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Abstract—Spectrum sensing over a broad frequency band
plays an important role in cognitive radio, but it also leads to
high sampling rate when the bandwidth is large. The recently
proposed coprime sampling scheme has been recognized as an
attractive mechanism because it allows to significantly reduce the
sampling rate. However in some cases, classical high resolution
spectrum estimation methods fail when coprime sampling data
are used. This situation has never been considered in the open
literature under the framework of practical coprime sampling. In
this paper, firstly, the conditions of this phenomenon are specified.
Then, a new coprime sampling scheme based on embedded ran-
dom delays is proposed to prevent this phenomenon. Simulation
results show the effectiveness of the proposed coprime sampling
scheme.

Index Terms—Spectrum sensing, coprime sampling, frequency
estimation.

I. INTRODUCTION

Due to the strong development of wireless techniques, the
demand for frequency spectrum leads to an increasing research
interest in radio frequency spectrum analysis. To optimally
utilize the spectrum opportunities, a promising solution is
using cognitive radio [1], which allows secondary users to
access the licensed spectrum bands when the primary user
is absent. To that end, the frequency bands preassigned to the
primary users need to be sensed before sharing the unoccupied
frequency bands. Many techniques have been developed to
detect dynamic frequencies, including energy detection [2],
match filtering [3], and cyclostationary feature detection [4],
etc. For most of these techniques, the sampling rate is an
important issue closely related to hardware implementation
as well as cost. In practice, the above methods are limited by
the Nyquist sampling rate, which causes high complexity for
hardware when the bandwidth is large.

To mitigate Nyquist rate sampling burden on hardware,
many sub-Nyquist rate sensing methods have been developed
[5], [6]. Recently, coprime sampling [7], [8] has attracted
growing interest. For this technique, two samplers are adopted
to sample a signal constituted of a sum of sinusoidal signals at
sub-Nyquist sampling rates with sampling intervals MT and
NT , respectively (referred as the classical coprime scheme in
this paper), where M and N are two coprime integers and
T is the Nyquist sampling period. By using the concept of
coarray [9], two uniformly sample sets generate a virtual data
set and higher degrees of freedom (DOFs) can be achieved.
Qin et al. [10] generalized the classical coprime scheme and
exploited overlapped sampling data to further increase the

DOFs provided by the classical coprime scheme. However,
the above mentioned techniques are based on the hypothesis
of uncorrelated sinusoidal components, which is not always
satisfied for a finite number of data samples, even if the dif-
ferent signals are statistically independent. For some specific
conditions, the above mentioned techniques completely fail. To
the best of our knowledge, this problem has never been clearly
discussed in the open literature concerning the high resolution
spectral analysis methods based on coprime sampling.

In this paper, we deal with the problem of estimating
frequencies in a signal composed of a sum of independent
sinusoidal components based on coprime sampling principle.
Considering the commonly used signal model of classical
coprime sampling scheme, our main contributions are as fol-
lows. Firstly, the sources covariance matrix diagonal property
loss phenomenon under finite samples for some particular
situations is discovered, and we show that the MUtiple SIg-
nal Classification (MUSIC) method [11] applied to coprime
sampling fails for such situations. Next, we design an original
mechanism to fix this problem. This is achieved by organizing
the collected samples in blocks and by introducing random
delays between the successive blocks during the sampling
process at both samplers such that the phase of the different
sinusoidal components becomes artificially random from one
block to another, which allows to restore the diagonal property
of sources covariance matrix. Finally, from a finite number
of randomly delayed blocks, the signal covariance matrix is
estimated and the classical coprime-MUSIC method [8] is
applied.

The rest of this paper is organized as follows. The classical
coprime sampling model and some related high resolution
spectral analysis techniques are reviewed in Section 2. The
diagonal property loss phenomenon is described in Section
3 and the proposed embedded random delay mechanism is
presented in Section 4. Section 5 shows some simulation
results and conclusions are drawn in Section 6.

II. PROBLEM FORMULATION
Consider the following signal composed of D sinusoidal

components buried in an additive noise

x(t) =

D∑
i=1

Aie
j(2πfit+φi) + ω(t) (1)

where Ai is the amplitude, fi is the frequency of the i-th sinu-
soidal component, φi is the corresponding phase assumed to



be uniformly distributed in range [0, 2π] and independent from
each other, and ω(t) is a zero mean additive white Gaussian
noise, independent from the D sinusoidal components.

Similarly to [8] and [10], two sub-Nyquist samplers op-
erating at sampling intervals MT and NT respectively are
utilized to sample the noise contaminated signal, with M and
N two coprime numbers and 1

T = 2fmax the Nyquist rate
(fi < fmax). The collected samples are organized in blocks
and the two data subsets associated to the l-th (l ≥ 0) block
can be expressed as

xM [Nl+n]=

D∑
i=1

Aie
j
(
πqiM(Nl+n)+φi

)
+ω(M(Nl+n)) (2)

xN [Ml+m]=

D∑
i=1

Aie
j
(
πqiN(Ml+m)+φi

)
+ω(N(Ml+m))(3)

where qi = 2fiT = fi
fmax

is the normalized frequency with
qi ∈ (−1, 1), and 1 ≤ m ≤M − 1, 0 ≤ n ≤ N − 1.

The sampling signal vectors of the l-th block can be
constructed with the above data

yM [l] = [xM [Nl], xM [Nl + 1], ..., xM [Nl +N − 1]]T (4)
yN [l] = [xN [Ml + 1], ..., xN [Ml +M − 1]]T (5)

Concatenating yM [l] and yN [l] leads to the following observed
data vector

y[l] = [yTM [l],yTN [l]]T =

D∑
i=1

a(qi)Aie
jφiejπqiMNl +w[l]

(6)
where a(qi) = [[1...ejqiπM(N−1)][ejqiπN ... ejqiπN(M−1)]]T

and w[l] is the corresponding noise vector. The covariance
matrix of the observed data vector is given by

Ry = E[y[l]yH [l]] =

D∑
i=1

A2
ia(qi)a

H(qi) + σ2
nI

= ARsA
H + σ2

nI (7)

where A = [a(q1) a(q2) ... a(qD)], Rs =
diag(A2

1, A
2
2, ..., A

2
D), σ2

n is the noise power and I is a
(N +M − 1)× (N +M − 1) identity matrix.

Based on the theoretical covariance matrix (7), many tech-
niques have been proposed to estimate the frequencies [8], [12]
and references therein. Most of them require to operate the
vectorization of Ry, select and rearrange the elements in the
above obtained vector [13] to obtain constant lag difference
between the successive terms (equivalent to virtual uniform
Nyquist rate sampling), and process a spatial smoothing to
achieve a rank restored covariance matrix [14] such that
a subspace based method can be exploited to achieve a
high resolution performance. Among these methods, MUSIC
algorithm is the mostly preferred and it is also adopted in
this paper. In most situations, excellent performance has been
obtained in terms of detectable number of frequencies and
resolution power [8], [10]. But we have discovered that in
some particular situations, depending on the values of M,N

and qi, the above mentioned methods totally fail. In the
following section, we will specify the conditions under which
these situations happen.

III. DIAGONAL PROPERTY LOSS PHENOMENON

In practice, we can only obtain a finite number of samples
of a particular realization, for which the sinusoidal component
parameters qi, Ai and φi (i = 1, 2, . . . D) are constant.
For convenience and without loss of generality, we consider
the noise-free situation. The covariance matrix (7) is then
estimated, over L blocks of samples, by

R̂y =
1

L

L−1∑
l=0

y[l]yH [l]

= AR̂sA
H (8)

where R̂s is no longer a diagonal matrix, but it is a matrix
whose {i, k}-th elements can be expressed as

R̂s(i, k) =
AiAke

j(φi−φk)

L

L−1∑
l=0

ejπ(qi−qk)MNl (9)

where, Ai, Ak, φi, φk, with i, k = 1, 2, ..., D, are constant for
a given realization.

From the hypothesis presented in the previous section, Rs

is diagonal. However it can be observed that if there exists a
pair of normalized frequencies verifying

qi − qk =
2b

MN
(10)

where b is an integer, then the term in equation (9) turns
to be equal to AiAke

j(φi−φk), which is independent of L.
It is obvious that matrix R̂s will not be diagonal even
for a big value of L. In fact, in this situation, this matrix
becomes rank deficient. For any pair of distinct frequencies
qi and qk satisfying this condition, the diagonal property of
R̂s can no more be hold. This phenomenon has never been
reported in the framework of practical coprime sampling. In
this situation which seems to happen quite frequently, the
estimated covariance matrix (8) obtained from finite samples
does not exhibit the same properties as the theoretical matrix
(7).

For co-array MUSIC method, matrix R̂y is vectorized and
spatial smoothing is applied to construct a new covariance
matrix of the virtual signal. The vectorization of R̂y can be
given as

vec(R̂y) =

D∑
i=1

A2
ia
∗(qi)⊗ a(qi) + (11)

D∑
h=1

D∑
k=1,h 6=k

ξhkAhAke
jπφhka∗(qk)⊗ a(qh) (12)

where φhk = φh − φk, ξhk = 1 only when condition (10)
is met and 0 otherwise. Then the virtual signal vector can be
written as

xv = Fvec(R̂y) = FBp+ FB′p′ (13)
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Fig. 1. Random delay between coprime sampling blocks, M=4, N=5

where F is the selection matrix [10], B =
[a∗(q1) ⊗ a(q1), ...,a

∗(qD) ⊗ a(qD)], p =
[A2

1, ..., A
2
D]
T and B′ = [a∗(q1) ⊗ a(q2), ...,a

∗(q1) ⊗
a(qD), ...,a

∗(qD) ⊗ a(q1), ...,a
∗(qD) ⊗ a(qD−1)],

p′ = [ξ21A2A1e
jφ21 , ..., ξD1ADA1e

jφD1

, ..., ξ1DA1ADe
jφ1D , ..., ξ(D−1)DAD−1ADe

jφ(D−1)D ]T . Here,
h 6= k for each a∗(qk) ⊗ a(qh) in B′ and ξhkAhAke

jφhk in
p′. We can write FBp as

FBp=[

D∑
i=1

A2
i e
jπqi(1−(M+N)),

D∑
i=1

A2
i e
jπqi(2−(M+N)), ...

,

D∑
i=1

A2
i e
jπqi(M+N−1)]T = Avp (14)

where Av = [d(q1), ...,d(qD)] with d(qi) =
[ejπqi(1−(M+N)), ejπqi(2−(M+N)), ..., ejπqi(M+N−1)]T .
Before applying the co-array MUSIC, the spatial smoothing
is applied to xv . It can be seen that if the diagonal property of
R̂s holds, the virtual signal vector xv can be written as Avp.
If the diagonal property loss condition is met, vector FB′p′

consisting of some cross terms between different frequencies
will cause some problems to the co-array MUSIC. Due to
the cross terms of different frequencies, the virtual signal
vector xv can no longer be written in the form Avp, which
is the basis of all spatial smoothing based high resolution
techniques. As a consequence, the co-array MUSIC fails in
this case.

IV. COPRIME SAMPLING WITH EMBEDDED
RANDOM DELAYS

In this section, we propose a technique to overcome the
above mentioned diagonal property loss phenomenon. The
main idea is to introduce randomness in the sampling process
to artificially keep the uncorrelation between the sampled si-
nusoidal components. This is achieved by introducing random
delays such that the phase of different sinusoidal components
becomes random because of the different frequencies.

After acquiring the first block of data, a discrete random
delay is introduced before starting each new block at both
samplers as illustrated in Figure 1. It should be noticed that the
DOFs is M+N−1 in this case because we embed the random
delays after each block. The proposed scheme can be easily

generalized to increase the DOFs by embedding the random
delays after every B blocks. For instance, if the random delays
are embedded after the 2-nd, 4-th, 6-th,...blocks, data from two
blocks can be jointly used to construct the covariance matrix
and the DOFs can be increased to MN +M +N −1. Indeed,
the DOFs can be further increased to (B−1)MN+M+N−1
[10] if the random delays are embedded after the B-th, 2B-
th, 3B-th,...blocks. In this paper, our main concern is to show
the diagonal property loss problem and give a way to fix it.
Without loss of generality, we have embedded the random
delays after each block in this paper.

In this paper, discrete random delay is considered but contin-
uous random delay could have been chosen too. For practical
convenience of implementation, we consider the introduced
random delays to be multiple of the Nyquist sampling period
T with a discrete uniform distribution. The delay embedded
at the front of the p-th block is denoted as tpT , where tp is
a random integer ruled by the discrete uniform distribution
U [0, α − 1] (α ≥ 2). It means that tp randomly takes one
integer value in set [0, α − 1] with probability 1

α . At the l-th
block, the total accumulated delay is

τlT =

l∑
p=1

tpT (15)

Then the new concatenated samples block vector in equation
(6) can be modified as

ỹ[l] =

D∑
i=1

a(qi)Aie
jφiejπqi(MNl+τl) + w̃[l] (16)

Its covariance matrix can then be estimated over the L obtained
blocks. Similarly to (9), the {i, k}-th element in R̃s can be
written as

R̃s(i, k) =
AiAke

j(φi−φk)

L

L−1∑
l=0

ejπ(qi−qk)(MNl+τl) (17)

Since Ai, Ak, φi, φk are constant for a particular realization,
we consider only the summation item in R̃s(i, k). It should
be noticed that even for a set of received samples, only one
realization of the random delays is drawn. It is impossible
to derive a closed-form expression of the summation term in



equation (17). However it makes sense to observe the statistical
mean of this term, which is given by

E

[
1

L

L−1∑
l=0

ejπ(qi−qk)(MNl+τl)

]
=

1

L

L−1∑
l=0

(
ejπ(qi−qk)(MN+α−1

2
)

α

sin(π(qi−qk)α
2

)

sin(π(qi−qk)
2

)

)l (18)

To better understand how the embedded delays affect the
non-diagonal terms and fix the diagonal property loss problem,
we use equation (18) to approximately show the impact of
the introduced delays. When L increases, the summation term
in equation (17) tends to take a value close to its statistical
mean. Observing equation (18), it comes that the value of the
summation item is given as the sum of the first L terms of a
geometric series for which the modulus of the common ratio
is less than or equal to one (equal to one only when |qi − qk|
is even). Since α ≥ 2 and qi 6= qk with |qi − qk| < 2 by
definition, the modulus of the common ratio will be always
less than one. Hence, as L is chosen large enough, the non
diagonal elements of the estimated signal correlation matrix
R̃s will be very small for any α and normalized frequencies.
In fact, the non diagonal elements tend to zero as L goes to
infinity. Therefore, even in the diagonal property loss condition
defined in (10), two distinct signal components (qi 6= qk) will
never be linearly correlated, which means that no diagonal
property loss will occur in the proposed scheme. The coprime
subspace based methods can then be applied for frequencies
estimation even under the diagonal property loss condition.

It seems that parameter α could be chosen to optimize the
performance of frequencies estimation, because the smaller
the amplitude of (18) is, the better is the performance of the
subspace based techniques. However, for a given number of
blocks L, it is not possible to optimally choose α to obtain a
lowest value of (18) because the normalized frequencies are
not known initially.

It is worth mentioning that by introducing the random
delays, the phase φi is no longer required to be uniformly
distributed in range [0, 2π] and independent from each other,
which are assumed in [8]. Therefore, the proposed mechanism
can also be applied to scenario even if the independence
between φi is not meet.

V. NUMERICAL SIMULATION
In this section, in order to illustrate the above highlighted

problem, firstly we provide the MUSIC spectrum under the
diagonal property loss condition with the classical coprime
sampling. Then, the MUSIC spectrum obtained from the pro-
posed embedded random delay sampling is displayed to show
the benefit brought by the new proposed coprime sampling
scheme. Finally, RMSE performance is given to show that
the proposed sampling scheme does not affect the estimation
performance when there is no diagonal property loss.

A. MUSIC spectrum in the diagonal property loss condition
In order to illustrate the diagonal property loss phenomenon,

let’s consider the coprime integers M = 4 and N = 5, and

D = 7 sinusoidal components with unit amplitude. The signal-
to-noise ratio (SNR) is set to 20dB. Consider L = 1000 blocks
of samples. The 7 normalized frequencies in this example
are selected such that there exist exactly two pairs among
them verifying the diagonal property loss condition (10). The
normalized frequencies are q1 = −0.40, q2 = −0.34, q3 =
−0.17, q4 = 0.23, q5 = 0.39, q6 = 0.56, q7 = 0.88, and the
condition is met with q4 − q3 and q6 − q2.
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Fig. 2. MUSIC spectrum with coprime sampling in the diagonal property
loss condition, 7 sinusoidal components, M = 4 and N = 5.

The coprime sampling MUSIC algorithm [8] is then applied
in two scenarios: 1) the number of components D = 7 is
known and the dimension of the signal subspace dimension
is set to 7 when performing MUSIC algorithm; 2) No prior
knowledge of the number of components is assumed, and the
minimum description length criteria (MDL) [15] is used to
determine the signal subspace dimension. In this situation, the
subspace signal dimension is found to be equal to 5. Fig. 2
shows the estimated MUSIC spectrum under diagonal property
loss phenomenon. The vertical dotted lines refer to the true
position of frequencies. It can be observed that the frequencies
are not correctly estimated in both scenarios. Phantom peaks
appear at wrong frequency position and some true frequencies
can not be detected.

Fig. 3 depicts the estimated MUSIC spectrum with the pro-
posed embedded random delays sampling method. The same
frequencies setting as before is considered and α is set to 6.
It can be observed that the frequencies are correctly estimated
even with two pairs of frequencies verifying contidion (10).

B. Estimation performance

In the following, the proposed embedded random delays
scheme and the classical coprime scheme are compared. The
performance is assessed in terms of RMSE, defined as

RMSE =

√√√√ 1

DU

D∑
i=1

U∑
u=1

(q̂i(u)− qi)2 (19)
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Fig. 3. MUSIC spectrum using embedded random delays coprime sampling,
7 sinusoidal components, M = 4 and N = 5.

where q̂i(u) is the estimate of the normalized frequency qi in
the u-th estimation trial, u = 1, 2, ..., U . In the following simu-
lations, the following parameters are chosen, U = 1000,M =
4, N = 5
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Fig. 4. RMSE performance when the difference between some frequencies
is close to 2b/(MN), b = 4,M = 4, N = 5.

As explained above, the classical co-array MUSIC fails
when condition (10) is met. We first show the performance of
the classical co-array MUSIC algorithm when the difference
between some frequencies is close to 2b/(MN). In Figure
4, we consider 2 frequencies, which are q′1 = −0.17 and
q′2 = 0.23 + δ such that q′2 − q′1 = 0.4 + δ, where δ is a
small offset b = 4. We set δ to several values for comparison
and no prior knowledge of D is assumed in this case. It
can be observed from Figure 4 that when δ varies from
0.01 to 0.0001, the classical co-array MUSIC achieves similar
performance. When δ continues to decrease, RMSE increases
dramatically. This indicates that when the difference between

some frequencies tends to be close to 2b/(MN), the non-
diagonal terms in R̂s become non-negligible. The diagonal
property loss problem becomes significant.

The classical coprime scheme and the proposed scheme
are compared in Figure 5. For simplicity, signal with only
two sinusoidal components (q1, q2) is considered. Because the
classical coprime mechanism fails under the diagonal property
loss condition while our proposed method can still robustly
perform, we arbitrarily choose frequencies which do not satisfy
the diagonal property loss condition for comparison. Without
loss of generality, q1 is chosen to be −0.84 and q2 is randomly
chosen in each estimation trial. Also, we consider different
values of α to compare how the embedded delay distributions
affect the performance, namely α = 6, 16, 31.
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Fig. 5. RMSE performance with classical coprime sampling and embedded
random delay coprime sampling, M = 4, N = 5.

It can be observed from Fig. 5 that the proposed scheme
can obtain similar RMSE performance as that of the classical
coprime scheme. Moreover, with different values of α, the per-
formance does not significantly change, which means that the
embedded delays do not significantly affect the performance of
coprime sampling process while being able to fix the problem
of the diagonal property loss.

One significant benefit of coprime sampling is the achiev-
able higher DOF. In Figure 6, we embedded the random
delays after every two data blocks, which are 2-nd, 4-th, 6-
th,... blocks. We consider 27 sinusoidal components uniformly
distributed over interval [-0.936,0.936]. It can be seen that
the proposed scheme can achieve similar performance as the
classical coprime scheme in low SNR region. When SNR
increases, the estimation error of random delay scheme only
slightly increases compared to the classical coprime scheme.
This is consistent with the case of only 2 frequencies that
the introduced random delays do not significantly change the
performance of the classical coprime sampling configuration.

VI. CONCLUSION
In this paper, we have reviewed the classical coprime

sampling mechanism and shown that the classical coprime
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subspace based methods suffer from diagonal property loss
phenomenon in specific practical conditions. The closed-form
expression of the condition is given and a new approach is
proposed to prevent the diagonal property loss. We artificially
introduce the randomness into sinusoid components by em-
bedding random delays in the coprime sampling process to
keep uncorrelation between different sinusoidal components.
Our proposed scheme fixes the diagonal property loss problem
in coprime subspace based methods without sacrificing the
performance. Future works can be conducted to optimize the
random distribution of the embedded delays.
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