π except p0 = 1

(Assumption 2): D(0) = 1, D(1) = 1− δ0 = β and for t > 1

D(t) = 1− δ0 − πβδ0 − πβ2δ0 − ...− πβt−1δ0

= 1− (1− π)δ0 − πδ0(1 + β + β2 + βt−1)

= 1− (1− π)δ0 − πδ0
1− βt

1− β

With Assumption 1: D(t) = 1− (1− π)δ0 − π(1− βt) = πβt + (1− π)β. �
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Proof of Proposition 4 The indi�erence conditions (x, 0) ∼ (z, s), (z, s) ∼

(y, t) and (x, 0) ∼ (y′, t) express as:

u(x) = (1− p0δ0 − p1δ1 − ...− ps−1δs−1)u(z)

(1− p0δ0 − p1δ1 − ...− ps−1δs−1)u(z) = (1− p0δ0 − p1δ1 − ...− psδs − ...− pt−1δt−1)u(y)

u(x) = (1− p0δ0 − p1δ1 − ...− p′sδs − ...− pt−1δt−1)u(y′)

The equalities simplify to (1− p0δ0− ...− p′sδs− ...− pt−1δt−1)u(y′) = (1− p0δ0−

...− psδs − ...− pt−1δt−1)u(y). y > y′ if ps > p′s. �
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