
A step towards runnable papers
using R2lab

Thierry Parmentelat†, Mohamed Naoufal Mahfoudi†, Thierry Turletti†, Walid Dabbous†

Abstract—In this paper, we present R2lab, an open, electro-
magnetically insulated research testbed dedicated to wireless
networking. We describe the hardware capabilities currently
available in terms of Software Defined Radio, and the software
suite made available to deploy experiments. Taking as a pretext a
dummy experiment, we show how it all fits into a notebook-based
approach to getting closer to runnable papers.

Index Terms—R2lab, Reproducibility, nepi-ng, Jupyter Note-
books, Faradized and Anechoic Chamber, Wireless Testbed

I. INTRODUCTION

Validation and performance evaluation of new network
protocols is done using different complementary approaches
such as analytical modeling, simulation, experimentation or
any combination of them [1]. In the wireless networking
domain, modeling and simulation results may not be realistic
enough, because the interaction between MAC and physical
layers is complex to model due to the random behavior of the
wireless environment. It is therefore essential in all cases to run
experiments with real hardware and software components to
get meaningful evaluation. In addition, in order to obtain sound
scientific results, researchers should be able to reproduce the
experiments in the same conditions.

However, it is well known that wireless networking ex-
periments are difficult to reproduce due to interferences and
fluctuating characteristics of the physical layer [2]. Therefore,
in order to achieve reproducibility of experiments, we need an
overall evaluation methodology providing sufficient details on
the scenarios, hardware and software configuration and making
available all the code and scripts used to replicate the ex-
periments [3]. In addition, stochastic physical layer variables,
acquisition hardware and software must all be controlled.

The R2lab testbed addresses precisely this controllability
dimension. R2lab is an open wireless tested, located in an
anechoic chamber for reproducible research in wireless Wi-Fi
and 4G/5G networks. It provides controlled wireless hardware
resources in this insulated environment, as well as rich soft-
ware tools to allow reproducible research. R2lab is part of the
FIT1 federation, an open large-scale testing infrastructure for
systems and applications on wireless and sensor communica-
tions. Located at Inria Sophia-Antipolis, R2lab proposes thirty
seven customizable commercial off-the-shelf wireless devices,
together with USRP nodes and commercial LTE phones, fit to
create rich experimental setups.

R2lab runs on a global reservation mechanism - only one
experiment is allowed to run at any given time. The nodes are

†Inria, Université Côte d’Azur, Sophia Antipolis, France
1Future Internet Testing Facility, see URL https://fit-equipex.fr/testbeds

exposed as bare metal, experimenters chose the software image
they want to run on each node. Prebuilt images leverage some
high end software suites - see sectionIII-C. Additionally, R2lab
offers various software tools, to support easy and efficient
experimentation. These tools allow to book the whole testbed,
manage node images, remotely control the wireless devices,
deploy various scenarios and collect results in an easy way.

R2lab is operational since December 2015 and several re-
search activities have already used it (Mininet Wi-Fi [4], Orion
[5], 5G network deployment [6], Wi-Fi conflict graphs [7],
Software Defined Wireless Mesh Networks [8]).

The goal of this paper is twofold. It first provides a presen-
tation of the R2lab components, both hardware and software,
that are specific to R2lab. Then, on a more methodological
note, we present the orchestration tool that is recommended for
experimenters to script a complete experiment, and describe
one sample Jupyter notebook that demonstrates how it could
be possible to publish a runnable paper that explains how to
reproduce a pre-written experiment.

The plan of the rest of the paper is as follows. Section II
presents the R2lab hardware, and section III describes the
R2lab-specific software tools. For the methodological aspects,
section IV describes the nepi-ng orchestration tool, and
section V shows a simple use case with a Jupyter2 notebook
providing the base for runnable papers. Section VI concludes
the paper.

II. R2LAB HARDWARE

A. State of the Art

Several testbeds are available in the wireless community. For
instance, Iris3, CortexLab4 and CORNET5 focus on cognitive
radio research. Some others like ORBIT6, NiTos7 and w-
iLab.t8 not only target physical layer experts but also network-
ing researchers, by proposing hybrid nodes (SDR devices and
also PCs with COTS Wi-Fi and/or low-power technologies).
R2lab belongs to this second category of testbeds and focuses
on reproducible research, made possible by a faradized ane-
choic chamber and a collection of software used to simplify
running experiments and writing runnable papers.

2Open source Jupyter Notebook, see http://jupyter.org/.
3Iris, see https://iris-testbed.connectcentre.ie/.
4CortexLab, see http://www.cortexlab.fr/.
5CORNET, see https://cornet.wireless.vt.edu/.
6ORBIT, see http://www.orbit-lab.org.
7NiTos, see https://nitlab.inf.uth.gr/NITlab/nitos.
8w-iLab.t:
see http://doc.ilabt.imec.be/ilabt-documentation/wilabfacility.html.

https://fit-equipex.fr/testbeds
http://jupyter.org/
https://iris-testbed.connectcentre.ie/
http://www.cortexlab.fr/
https://cornet.wireless.vt.edu/
http://www.orbit-lab.org
https://nitlab.inf.uth.gr/NITlab/nitos
http://doc.ilabt.imec.be/ilabt-documentation/wilabfacility.html

B. Room characteristics

The R2lab platform sits in an insulated anechoic chamber
located in a basement of a building at Inria, Sophia Antipolis,
France. Figure 1 shows a snapshot from inside the room.
It hosts thirty-seven PC nodes on the ceiling scattered on
a fixed grid; more than half of the nodes feature an SDR
board, of various kinds. In addition, two remotely controllable
commercial phones are available.

Figure 1: R2lab room

The room size is about 90m2, roughly 11m x 8m, although
its shape is not a plain rectangle, as shown on Figure 2.
This picture shows the ground plan layout of the nodes that
are arranged in a grid with about 1.0m (vertical) and 1.15m
(horizontal) of distance between them, except for the two
pillars in the room. Such an environment allows running
various scenarios with wireless nodes that can be with line
of sight or not between each other.

Figure 2: R2lab topology

It is insulated from the outside electromagnetic conditions
by a Faraday cage, that is is made of 0.10 mm thick copper
foils, which has high attenuation properties for the electro-
magnetic field (up to 120 dB), see Table I.

RF absorbers are needed to prevent high level of re-
flections on the copper foils. We use IMOCELL HPP 20

Faraday Frequency
cage 20MHz to 1GHz 1 - 3 GHz 3 - 5GHz

Attenuation >100dB > 90dB > 80dB

Table I: Faraday cage shielding performance

ultra broadband pyramidal absorbers, made of carbon loaded
polyurethane foam, and specially designed for microwave
applications. Their performance are shown in Table II.

HPP 20 Frequency in GHz
absorber 1 3 6 >10

Reflectivity (dB) -30 -38 -45 -50

Table II: Typical reflectivity (dB) at nominal incidence

C. Icarus nodes

The 37 wireless nodes are Icarus9 computers provided by
NITlab10 with the following features:

• CPU Intel R© CoreTM i7-2600, 8M Cache at 3.40 GHz
• 8GB DDR3
• 240 GB Solid State Drive
• 3 Gigabit Ethernet interfaces: one for remote node power

and reset management, one for control used by the testbed
management framework for providing access, and one for
data, dedicated to experimentation, e.g, to create wired
link or to connect to an SDR device such as USRP2 or
N210.

• 2 Wi-Fi MIMO NICs dedicated to experimentation: one
Atheros 802.11 93xx a/b/g/n and one Intel 5300. Each
card is connected to 3 dual-band 5dBi antennas, operating
on both 2.4GHz and 5GHz. Antennas are spaced of
2.8cm, which corresponds to half the wavelength at
5GHz, see photo at Figure 3.

Figure 3: Wi-Fi dual-band antennas for a node

9Icarus node: https://nitlab.inf.uth.gr/NITlab/.
10NITlab:

https://nitlab.inf.uth.gr/NITlab/hardware/wireless-nodes/icarus-nodes.

2

https://nitlab.inf.uth.gr/NITlab/
https://nitlab.inf.uth.gr/NITlab/hardware/wireless-nodes/icarus-nodes

To control and monitor each Icarus node, we use the
NITlab’s Chassis Manager Card (called CM card); this device
embarks a tiny web server that can serve http requests to power
on/off and reset the motherboard, or one attached USB device.
This latter feature allows to physically reset a USRP or LTE
dongle without the assistance of the Icarus node itself.

D. SDR devices

About half of Icarus nodes are attached to an SDR device.
R2lab currently supports USRP1, USRP2, N210, B210 and
X310 ETTUS11 devices and also LimeSDR from Lime Mi-
crosystems12, see Table III.

Device USRP1 USRP2 & B210 X310 LimeSDR
type N210
of 4 8 6 1 2

Table III: Available SDR devices

Each N210 device includes a SBX-40 USRP daughterboard
(400 MHz - 4.4 GHz, 40 MHz BW), whereas the X310 board
includes two SBX-120 USRP daughterboards (400 MHz - 4.4
GHz, 120 MHz BW).

Note that a subset of USRP B210 boards are connected to
LTE Band 7 duplexers. This is useful when running OpenAir-
Interface eNodeB or UE software as the distance between the
RX and TX antenna SMA connectors on the B210 board is
such that the TX antenna generates too much interference to
the RX channel.

Finally, two out of the 37 nodes host a Huawei 3372
USB dongle with the following characteristics: FDD LTE with
DL:150 Mbps and UL:50 Mbps, BW: 20 MHz. Bands: 800 /
900 / 1800 / 2100 / 2600 MHz.

E. Commercial Phones

Two commercial phones (Nexus 5 and iPhone 6s) are
currently available right inside the chamber. Each one is
connected through USB to a computer (that also sits in the
room) including convenience helpers to manage the phone
remotely. These computers can be accessed through ssh, or
via remote access software based on VNC.

III. R2LAB SOFTWARE

This section gives a brief description of the software de-
ployed in order to operate the R2lab testbed and to expose
it to experimenters. Many different aspects need to be taken
into account here, but a fair split of the desired functionalities
would be as follows.

A. Membership and Reservations

In our case, the reservation model is wholesale; a user has
to reserve the whole testbed, i.e., one cannot reserve only a
portion. This is on purpose, and a way to ensure that two
concurrent experiments will not be able to contaminate each
other’s radio spectrum.

11Ettus Research: https://www.ettus.com/.
12Lime Microsystems: http://www.limemicro.com/.

The first and most obvious features are the ones that deal
with keeping track of the various computing resources and of
users. In other words, we need a data model, and related API,
for first-citizen objects like nodes, users, reservations.

For fulfilling this need we have decided to use the PlanetLab
API component, which we happen to be very familiar with,
and that we found to be able to cope with the job with zero
modification. The only twist was to define a single dummy
meta-node to materialize reservations. This choice also came
with the additional benefit of providing a federation-ready
software layer, which came in handy, as R2lab is a member
of the FIT testbed federation.

B. Access network

The Icarus nodes obviously do not have direct Internet con-
nectivity, they can be reached through a single point of entry
at a gateway box named faraday.inria.fr. Registering
as a member of R2lab grants access to that gateway, from
where ssh access to the nodes is possible during a reserved
timeslot.

C. Low-level nodes management

From that gateway, we also need some low-level tools to
physically manage nodes; in this category we can mention
features like: turning nodes on, or off, or reset their moth-
erboard; monitoring their status; loading or storing images
on or from the hard disk drive; this is the purpose of the
rhubarbe software tool[9], extensively based on python’s
‘asyncio‘ library, and that takes advantage of Emulab’s image
management tool named frisbee[10].

We provide prebuilt images that contain the Intel CSI
tool [11] and Atheros CSI tool [12], that allow to collect the
channel state information from both Wi-Fi NICs present on
the nodes. We also provide images that are ready for GNU
Radio [13] and OpenAirterface [14].

D. Web site

https://r2lab.inria.fr is a django application that offers the
usual set of features for such a testbed, in terms of detailed
hardware description and several tutorials. Authenticated users
can manage their reservations, and see a live status of all nodes
in terms of power, reachability, loaded image, and similar.
Figure 4 shows an example captured on a session that involves
only two nodes running different Linux distributions.

IV. EXPERIMENTER’S TOOL

With all the above, experimenters can register for an ac-
count, reserve timeslots either interactively or programmati-
cally, monitor and setup the testbed, so in essence they already
have enough to use R2lab.

However, managing potentially tens of nodes through a
multi-hop ssh access gets tricky when performance matters.
In addition, an average reservation on R2lab only lasts one or
two hours, and so it is desirable to allow for some powerful
and yet effective means to script for experiments. This is
obviously even more stringently desirable in the perspective
of reproducible research.

3

https://www.ettus.com/
http://www.limemicro.com/
https://r2lab.inria.fr

Figure 4: Live status in the ‘r2lab.inria.fr‘ website

For these reasons we also offer a tool named nepi-ng, that
is particularly well suited for controlling an R2lab experiment
right from the experimenter’s laptop. Actually nepi-ng is
not specific to R2lab; its capabilities currently only rely on
ssh, and so it could perfectly cope with other testbeds like
PlanetLab, or even be used for daily sysadmin-oriented tasks.

In the nepi-ng’s declarative paradigm, an experiment is
described as a set of nodes and jobs. Nodes are python objects
that materialize ssh connections, and can be nested to create
multi-hops. Each job is attached to one node, and materializes
a sequence of remote actions, like running a remote command,
or running a script whose source is local, or copying files
back and forth. The ability to remotely copy a local script
is a convenient way to defer low-level details to, say, shell
scripts, while the overall experimental logic remains controlled
by nepi-ng.

Jobs are meshed inside a dependency graph, which ex-
presses chronological synchronization. As an illustration of
these basic mechanisms, figure 5 was automatically derived
from our tutorial My first nepi-ng script13.

Figure 5: Sketch of a simple nepi-ng script

Figure 6 shows an extract of the corresponding code, that
in particular illustrates how the chronological dependencies is

13https://github/parmentelat/r2lab-demos/my-first-nepi-ng-script

expressed through the required relationship.

job_warmup = SshJob(
node = gateway,
command = [

Run("rhubarbe leases --check"),
Run("rhubarbe on", nodename1, nodename2),
Run("rhubarbe wait", nodename1, nodename2),

]
)

job_prep_send = SshJob(
node = node1,
command = [

RunScript("demo.sh", "prepare-sender"),
Run("ip address show control"),

],
required = job_warmup,

)

Figure 6: Extract of the same nepi-ng script

nepi-ng design was greatly inspired by d3.js, a well-
known visualization library. Many such visualization tools,
like gnuplot or matplotlib to name just a couple,
propose an encapsulating approach, in the sense that from
low-level graphical objects like lines and text, they build
abstractions like donut or bar charts. The approach taken
by d3.js is totally disruptive in this respect, as it directly
exposes the underlying low-level objects, and focuses on a
framework that promotes one unique workflow for updating
visualization as the data evolves.

Although addressing a completely different area, nepi-ng
adopts a similar point of view; rather than offering abstractions
for controlling the whole variety of underlying hardware, it
offers a convenient framework for orchestrating the overall
logic for an experiment, but the gory details, typically of the
actual devices configuration, is left to the experimenter who
can use any suitable software for reaching her objectives.

As a result, nepi-ng, which is implemented as two very
small python libraries, amounts to a total of a mere 3 KLOC.
It makes here again extensive usage of python’s coroutines-
based asynchronous programming paradigm. Thanks to this, it
is possible to control all 37 R2lab nodes in a single-threaded
application, that is optimal in terms of ssh connections, in the
sense that at most exactly one connection is created to every
node actually involved.

Finally, it is worth noting that no prior exposition to
asynchronous programming is required to use this paradigm,
since a script is essentially purely declarative, so the details of
using coroutines and an event loop are hidden to a beginner
user.

V. A SAMPLE NOTEBOOK

For the sake of illustrating a methodological approach to
publish experiment results, we have defined a dummy experi-
ment, that consists of measuring, for all couples of nodes (a, b)
in the testbed, the power received by b when a is sending. It
is a dummy experiment in the sense that we do not intend to
interpret the result in any significant way, although it does help

4

https://github/parmentelat/r2lab-demos/my-first-nepi-ng-script

Figure 7: A glimpse at the Jupyter notebook for R2lab radiomap
click the images to run on mybinder.org

to understand the disposition of the room and its peculiarities,
particularly the impact of the pillars and of blind corners.

Jupyter notebooks are hybrid documents that mix formatted
text and executable code. In this section, we are exploring the
capabilities offered by using Jupyter notebooks, in conjunction
with publicly available infrastructures like github.com and
mybinder.org, as a step towards runnable papers.

Again the experiment in itself is designed to be straight-
forward, as our focus here is purely methodological; we
want to exhibit one possible way of publishing this dummy
experiment, so as to maximize reproducibility.

Scenario Description

As usual, the experiment can be thought of as two succes-
sive phases.

Data collection consists of generating traffic between a Tx
and Rx node and measuring the RSSI at the level of the
receivers. The procedure used for collecting the measurements
is as follows:

1) Create an ad-hoc network at a given frequency.
2) Generate traffic using ping with different parameters

(see Table. IV) from a Tx node while all the other nodes
are listening. The nodes take turn in sending the traffic.

3) Capture the incoming packets with tcpdump on the
monitor interface of each receiving node.

4) Process the dump files in the nodes and collect the
generated RSSI to the experimenter’s local machine.

Data processing can then occur in order to provide higher
level quantitative feedback as a result of the experiment, as
well as visualization of some representative outcome of the
experiment. In the case of this simplified experiment we will
simply provide a small visualization tool, that allows a user to
select a specific sender node, and that displays the perceived
power from all other nodes.

Of course, data collection requires actual physical access
to the experimental resources, while data processing can be
carried out in the void. Also, several environmental parameters
can impact the measurements (see below). Collecting data
for a large number of combinations of these environmental
parameters can require a vast amount of time, and so it is
perfectly reasonable to perform data collection incrementally
in several complementary measurement campaigns.

The notebook

We provide a Jupyter notebook that can be used to perform
either of the stages described above.

Data collection: the environmental parameters of the exper-
iment protocol that can be controlled in the notebook are listed
in tableIV.

NIC Driver ath9k iwlwifi
Transmit Power (in dBm) 5 to 14 0 to 15
Number of antennas 1, 2, 3 3
Physical Tx Rate 1 to 54 Mbps
Wi-Fi Channel 1-11, 36, 40, 44, 48, 52, 56

Table IV: Controllable parameters from the notebook

The data collection code leverages both nepi-ng and
rhubarbe. Data gathered along the various runs accumulates
in a simple directory structure, so that data collection is
trivially incremental.

Data processing: once performed in plain python code, data
can be plotted interactively right inside the notebook using
various visual tools, in the sense that the reader can select
either the environmental parameters that he is interested in
- when available of course, or select a sender node, and in
the case of 3D diagrams, can navigate inside the figure space.
These possibilities naturally reach way beyond what is usually
feasible from a static printable paper.

5

https://mybinder.org/v2/gh/parmentelat/r2lab-demos/master?filepath=radiomap/radiomap.ipynb

The notebook can be downloaded as part of a git repos-
itory14, and run from anyone’s computer. Clickable Figure 7
will lead you directly to a pre-deployed instance of that note-
book, hosted in the mybinder.org public infrastructure,
as a best-effort attempt to make it usable as seamlessly as
possible.

The experimenter has the ability to study the impact of
parameters on the transmission range as well as on the channel
response. The radio maps can be used as a prospection tool
for researchers to select the most convenient nodes to be
used for their experimentation scenarios by taking advantage
of the R2lab’s layout, for example when various types of
communication scenarios are required, e.g., with line-of-sight,
non-line-of-sight, near-line-of-sight. Additionally, radio maps
can be used as a diagnosis tool to identify possible issues with
NICs and antennas, as well.

The notebook is part of a larger git repository that contains
other required artifacts. This repository comes with some
measurements; in a real experience, this would correspond to
the data acquired by the author. This means that in a first step,
a reader could easily reproduce the visualizations of the paper
from that data, before she can go further and perform her own
data acquisition.

Discussion

As an outcome of this exercise, we have learned the follow-
ing about the advantages and disadvantages of this approach
for publishing the details of an experiment.

On the pro side, notebooks are a very effective way to
convey, at the same time, ideas and their implementation. The
format allows to provide for executable documents, but authors
have a great level of flexibility to show the important pieces
of the code and to hide less crucial details in code stored
separately.

Still on the bright side, the current public offering allows
to combine github.com and mybinder.org and to offer
single-click access to a runnable notebook, that completely
removes the burden of software installation, at the price of
more limited features though.

On the downside however, running the notebook from that
public environment is limited to postprocessing, as gaining
physical access to R2lab requires ssh credentials. And in any
case, whether the notebook is run from that public spot or
from your laptop, a reservation needs to be obtained before
data collection can be carried out.

Sustainability is the major challenge here. Of course, we
cannot assume that mybinder.org will be up forever, this
is why we rely on this platform only as best-effort mode,
essentially to smoothen the adoption process of Jupyter, which
besides is gaining increasing popularity in several scientific
communities. The notebook in our case, together with its
depending code and notes, can be considered as a regular
artifact, insofar as its real purpose is to be run locally.

14The notebook source from its github repository
https://github/parmentelat/r2lab-demos/radiomap/radiomap.ipynb

VI. CONCLUSION

The combination of R2lab’s controllable environment and
experiment orchestration tools, together with the Jupyter note-
book paradigm, paves the way for a new era in the repro-
ducible research domain. We argue that, even though the
technical background is not quite available yet, it should be
possible eventually for researchers to submit papers written in
a completely redesigned format, as compared to camera-ready
paperware that is, fundamentally, similar to what Gutemberg
could have printed in the late XVth century. Such a medium
would allow to bundle, in a more relevant manner, (a) text
that describe ideas, and related mathematical material, (b)
environment described either as data or as parameters, (c) code
to collect, process and render output data, and (d) the raw data
as collected by the authors. Our feeling is that the separation
currently made between, on the one hand, material belonging
in the (a) family - “the paper” - perceived as the first-class
citizen, and on the other hand the other (b..d) classes - “the
artifacts”, is actually wrong in the first place.

We are planning to study, as part of future work, the missing
pieces that could in the future allow for papers to be submitted
in a form closer to a runnable paper.

ACKNOWLEDGMENTS

This work is funded by the French ANR through the
“Investments for the Future” Program under grant ANR-11-
LABX-0031-01. The R2lab wireless testbed at Inria has been
funded by the ANR Equipex FIT 6165.

REFERENCES

[1] Kim et al., “Enabling iterative development and reproducible evaluation
of network protocols,” Computer Networks, vol. 63, pp. 238–250, 2014.

[2] Tala et al., “Guidelines for the accurate design of empirical studies
in wireless networks,” in International Conference on Testbeds and
Research Infrastructures. Springer, 2011, pp. 208–222.

[3] Mahfoudi et al., “Lessons Learned while Trying to Reproduce the
OpenRF Experiment,” in Reproducibility’17 - ACM SIGCOMM Repro-
ducibility Workshop, vol. 41, no. 1, LA, USA, Aug. 2017, pp. 21 –
23.

[4] Reis Fontes et al., “How far can we go? Towards Realistic Software-
Defined Wireless Networking Experiments,” The Computer Journal, Jun.
2017.

[5] Mahfoudi et al., “ORION: Orientation Estimation Using Commodity
Wi-Fi,” in ICC Workshop on Advances in Network Localization and
Navigation, Paris, France, May 2017.

[6] ——, “Deploy a 5g network in less than 5 minutes,” in Proceedings of
the SIGCOMM Posters and Demos. ACM, 2017, pp. 113–115.

[7] Busson et al., “A simple method to infer wi-fi conflict graph,” in CoRes
ALGOTEL Workshop, Quiberon, France, May 2017.

[8] Pakzad, “Towards software defined wireless mesh networks,” Ph.D.
dissertation, The University of Queensland, 2017.

[9] Parmentelat, “Testbed management framework for r2lab,” https://github.
com/parmentelat/rhubarbe.

[10] Hibler et al., “Fast, scalable disk imaging with frisbee,” in Proceedings
of the USENIX Annual Technical Conference, 2003.

[11] Halperin et al., “Tool release: Gathering 802.11n traces with channel
state information,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 1,
pp. 53–53, Jan. 2011.

[12] Xie et al., “Precise power delay profiling with commodity wifi,” in
Proceedings of ACM MobiCom, NY, USA, 2015, pp. 53–64.

[13] Blossom, “GNU radio: tools for exploring the radio frequency spec-
trum,” Linux journal, vol. 2004, no. 122, p. 4, 2004.

[14] Nikaein et al., “OpenAirInterface: A Flexible Platform for 5G Research,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 33–38, Oct. 2014.

6

https://github/parmentelat/r2lab-demos/radiomap/radiomap.ipynb
https://github.com/parmentelat/rhubarbe
https://github.com/parmentelat/rhubarbe

	Introduction
	R2lab Hardware
	State of the Art
	Room characteristics
	Icarus nodes
	SDR devices
	Commercial Phones

	R2lab Software
	Membership and Reservations
	Access network
	Low-level nodes management
	Web site

	Experimenter's tool
	A sample notebook
	Conclusion
	References

