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A vertex subset S of a graph G = (V,E) is a [1, 2]-dominating set if each vertex of

V \S is adjacent to either one or two vertices in S. The minimum cardinality of a [1, 2]-

dominating set of G, denoted by γ[1,2](G), is called the [1, 2]-domination number of
G. In this paper the [1, 2]-domination and the [1, 2]-total domination numbers of the

generalized Petersen graphs P (n, 2) are determined.

Keywords: Generalized Petersen graph; Vertex domination; [1, 2]-domination; [1, 2]-total
domination

1. Introduction

The study of domination problems in graph theory has a long history. For an undi-

rected graph G = (V,E) a subset S ⊆ V is a dominating set if every vertex not in S

has a neighbor in S. The domination number γ(G) is the minimum size of a domi-

nating set in G. For many classes of graphs the exact values of γ(G) are known, e.g.,

γ(Pn) = γ(Cn) = dn/3e. Here Pn and Cn are the paths and cycle graphs respectively

with n vertices. For the class of generalized Petersen graphs P (n, 2) introduced by

Watkins [9] it was conjectured by Behzad et al. that γ(P (n, 2)) = d3n/5e holds [1].

This conjecture was later independently verified by several researchers [5,6,10].

Over the years different variations of graph domination were introduced, e.g.,

connected domination, independent domination, and total domination. The domi-

nation number γ(G) and the total domination number γt(G) of graph G are among

the most well studied parameters in graph theory. Some of these domination num-

bers are known for generalized Petersen graphs. Cao et al. computed the total

domination number of P (n, 2) as γt(P (n, 2)) = 2dn/3e [2]. Further results can be

found in [8,12].

This paper considers [1, 2]-domination, a concept introduced by Chellali et al.

[3]. A subset S ⊆ V is a [1, 2]-dominating set if every vertex not in S has at least

one and at most two neighbors in S, i.e., 1 ≤ |N(v) ∩ S| ≤ 2 for all v ∈ V \ S.
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2015, project id 57134870.
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The [1, 2]-domination number γ[1,2](G) is the minimum size of a [1, 2]-dominating

set in G. Obviously γ(G) ≤ γ[1,2](G) for any graph G. Chellali et al. proved that if

G is a P4-free graph then γ(G) = γ[1,2](G). A characterization of graphs with this

property is an open problem. More results about [1, 2]-domination can be found in

[11].

This paper also deals with the [1, 2]-total domination defined as follow. A subset

S ⊆ V is a [1, 2]-total dominating set if every vertex v in V has at least one and

at most two neighbors in S, i.e., 1 ≤ |N(v) ∩ S| ≤ 2 for all v ∈ V . The [1, 2]-total

domination number γt[1,2](G) is the minimum size of a [1, 2]-total dominating set in

G. Clearly, γ[1,2](G) ≤ γt[1,2](G) for each graph G.

In this paper we analyze the [1, 2]-domination numbers of the generalized Pe-

tersen graphs P (n, 2) and prove the following theorem.

Theorem 1. γ[1,2](P (n, 2)) =


2n/3 if n ≡ 0, 3[6]

2bn/3c+ 1 if n ≡ 1[6]

2bn/3c+ 2 otherwise.

for n ≥ 5.

Note that γ[1,2](P (n, 2)) is by a factor of 10/9 larger than γ(P (n, 2)). After that,

we investigate the problem of [1, 2]-total domination and prove the following result.

Theorem 2. γt[1,2](P (n, 2)) =


5 if n = 5

2n/3 if n ≡ 0, 3[6]

2bn/3c+ 2 otherwise.

for n ≥ 6.

Note that γt[1,2](P (n, 2)) = γ[1,2](P (n, 2)) except for the case n = 5 and n ≡ 1[6].

Surprisingly γt[1,2](P (n, 2)) is almost equal to γt(P (n, 2)).

2. Notation

This paper uses standard notation from graph theory which can be found in text-

books on graph theory such as [4]. For an extended study about domination concepts

the reader is referred to [7].

Definition 1. Let n, k ∈ N with k < n/2. The generalized Petersen graph P (n, k)

is the undirected graph with vertices {u0, . . . , un−1} ∪ {v0, . . . , vn−1} and edges

{(ui, ui+1), (ui, vi), (vi, vi+k) | 0 ≤ i < n}.

The graphs P (n, k) are regular graphs with 2n vertices and ∆ = 3. The domina-

tion number γ(P (n, k)) for some values of k are known [1,12]. In particular Ebrahimi

et al. proved in [5] that γ(P (n, 2)) = d 3n5 e.
In this paper indices are always interpreted modulo n, e.g. vn+i = vi. Fig. 1 shows

the graphs P (5, 2) and P (6, 2), vertices depicted in black form a [1,2]-dominating

set of minimum size, i.e., γ[1,2](P (5, 2)) = γ[1,2](P (6, 2)) = 4 and also for the graph

P (5, 2), vertices depicted in black form a [1,2]-total dominating set of minimum size

γt[1,2](P (5, 2)) = 5.

The proofs of this paper use the following notion of a block.
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Fig. 1. The minimum [1, 2]-domination sets of the generalized Petersen graphs P (5, 2) and P (6, 2)

and the minimum [1, 2]-total dominating set for P (5, 2).

Definition 2. A block b of P (n, 2) is the subgraph induced by the six vertices

{vi−1, vi, vi+1, ui−1, ui, ui+1} for any i ∈ {0, . . . n− 1}. A block is called positive if

two of the indices of {vi−1, vi, vi+1} are odd, otherwise it is called negative.

Fig. 2 shows a series of blocks of P (n, 2). The second block is positive while the

other two are negative. Note that blocks can overlap. If b is a block, the block to

the left is denoted by b− and that to the right by b+.

b− b b+

ui−4

ui−3

ui−2

ui−1

ui

ui+1

ui+2

ui+3

ui+4

vi−4

vi−3

vi−2

vi−1

vi

vi+1

vi+2

vi+3

vi+4

Fig. 2. Partition of P (n, 2) into blocks.

Definition 3. Let S be a [1, 2]-dominating set. For a subset U ⊆ V denote by

γS(U) the number of vertices of S that are in U , i.e., γS(U) = |U ∩ S|. For i ≥ 0

let Bi(S) be the set of all blocks b with γS(b) = i.

Note that B0(S) = ∅ for any dominating set S of P (n, 2). Denote by f(n) the

value of the right side of the equation in Theorem 1. Note that f(n) = f(n− 6) + 4

for any n ≥ 5.

3. Determination of γ[1,2](P (n, 2))

The correctness of Theorem 1 for n < 12 can be verified manually.

Lemma 3. γ[1,2](P (n, 2)) = f(n) for 5 ≤ n < 12.
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Proof. By inspection, we can easily see that the following sets Sn are minimum

[1, 2]-dominating sets of P (n, 2). S5 = {u1, v1, v3, v4}, S6 = {u1, v1, u4, v4}, S7 =

{u0, v1, v2, v3, u4}, S8 = {u1, v1, u4, v4, v6, v7}, S9 = {u1, v1, u4, v4, u7, v7}, S10 =

{u1, v1, u4, v4, u7, v7, u8, v8} and S11 = {u1, v1, u4, v4, u7, v7, v9, v10}.

Lemma 4. γ[1,2](P (n, 2)) ≤ f(n) for n ≥ 5.

Proof. To prove that f(n) is an upper bound of γ[1,2](P (n, 2)), we give in Fig. 3

the corresponding construction for each case. For n ≡ 0, 3[6], we choose the middle

pair of nodes of each block. For the cases n ≡ 2, 4, 5[6], we do the same as the

previous case by choosing the middle pair of nodes of each block. Then, we add two

dominating nodes as depicted in red in Fig. 3. For the case n ≡ 1[6], we choose two

nodes from each block as shown in Fig. 3 except in the the two successive blocks

preceding the block with only two nodes. In these two blocks we choose five nodes

as depicted in Fig. 3. This means that we have 2n/3 nodes plus one additional

dominating node.

Thus, it suffices to prove that f(n) is a lower bound. Assume that there exists a

minimal [1, 2]-dominating set S of P (n, 2) with |S| < f(n). Lemma 3 yields n ≥ 12.

The remaining proof is split into two parts depending on whether B1(S) is empty

or not.

3.1. Case B1(S) = ∅

The vertices of P (n, 2) are grouped into n pairs pi = {vi, ui} as depicted in Fig. 4.

Since B1(S) = ∅ this means that for i = 1, ..., n

γS(pi) + γS(pi+1) + γS(pi+2) ≥ 2

(subscripts are always taken modulo n). Note that γS(pi) ≤ 2 for all i. Consider

the following system of inequalities for integer valued variables x0, . . . , xn−1.

xi ≤ 2

xi + xi+1 + xi+2 ≥ 2∑n−1
i=0 xi < f(n)

(3.1)

Note that xi = γS(pi) is a solution for these equations. We will show that no

solution of Eq. (3.1) is induced by a [1, 2]-dominating set.

Lemma 5. Let x be a solution of Eq. (3.1) with xi = 2 for some i. Let x̂ = x

except x̂i+1 = x̂i+2 = 0 and x̂i+3 = 2. Then x̂ is a solution of Eq. (3.1) with∑n−1
i=0 x̂i ≤

∑n−1
i=0 xi.

Proof. Obviously x̂ satisfies the first two sets of inequalities. Note that xi+1 +

xi+2 + xi+3 ≥ 2 since x is a solution of Eq. (3.1). Thus, x̂i+1 + x̂i+2 + x̂i+3 ≤
xi+1 + xi+2 + xi+3.
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(a) Case n ≡ 0, 3[6]

(b) Case n ≡ 2[6]

(c) Case n ≡ 4[6]

(d) Case n ≡ 5[6]

(e) Case n ≡ 1[6]

Fig. 3. f(n) is an upper bound of γ[1,2](P (n, 2)) for all n > 12

Lemma 6. Let x be any solution of Eq. (3.1). Then xi ≤ 1 for i = 0, . . . , n− 1.

Proof. Let x be any solution of Eq. (3.1) such that xi = 2 for some i. Without loss

of generality i = 0. By Lemma 5 there exist a solution which coincides with x except

x1 = x2 = 0 and x3 = 2. Repeatedly applying Lemma 5 proves that there exits a
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Fig. 4. The partition of P (n, 2) into n pairs.

solution x̂ of Eq. (3.1) with x̂k = 2 and x̂k+1 = x̂k+2 = 0 for k = 0, 1, . . . , bn/3c.
If n ≡ 0 [3] then

∑n−1
i=0 x̂i = 2n/3 = f(n), which is impossible. Suppose n ≡ 1 [3].

Then x̂n−1 = 2 otherwise the second constraint for i = n − 2 would be violated.

This leads to the contradiction
∑n−1

i=0 x̂i = 2bn/3c + 2 ≥ f(n). Hence, n ≡ 2 [3].

Then x̂n−2 = 2 otherwise the second constraint for i = n− 2 is not satisfied. Again

this leads to the contradiction
∑n−1

i=0 x̂i = 2bn/3c + 2 = f(n). This proves xi ≤ 1

for all i.

Lemma 7. If n 6≡ 4 [6] then Eq. (3.1) has no solution. If n ≡ 4 [6] then any solution

of Eq. (3.1) is a rotation of the solution (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1).

Proof. Let x be any solution of Eq. (3.1). By Lemma 6 xi ≤ 1 for i = 0, . . . , n− 1.

Denote by n0 the number of variables with xi = 0. Thus
∑n−1

i=0 xi = n − n0. Note

that if xi = 0 then either xi+1 = 1 or xi−1 = 1, thus no adjacent variables have

both value 0. Denote by l1, . . . , ln0
the lengths of maximal sequences of consecutive

xi with xi = 1. Note that lj ≥ 2 for all j. Then

n−1∑
i=0

xi =

n0∑
j=1

lj = 2n0 +

n0∑
j=1

(lj − 2).

This implies

3

n−1∑
i=0

xi = 2n+

n0∑
j=1

(lj − 2).

If n ≡ 0 [3] then
∑n−1

i=0 xi ≥ 2n/3 = f(n). A contradiction. If n ≡ 2 [3] then again

this leads to the contradiction
∑n−1

i=0 xi = 2bn/3c+(4+
∑n0

j=1(lj−2))/3 ≥ 2bn/3c+
2 ≥ f(n). Finally if n ≡ 1 [6] then

∑n−1
i=0 xi = 2bn/3c + (2 +

∑n0

j=1(lj − 2))/3 ≥
2bn/3c + 1 = f(n). This contradiction proves that for n 6≡ 4 [6] Eq. (3.1) has no

solution.

Let n ≡ 4 [6]. Then
∑n−1

i=0 xi = 2bn/3c+(2+
∑n0

j=1(lj−2))/3 < f(n) = 2bn/3c+1

implies 3 = 2 +
∑n0

j=1(lj − 2). This yields that there exists i such that li = 3 and

lj = 2 for all j 6= i. Thus, x is a rotation of the solution (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1).
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Lemma 8. The solution x = (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0, 1) is not induced by a [1, 2]-

dominating set of P (n, 2).

Proof. Assume there exists a [1, 2]-dominating set S such that xi = γS(bi). Two

vertices of the first two pairs must be in S. All four possibilities lead to a contra-

diction as shown in the following.

Case 1. v0, u1 ∈ S (see Fig. 5). Since S is [1, 2]-dominating the lower vertex of

the last pair pn−1 must be in S. Now the same argument implies that the middle

vertex of pair p3 must be in S. This yields that the lower vertex of pair p7 must be in

S, otherwise the lower vertex of pair p5 is not dominated. Repeating this argument

shows that the lower vertex of pair pn−3 must be in S (note that n ≡ 4 [6]). Thus,

S does not dominate the middle vertex of pair pn−2. Contradiction.

1 1 1 0 101111001011

u

uu

n−1
pp

0
p
2

p
1

1

1
v

0 2

20

vv

Fig. 5. If v0, u1 ∈ S then vertices depicted in red must also be in S.

Case 2. u0, v1 ∈ S (see Fig. 6). In order to dominate the middle vertex of pair p2
the middle vertex of p3 must be in S. Similarly the lower vertex of pair p7 must be

in S to dominate the lower vertex of p5. This results in the pattern shown in Fig. 6.

This is impossible because all three neighbors of the lower vertex of pn−1 are in S.
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n−1
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p
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20

vv

Fig. 6. If u0, v1 ∈ S then vertices depicted in red must also be in S.

Case 3. u0, u1 ∈ S. The same reasoning as above leads to the situation depicted

in Fig. 7. This gives also rise to a contradiction since the upper vertex of pair pn−2
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is not dominated.
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Fig. 7. If u0, u1 ∈ S then vertices depicted in red must also be in S.

Case 4. v0, v1 ∈ S. The same reasoning as above leads to the situation depicted

in Fig. 8. This is impossible because all three neighbors of the lower vertex of pn−1
are in S.

1 1 1 0 101111001011

u
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pp
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p
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v

0 2

20

vv

Fig. 8. If v0, v1 ∈ S then vertices depicted in red must also be in S.

This concludes the proof of Theorem 1 for the case B1(S) = ∅.

3.2. Case B1(S) 6= ∅

The following simple observation is based on the fact that the central vertex of a

block b can only be dominated by a vertex within b.

Lemma 9. Any positive block b ∈ B1(S) corresponds to one of the four blocks

shown in Fig. 9. A similar result holds for negative blocks.

In the following the four different types of blocks are considered individually.

Lemma 10. Let S be a [1, 2]-dominating set of P (n, 2) containing a block b of type

B and n ≥ 12. Then there exists a [1, 2]-dominating set S′ of P (n, 2) not containing

a block of type B such that |S′| = |S|.



June 27, 2019 Preprint

[1,2]-Domination in Generalized Petersen Graphs 9

(a) Type A (b) Type B (c) Type C (d) Type D

Fig. 9. The four types of positive blocks with γS(b) = 1.

Proof. In order to dominate vi−1 and vi+1 from block b, vertices vi−3 from block b−

and vi+3 from b+ need to be in S. The idea is to move some dominating nodes such

that block b is not no longer of type B and no new block of type B emerges while S

is still [1, 2]-dominating and the cardinality of S remains. The proof is divided into

four cases, considering whether ui−2 from block b− and ui+2 from b+ are in S or

not. The notation of the nodes is taken from Fig. 2.

Case 1. ui−2, ui+2 ∈ S. If vi−4 and vi+4 are not in S then S′ = S/{ui} ∪ {vi}. If

vi−4 or vi+4 are in S then S′ = S/{ui−2} ∪ {ui−1} or S′ = S/{ui+2} ∪ {ui+1}.
Case 2. ui−2 6∈ S, ui+2 ∈ S. To dominate ui−2 and vi−2 we consider two subcases.

Subcase 2.1. vi−2 ∈ S. If ui−3 is not in S then S′ = S/{ui}∪{ui−1}. If ui−3 ∈ S
then there are three possibilities depending on which vertex dominates ui+4. Hence,

if ui+3 ∈ S then S′ = S/{ui+2} ∪ {vi}. If vi+4 ∈ S then S′ = S/{ui+2} ∪ {ui+1}.
Otherwise, the vertex ui+4 is dominated by node ui+5 of block b++ then S′ =

S/{ui} ∪ {vi−1}.
Subcase 2.2. vi−2 6∈ S. This implies that ui−3 and vi−4 from are both in S. Then

S′ = S/{ui−3} ∪ {ui−1}.
Case 3. ui+2 6∈ S, ui−2 ∈ S. This case is symmetric to case 2.

Case.4. ui+2, ui−2 6∈ S. In order to dominate ui−2 and vi−2 two situations must

be considered.

Subcase 4.1. vi−2 ∈ S. Since vi−2 is in S and vi is not in S then vi+2 cannot be

a dominating node. This yields that ui+3 and vi+4 are in S. Then S′ = S/{ui+3} ∪
{ui+1}.

Subcase 4.2. vi−2 6∈ S. This implies ui−3, vi−4 ∈ S. Therefore, S′ = S/{ui−3} ∪
{ui−1}.

The next Lemma finally completes the proof of Theorem 1.

Lemma 11. If B1(S) 6= ∅ and n ≥ 6 then |S| ≥ f(n).

Proof. Let n be minimal such that the lemma is false. Then n ≥ 12 by Lemma 3.

Let SB the set of all [1, 2]-dominating sets S of P (n, 2) not containing a block of

type B and |S| < f(n). Then B1(S) 6= ∅ for all S ∈ SB by the first part of the proof.

Let p be the largest number such that |B1(S)| ≥ p for each S ∈ SB . Then p ≥ 1.

Let Mp be the set of all S ∈ SB with |B1(S)| = p.



June 27, 2019 Preprint

10 F. Beggas, V. Turau, M. Haddad and H. Kheddouci

Claim 1: P (n, 2) does not contain a block of type A for any S ∈Mp.

Assume false. Let S ∈Mp and b a positive block of type A. Then the nodes vi+3 and

ui+2 of b+ must be dominating. Assume γb+(S) ≥ 3. Then S′ = S \ {ui+2} ∪ {ui}
is also a [1, 2]-dominating set. Thus, γb(S

′) = 2. Then |B1(S′)| = |B1(S)| − 1 < p

since γb(S) = 1. This yields S′ 6∈ SB and therefore B1(S) = ∅. Thus, γb+(S) = 2.

Let b++ be the positive block to the right of b+. Then the nodes ui+5 and vi+6

of b++ must be dominating. Next we remove the nodes of the blocks b and b+

and connect the corresponding nodes of blocks b− and b++. The resulting graph is

isomorphic to P (n − 6, 2). Furthermore, S′ = S \ {vi, ui+2, vi+3, ui+5} is a [1, 2]-

dominating set of this graph. Thus, |S′| = |S| − 4 ≥ f(n − 6) by the choice of n.

Therefore |S| ≥ f(n − 6) + 4 = f(n). This implies |S| ≥ f(n). This contradiction

proves claim 1 for positive blocks of type A. The same argument shows that there

are no negative blocks of type A.

Claim 2: P (n, 2) does not contain a block of type D for any S ∈Mp

Assume false. As above we only need to consider the positive case. Let S ∈Mp and

b a positive block of type D. Then nodes vi+3 and ui+2 of b+ must be dominating.

Assume γb+(S) = 2. Then again the nodes ui+5 and vi+6 of block b++ must be

dominating. We distinguish two cases. If vi−2 is not a dominating node then S′ =

S\{vi+3}∪{vi+1} else (vi−2 is a dominating node) then we have again two subcases

depending on γb++(S). If γb++(S) = 2 then the nodes ui+8 and vi+9 of the block to

the right of b++ must be dominating nodes. We remove the nodes of the blocks b

and b+ and connect the corresponding nodes of blocks b− and b++ with S′ = S \
{ui−1, ui+2, vi+3, vi+6}. Similar to the proof of claim 1 this leads to a contradiction.

If γc(S) ≥ 3 then at least one of the nodes vi+5 and ui+6 is a dominating node. Then

we again remove the nodes of the blocks b and b+ and connect the corresponding

nodes of blocks b− and b++ with S′ = S \ {ui−1, ui+2, vi+3, ui+5}. Similar to the

proof of claim 1 this leads to a contradiction.

Hence, γb+(S) ≥ 3. In the following we will construct a new [1, 2]-dominating

set S′ with |B1(S′)| < p. This is a contradiction.

Case 1. vi+2, ui+3 ∈ S. There are three subcases. If vi−3 6∈ S then S′ = S \
{ui+2} ∪ {vi+1} and if vi−2 6∈ S then S′ = S \ {ui+2} ∪ {ui}. If vi−3, vi−2 ∈ S then

S′ = S \ {ui−1, ui+2} ∪ {ui, vi}.
Case 2. Neither vi+2 nor ui+3 are in S. Since γb+(S) ≥ 3 this implies that vi+4

is a dominating node and S′ = S \ {ui+2} ∪ {ui+1}.
Case 3. If vi+2 ∈ S and ui+3 6∈ S then S′ = S \ {ui+2} ∪ {ui+1}.
Case 4. If vi+2 6∈ S and ui+3 ∈ S we distinguish two cases: If vi+4 ∈ S then

S′ = S \ {ui+2} ∪ {ui+1} else we have four subcases depending on which node

dominates ui+5:

(1) If vi+5 ∈ S then S′ = S \ {vi+3} ∪ {ui+1}.
(2) If ui+5 ∈ S then S′ = S \ {ui+3} ∪ {ui+1}.
(3) If ui+6 ∈ S then we distinguish three cases depending on which node dominates

vi+4. If ui+4 ∈ S then S′ = S \ {ui+2, ui+4} ∪ {vi+2, ui}. If vi+4 ∈ S then
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S′ = S \ {ui+2, vi+4}∪ {vi+2, ui}. Finally if vi+6 ∈ S then we remove the nodes

of the blocks b and b+ and connect the corresponding nodes of blocks b− and c.

(4) If ui+4 ∈ S then S′ = S \ {ui+2, ui+3} ∪ {ui+1, vi+4}.

This proves claim 2.

Claim 3: P (n, 2) does not contain a block of type C for any S ∈Mp

This case is symmetric to the second claim.

Claim 4: P (n, 2) does not contain a block of type B for any S ∈Mp

If S contains a block of type B then by Lemma 10 there exists S′ ∈ SB which does

not contain a block of type B. The above claims yield B1(S′) = ∅. This contradiction

concludes the proof of the lemma.

4. Determination of γt[1,2](P (n, 2))

In this section, we analyze the [1, 2]-total dominating sets of P (n, 2) and prove the

Theorem 2. For the case n = 5 we refer to Fig. 2. We split the proof into two

lemmata. Denote by g(n) the value of the right side of the equation in Theorem 2.

Lemma 12. γt[1,2](P (n, 2)) ≤ g(n) for n > 5.

Proof. In Fig. 12, we give the construction of the minimum [1, 2]-total dominating

set in P (n, 2) for n ≡ 1[6]. The proposed construction is based on the selection of one

pair of nodes of the middle in each block which corresponds to 2n/3 nodes. Then,

we add two additional dominating nodes as depicted in color red in Fig. 12. For all

other cases we refer to Fig. 3 since the provided sets are already total dominating

sets.

Lemma 13. γt[1,2](P (n, 2)) ≥ g(n) for n > 5.

Proof. For n 6≡ 1[6] this follows from Theorem 1. It remains to consider the case

n ≡ 1[6]. Let S be a total [1,2]-dominating set of minimum size of P (2, n) with

|S| < g(n). Let G[S] be subgraph induced by S. By definition of a [1, 2]-total

dominating set, each connected component of G[S] has at least two vertices and

every vertex of G[S] has degree 1 or 2. Hence, every connected component is either

a path or a cycle. Let xl and yl be the numbers of connected components that are

paths and cycles of order l, respectively. Observe that x1 = 0 and y1 = · · · = y4 = 0.

Moreover, each path of order l dominates at most 2l + 2 vertices and each cycle of

l vertices dominates at most 2l vertices. Thus,∑
l≥2

(2l + 2)xl + 2lyl ≥ 2n (4.1)

∑
l≥2

l(xl + yl) = |S| (4.2)
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From (4.1) and (4.2) we can deduce

|S|+
∑
l≥2

xl ≥ n (4.3)

Also observe that ∑
l≥2

lxl ≥ 2
∑
l≥2

xl (4.4)

Let n = 6k + 1. Then g(n) = 4k + 2 and |S| < 4k + 2. Inequality (4.3) becomes

|S| +
∑

l≥2 xl ≥ 6k + 1, thus
∑

l≥2 xl ≥ 2k. From (4.2) and using (4.4), we obtain

4k ≤
∑

l≥2 lxl +
∑

l≥2 lyl ≤ 4k + 1. This implies
∑

l≥2 lyl = 0, thus 4k ≤ |S| =∑
l≥2 lxl ≤ 4k + 1. Since

∑
l≥2 lxl ≤ 4k + 1 and

∑
l≥2 xl ≥ 2k, we have

∑
l≥2 lxl ≤

2
∑

l≥2 xl + 1. This is only possible if x3 = 1 and xj = 0 for all j > 3. Thus, G[S]

is the union one path P3 and x2 paths P2. Since every P2-component can dominate

at most 6 vertices and the P3-component can dominate at most 8 vertices, we

deduce 6x2 + 8 ≥ 12k + 2 = 2n. On the other hand, recall |S| = 2x2 + 3 ≤ 4k + 1

thus 6x2 + 8 ≤ 12k + 2. Hence, 6x2 + 8 = 12k + 2. This implies that P (n, 2)

can be partitioned into x2 components as shown in Fig. 10(a) and one component

shown in Fig. 10(b). Suppose such a partitioning exists. In the following we study

the partitioning by making consecutive extractions of components. Extracting a

component means deleting all its vertices from the graph. Moreover, an extraction

is said to be forced if there is no other option. Recall that the set of vertices of

P (n, 2) is the union of the two sets U = {u0, . . . , un−1} and V = {v0, . . . , vn−1}.
Vertices of U and V form the two main cycles of P (n, 2) respectively. Either all

three vertices of the P3-component are on the same main cycle or two of them are

on one cycle and the third on the other. In the first case, once the P3 dominated

component is extracted, the next forced extraction of a P2 dominated component

would imply the appearance of a vertex with a degree 2 (see Fig. 11(a)). In the

second case, after extracting the P3 dominated component and after several forced

extractions of P2 dominated components (see Fig. 11(b)), it becomes obvious that

such a partitioning is impossible. Hence x3 = 0, a contradiction.

(a) (b)

Fig. 10. Maximal components induced by P2 and P3 and their neighbors.



June 27, 2019 Preprint

[1,2]-Domination in Generalized Petersen Graphs 13

(a)

(b)

Fig. 11. Impossible partitionings.

5. Conclusion

Generalized Petersen graphs are very important structures in computer science

and communication techniques since their particular structures and interesting

properties. In this paper, we considered a variant of the dominating set prob-

lem, called the [1, 2]-dominating set problem. We studied this problem in gener-

alized Petersen graphs P (n, k) for k = 2. We gave the exact values of the [1, 2]-

domination numbers and the [1, 2]-total domination numbers of P (n, 2). Obviously

γ[1,2](P (n, 1)) = γ(P (n, 1)) and so as future work we suggest to study the [1, 2]-
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Fig. 12. The construction of γt[1,2](P (n, 2)) for n ≡ 1[6].

domination numbers of P (n, k) with k ≥ 3.
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