
HAL Id: hal-02166920
https://hal.science/hal-02166920

Submitted on 25 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Providing Confidentiality and Integrity in Ultra Low
Power IoT Devices

Emanuele Valea, Mathieu da Silva, Marie-Lise Flottes, Giorgio Di Natale,
Sophie Dupuis, Bruno Rouzeyre

To cite this version:
Emanuele Valea, Mathieu da Silva, Marie-Lise Flottes, Giorgio Di Natale, Sophie Dupuis, et al.. Pro-
viding Confidentiality and Integrity in Ultra Low Power IoT Devices. DTIS 2019 - 14th International
Conference on Design & Technology of Integrated Systems in Nanoscale Era, Apr 2019, Mykonos,
Greece. �10.1109/DTIS.2019.8735090�. �hal-02166920�

https://hal.science/hal-02166920
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Providing Confidentiality and Integrity in Ultra Low

Power IoT Devices

Emanuele Valea1, Mathieu Da Silva1, Marie-Lise Flottes1, Giorgio Di Natale2, Sophie Dupuis1, Bruno Rouzeyre1

1LIRMM (Université de Montpellier – CNRS), Montpellier, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, Grenoble, France

Abstract—IoT devices for low power applications often rely

on energy harvesting techniques. In these implementations,

IoT nodes must be aware of the amount of available energy.

When the energy is about to run out, they need to halt and save

the context of the CPU, which is restored as soon as the energy

is available again. Some of the existing techniques rely on the

transfer of the scan chains content to a Non-Volatile Memory

(NVM). However, the saved state of the device might be the

target of malicious attacks, including tampering and theft of

confidential data. One solution is to provide the encryption and

the integrity of context data. In this paper, we propose the

implementation of an additional module interposed between

the CPU and the NVM, which provides both these security

features.

Keywords—IoT, Hardware Security, Context Saving, PUF

I. INTRODUCTION

The Internet of Things (IoT) has known an extraordinary
fast dissemination in the last years. Nowadays, we see more
and more often the commercialization of IoT devices dealing
with numerous every-day-life applications. Very often, these
devices integrate security functions because they manage
encrypted communications over the network, or because they
deal with confidential and private data [1].

Energy consumption is a very tight design constraint in
IoT-oriented designs. Consequently, techniques have been
developed that allow IoT nodes to be independent from
power supply sources, both wired and battery-based. Energy
harvesting makes devices self-powered resorting to
environmental sources. In this scenario, the availability of
the power source is not always guaranteed. For this reason,
these devices need to be designed in order to be robust
against intermittent power supply.

Some techniques have been developed in the last years to
deal with this problem. In most solutions the objective is to
save the state of the computation on a Non-Volatile Memory
(NVM) at specific times. This way, whenever the power
supply cannot be granted, the running process is halted and
its state is saved into the NVM. This is resumed as soon as
the energy is available again by moving back the content of
the NVM into the CPU. This mechanism is called context
saving.

A recently proposed technique for context saving relies
on the presence of scan chains inside the CPU [2]. Scan
chains are always present inside microprocessor designs for
testing purposes. For the purpose of context saving, the focus

is on a properly designed scan chain that traverses all the
registers that must be saved. When the computation is halted
due to a lack of energy, all the content of the scan chain is
transferred to a dedicated NVM.

In [3], a security issue related to context saving was
introduced. The need for security in many emerging IoT
applications is in contrast to existing context saving
techniques that expose the content of the internal registers of
the CPU to an external NVM without implementing security
criteria. In fact, NVMs can be observed and even tampered
with by any attacker that has physical access to the device
[4]. Since the IoT infrastructures are usually very wide,
having physical access to even only a single device is not an
unlikely assumption in most applications. This access can be
a way to perform attacks that affect the whole infrastructure.
In such cases, the interruption of the power supply can be
maliciously triggered by the attacker in order to force the
CPU to expose its content timely during computation.
Reading and modifying the content of many kinds of NVMs
can be successfully performed according to the implemented
technology and the kind of NVM used. Content read-out can
lead to steal secret keys or, more generally, to have
knowledge of contents that are usually stored into secure
memories when the system is regularly turned off.

In this paper, we propose the Secure Context Saving Unit
(SCSU), which can be plugged into any SoC design and
activated whenever the user wants the system to perform a
secure context saving in the case of supply unavailability.
Confidentiality is provided via stream cipher based
encryption, while the integrity against memory tampering is
provided via a Message Authentication Code (MAC) derived
from the saved context.

The reminder of this paper is organized as follows. In
Section II, we provide a background on existing context
saving techniques and the related security issues. In Section
III, we present the implementation of our solution. Section
IV presents experimental results. Finally, we draw some
conclusions in Section V.

II. BACKGROUND

A. Context Saving Techniques

Context saving techniques are divided into two
categories, depending on whether the state of the processor
core is saved in-place (InP) or moved out-of-place (OoP).
InP techniques are based on state retentive flip-flops, which

*Institute of Engineering Univ. Grenoble Alpes

are able to store their state even when the power supply is
turned off [5][6]. In OoP techniques, which are the scope of
this paper, the content of the CPU is moved towards an
external retaining memory. OoP methods are generally
preferred over InP because they require less design efforts
and they consume less dynamic power [2]. Generally, using
off-chip memories (e.g. flash memories) is too expensive
from an energetic point of view. For this reason, in-chip
memories are the preferred solution for OoP context saving
techniques.

OoP context saving techniques that have been proposed
in the literature handle the problem at different levels of the
digital stack. The power supply can be periodically
monitored by specific software procedures that are generated
in the compilation phase [7]. Alternatively, an interrupt
mechanism can be employed, in order to trigger the context
saving as soon as the supply voltage goes under a predefined
threshold [2][8]. The technique presented in [8] relies on
interrupt routines that transfer the context to the NVM. On
the other side, the technique presented in [2] relies on a
context saving procedure that is entirely managed at
hardware level (i.e. the scan chain content is transferred to
the NVM).

Another critical aspect for the comparison of these
techniques is the kind of NVM that is used as target of the
saved context. In [7], the context is saved into an external
flash memory. Alternatively, the authors of [8] and [2]
proposed the implementation of a Ferromagnetic RAM
(FRAM) inside the chip, in order to host the saved context.
FRAM memories have high efficiency and low power
consumption during the write process. For this reason, the
context saving procedure is far more energy efficient,
making FRAM and similar technologies preferred for
context saving.

B. Security issue

The use of NVMs based on emerging technologies, such
as FRAMs, poses a strong vulnerability with respect to
physical attacks. Some recent works have addressed possible
security issues of such emerging NVMs. For instance, the
authors of [9] and [10] have studied the effect of active
attacks on the Oxide-based Resistive Random Access
Memory (OxRRAM). These works showed that OxRRAM
cells could be easily attacked by laser injections. More
specifically, it is quite easy to change even a single bit of
such memories from ‘1’ to ‘0’. The physical phenomenon
that allows such an attack (i.e., the localized increase of the
temperature) can also be exploited in other types of
memories, such as Phase Change Memories. Another work
[11] showed how Spin Transfer Torque Magnetic Memories
(STT-RAM) could be affected by external magnetic fields,
thus allowing the control of the memory elements. In
general, it has been demonstrated that physical attacks are
possible for emerging NVM technologies, and they might be
even easier to perform than fault attacks targeting traditional
memories (e.g. flip-flops, SRAMs, DRAMs, flash
memories). Traditional memory technologies, such as flash
memories, generally provide integrated security features. It is
not the same for emerging memory technologies. For this

reason, we believe that the employment of this new kind of
memories for applications such as context saving deserves
the attention of security researchers.

In order to tamper with the device, the attacker can either
observe the internal behavior of the device or can actively
modify its state. When context saving techniques are
implemented, this boils down to a physical attack on the
NVM. Several techniques and means exist to inject a fault
into the device in order to alter the content of the memory
elements [12]. This modification could lead to an error that
can be exploited to retrieve a secret key (e.g., differential
fault injection as in [13]), to the modification of the device
state with a possible privilege escalation or to the bypass of
security checks. For instance, faults can be injected to
change the flow of an executed software code. For code
implementing cryptographic algorithms, changes in the
program flow can be a security threat.

To summarize, recent works have shown that NVMs that
are used in the next generation of IoT devices might clearly
lack of security in at least two aspects: (i) their content can
be read, and (ii) their content can be tampered with. Because
of these vulnerabilities, it is important to protect the data
stored into the NVM against physical attacks, in order not to
allow privilege escalation or lack of confidentiality.

III. SECURE CONTEXT SAVING UNIT

The solution proposed in this paper adds security features
to the context saving technique proposed in [2]. The memory
elements of the CPU are traversed by two different scan
chains: (i) one involving the volatile domain (i.e. the CPU
content that can be lost when the power supply is off); (ii)
the other involving the non-volatile domain (i.e. the set of
memory elements that must be preserved when the energy
supply is not available). The transfer of the non-volatile
domain content to the NVM and vice versa through the scan
chain is managed by a Context Saving Controller. It
performs the Context Storing Procedure (CSP) when the
device is about to be turned off, and the Context Loading
Procedure (CLP) when the computation is restored. A
supervisor manages a higher level control. It receives an
interruption from the energy supply when this is going below
a specific threshold. After that, the supervisor sends an
interruption to the CPU that runs a software routine in order
to enter into a predefined sleep mode. At this point, the CSP
procedure is performed at hardware level and the scan chain
content is transferred to the target NVM. When the system
wakes up from the sleep mode, the supervisor checks if an
image to restore is present in the NVM. In the affirmative
case, the CLP is started by the controller and the CPU state is
restored. The Secure Context Saving Unit (SCSU) is serially
connected between the scan chain and the target NVM. In
order to cope with the security threats described in the
previous section, the SCSU provides both confidentiality and
integrity of context data that are going to be stored into the
target NVM. Figure 1 shows the high-level architecture of
the SCSU module.

In order to provide confidentiality, data are encrypted
before being stored into the NVM and then decrypted when

loaded back into the CPU. If the encryption method is
secure, the attacker is not able to understand the content of
the NVM and to extract any information out of it. The SCSU
performs the encryption resorting to a stream cipher. The
stream cipher performs a simple XOR operation between an
input bitstream and a random sequence of bits, called
keystream. The keystream is generated pseudo-randomly
from a seed k and is denoted as 𝑆(𝑘). The encryption
function is 𝐸(𝑚, 𝑘) = 𝑚 ⊕ 𝑆(𝑘), while the decryption
function is 𝐷(𝑐, 𝑘) = 𝑐 ⊕ 𝑆(𝑘). If the generated keystream
is unpredictable, the stream cipher will be considered secure.

The encryption does not prevent the attacker from
modifying the content of the NVM. This can generate a
vulnerability even if the attacker does not understand the
data content. For this reason, the SCSU also performs
integrity verification resorting to a MAC module. The MAC
takes as input the plaintext context data and a secret key. It
produces a signature at the output, which is stored into the
NVM, together with the encrypted context data. When the
context is loaded back to the CPU, the decrypted data are
sent to the MAC module in order to compute the signature
again and compare it with the one stored into the NVM. If
they are equal, the content of the NVM is intact, thus the
computation can start again. On the contrary, if some
tampering occurred, the supervisor must reset the content of
the scan chain and the computation must start from scratch
and/or a security alarm should be raised.

Both the stream cipher and the MAC module need a
secret key in order to securely perform their operations.
Moreover, these keys, which are produced in the CSP phase,
must be recovered in the CLP phase. However, there are two
important aspects to take into account: 1) using the same key
to perform the encryption of data more than once is not a
secure choice when dealing with a stream cipher; 2) used
keys must be saved after the CSP phase in order to be used in
the CLP phase. This cannot be done simply by saving the
keys into the NVM, because we assume that the attacker is
able to access the NVM and read its content.

The key generation is performed by a True Random
Number Generator (TRNG) and a Physical Unclonable
Function (PUF). In particular, the TRNG generates a
random value, representing a challenge for the PUF. The
keys for the stream cipher and the MAC module are
extracted by the response of the PUF to the challenge. The
challenge is also stored into the NVM. The saved challenge
is used during the CLP to recover the key via the PUF. If an
attacker reads the content of the NVM, he/she will know the
challenge, but context data cannot be decrypted nor the
signature tampered with. The only way to obtain the keys is
to know the behavior of the PUF. However, a PUF relies on
unique physical characteristics of each device sample,
making its response unpredictable. The TRNG is employed
in order to generate a different challenge for each context
saving session and avoid key repetition.

The controller is in charge of executing the CLP and the
CSP procedures. The CSP is managed by the Store signal
and the CLP is managed by the Load signal. During the
CSP, the controller also selects the multiplexer driving the
Data_in port of the NVM. The context saving controller
implements a Finite State Machine (FSM), described in Fig.
2. The FSM is divided into two main flows, one
implementing the CSP, the other implementing the CLP. By
default, the controller is in IDLE state. The controller
receives an input from the supervisor determining the
procedure to start, the CSP or the CLP. Then, the FSM
executes each step of the procedure, depending on the value
of the counter cnt. The counter is reset after each step. At
the end of the executed procedure, the controller goes back
to the IDLE state and waits for new instructions from the
supervisor. In the next subsections, we detail the different
steps of the two procedures.

Fig. 1 Architecture of the SCSU

Fig. 2 FSM of the context saving controller

A. Context Saving Procedure

As soon as the supervisor sends the request to save the
context, the system enters in the CSP phase. The CSP
consists in four steps, described in Fig. 3: 1) the generation
of the keys for the stream cipher and the MAC; 2) the setup
of the stream cipher and the MAC; 3) the scan chain content
storing; 4) the signature storing.

The TRNG starts its initialization as soon as the CSP
begins. Firstly, the FSM enters the KEY_GEN state, where
a random number is generated. The TRNG requires an
initial setup time, 𝑇𝑇𝑅𝑁𝐺_𝑖𝑛𝑖𝑡 , to reach sufficient entropy in

order to generate random numbers properly. Once the
TRNG is initialized, the controller sets the Store_steps
signal controlling the multiplexer at the NVM input in order
to select the TRNG output. The multiplexer at the PUF
input is also connected to the TRNG output via the Store
signal. The random number generated by the TRNG serves
as a challenge for the PUF. This challenge is saved into the
NVM in order to be used for restoring the context data in
the CLP. At the same time as the challenge is saved, the
PUF generates the response.

This response is used as key for the stream cipher and
the MAC. The stream cipher and MAC setups are
performed in parallel in the SAVE_SETUP state. Once both
modules are initialized, the context data can be saved into
the NVM.

The FSM enters the DATA_SAVE state. The controller
selects the datapath connecting the scan chain to the
multiplexer at the NVM input. The context data contained in
the scan chain are shifted out. During data shifting, the
encryption is performed by the stream cipher, and the result
is saved into the NVM. At the same time, the same data are
processed in parallel by the MAC module.

Once the content of the whole scan chain is shifted out,
the FSM enters the MAC_SAVE state. The controller
connects the MAC output to the NVM input through the
Store_steps signal. The signature computed by the MAC is
saved into the NVM. At this point, the CSP is finished and
the controller goes back to the IDLE state.

B. Context Loading Procedure

The CLP is also carried out in four steps, described in
Fig. 4: 1) the recovering of the keys used during the CSP by
reading out the saved challenge; 2) the initialization of the
stream cipher and the MAC module; 3) the loading of the
decrypted context; 4) the verification of the integrity.

When the CLP begins, the FSM enters the
READ_CHAL state. The controller selects the multiplexer
driving the input of the PUF through the Load signal, in
order to retrieve the challenge from the memory. The
challenge saved into the NVM is then fetched and sent to
the PUF. The PUF response corresponds to the keys used by
the stream cipher and the MAC during the CSP.

Fig. 3 Context Saving Procedure

Once the keys are generated, the stream cipher and the
MAC module are initialized in the LOAD_SETUP state.
When both setups have finished, the FSM goes into the
DATA_LOAD state. The encrypted context data are read
out and decrypted by the stream cipher, generating the same
keystream used in the CSP. At the same time, the decrypted
data are processed by the MAC module, while the scan
chain of the CPU is loaded in parallel. However, the context
of the CPU is not resumed until the end of the MAC_COMP
state.

In the MAC_COMP state, the saved signature is fetched
from the NVM and compared with the one produced by the
MAC module. The result of the integrity control is sent to
the supervisor through the Verify signal. After that, the CLP
is finished and the FSM goes back to the IDLE state,
waiting for another request from the supervisor.

IV. RESULTS

In this Section, we provide an implementation of the
SCSU, in order to evaluate its cost and performance. The
evaluation of the proposed solution has been carried out
measuring the area footprint, the impact on the context
saving time and the energy consumption.

We have chosen to implement a TRNG from the
Synopsys DesignWare IP library [14] and an Arbiter PUF
for the key generation, the Trivium stream cipher for the
encryption/decryption of the context data and the HMAC

algorithm (based on the SHA-256 hash function) for the
signature computation. Table I reports the area cost for each
module composing the proposed solution. Globally, the area
cost is equal to 28295 gate equivalent. The additional
hardware is a serious overhead, since the application is
intrinsically extremely low power. However in the IoT
domain, it is very common that an attack on a node of the
network can compromise the entire infrastructure and lead
to serious problems. Therefore, this area overhead is the cost
to pay in order to ensure a higher security for the whole
infrastructure.

The proposed solution also brings an overhead on the
performances. Indeed, the CSP and CLP executions are
modified in order to ensure confidentiality and integrity.
Consequently, they require more time to execute. The
execution of the CSP is composed by the initialization of the
TRNG, the PUF computation, the setup of the stream cipher

TABLE I. AREA COST OF SECCS MODULE

Submodule Area (gate equivalent)

TRNG 15000

PUF 516

HMAC 10763

Stream cipher 2016

Fig. 4 Context Loading Procedure

and the MAC module (both processed in parallel), the
shifting out of the whole scan chain of the CPU, and the
saving of the signature. The saving of the challenge and the
encrypted data are not considered in the execution time of
the procedure, since this is performed in parallel to the PUF
computation. The storing of the encrypted data is performed
when the content of the scan chain is shifted out.

Concerning the CLP, its execution is composed of the
reading of the challenge from the NVM, the PUF
computation, the parallel setup of the stream cipher and the
MAC, the filling of the scan chain with the decrypted
context data, and the reading of the signature from the
NVM. The reading out of the encrypted data is not
considered in the execution time, since the data are read
while the scan chain is filled.

More formally, 𝑇𝐶𝑆𝑃 and 𝑇𝐶𝐿𝑃 respectively denote the
time to execute both procedures, 𝑇𝑇𝑅𝑁𝐺_𝑖𝑛𝑖𝑡 the time to

initialize the TRNG, 𝑇𝑃𝑈𝐹 the time to obtain the response
from the PUF, 𝑇𝑆𝐶 the time for the stream cipher setup,
𝑇𝑀𝐴𝐶 the time for the HMAC module setup, 𝑇𝑟𝑒𝑎𝑑 and 𝑇𝑠𝑎𝑣𝑒
the time to access the NVM for reading and writing
respectively and 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑐𝑎𝑛_𝑐ℎ𝑎𝑖𝑛) the length of the
scan chain. 𝑇𝐶𝑆𝑃 is defined as:

𝑇𝐶𝑆𝑃 = 𝑇𝑇𝑅𝑁𝐺_𝑖𝑛𝑖𝑡 + 𝑇𝑃𝑈𝐹 + max(𝑇𝑆𝐶 , 𝑇𝑀𝐴𝐶)
+ length(𝑆𝑐𝑎𝑛_𝑐ℎ𝑎𝑖𝑛) + 𝑇𝑠𝑎𝑣𝑒 (1)

𝑇𝐶𝐿𝑃 is defined as:

𝑇𝐶𝐿𝑃 = 𝑇𝑟𝑒𝑎𝑑 + 𝑇𝑃𝑈𝐹 + max(𝑇𝑆𝐶 , 𝑇𝑀𝐴𝐶)
+ length(𝑆𝑐𝑎𝑛_𝑐ℎ𝑎𝑖𝑛) + 𝑇𝑟𝑒𝑎𝑑 (2)

Concerning power consumption, previous works have
proven that hardware techniques for context saving
represent a smaller overhead with respect to software
procedures. In [2], the energy consumption to transfer
context data from the scan chains of the CPU to the target
NVM has been measured being 41pJ/b on a 65nm standard
library. The security module proposed in this paper
produces an additional energy consumption of 3.64pJ/b for
the stream cipher encryption and 16pJ/b for the MAC
signature generation on a similar technology library. This
represents an overhead of 48% on the energy required to
store the context into the NVM. This is an acceptable
overhead when dealing with the security of the whole IoT
infrastructure.

V. CONCLUSION

This paper proposes a solution for processor-based IoT

devices requiring security. We consider a system

performing context saving to external NVMs, activated

when the available energy is not sufficient to continue the

execution of the operations. At the same time, we want to

prevent attacks on the saved state of the device, including

tampering and fault attacks. For this reason, we proposed a

Secure Context Saving Unit that provides a hardware

module easy to implement inside a System on Chip (SoC).

This module provides both confidentiality and integrity to

all the CPU content that is saved into the target NVM. We

have shown that the proposed solution can have a large

impact on the area overhead of the system. However, the

need for security cannot be ignored in many applications.

For this reason, we believe that scarifying a part of the

power budget can be necessary for higher security.

REFERENCES

[1] A. Mosenia and N. K. Jha, "A Comprehensive Study of Security of
Internet-of-Things," in IEEE Transactions on Emerging Topics in
Computing, vol. 5, no. 4, pp. 586-602, Oct.-Dec. 1 2017.

[2] P. A. Hager, H. Fatemi, J. P. de Gyvez and L. Benini, "A scan-chain
based state retention methodology for IoT processors operating on
intermittent energy," Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 1171-
1176.

[3] E. Valea, M. Da Silva, G. Di Natale, M. Flottes, S. Dupuis, B.
Rouzeyre, "SECCS : SECure Context Saving for IoT Devices," 2018
13th IEEE International Conference on Design & Technology of
Integrated Systems in Nanoscale Era (DTIS), Taormina, 2018.

[4] K. Shamsi and Y. Jin, "Security of emerging non-volatile memories:
Attacks and defenses," 2016 IEEE 34th VLSI Test Symposium (VTS),
Las Vegas, NV, 2016, pp. 1-4.

[5] Z. Liu and V. Kursun, "New MTCMOS Flip-Flops with Simple
Control Circuitry and Low Leakage Data Retention Capability," 2007
14th IEEE International Conference on Electronics, Circuits and
Systems, Marrakech, 2007, pp. 1276-1279.

[6] Portal, J.M. & Bocquet, M & Moreau, Mathieu & Aziza, Hassen &
Deleruyelle, Damien & Zhang, Yue & Kang, Wang & Klein, Jacques-
Olivier & Zhang, Youguang & Chappert, Claude & ZHAO,
Weisheng. (2014). "An Overview of Non-volatile Flip-Flops Based
on Emerging Memory Technologies". Journal of Electronics Science
and Technology. 12. 173-181.

[7] Ransford, Benjamin & Sorber, Jacob & Fu, Kevin. (2011).
Mementos: System Support for Long-Running Computation on
RFID-Scale Devices. Sigplan Notices - SIGPLAN. 47. 159-170.
10.1145/2248487.1950386.

[8] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D.
Brunelli and L. Benini, "Hibernus: Sustaining Computation During
Intermittent Supply for Energy-Harvesting Systems," in IEEE
Embedded Systems Letters, vol. 7, no. 1, pp. 15-18, March 2015.

[9] A. Krakovinsky et al., "Impact of a laser pulse on HfO2-based
RRAM cells reliability and integrity," 2016 International Conference
on Microelectronic Test Structures (ICMTS), Yokohama, 2016, pp.
152-156.

[10] A. Krakovinsky, M. Bocquet, R. Wacquez, J. Coignus and J. Portal,
"Thermal laser attack and high temperature heating on HfO2-based
OxRAM cells," 2017 IEEE 23rd International Symposium on On-
Line Testing and Robust System Design (IOLTS), Thessaloniki, 2017,
pp. 85-89.

[11] S. Ghosh, "Spintronics and Security: Prospects, Vulnerabilities,
Attack Models, and Preventions," in Proceedings of the IEEE, vol.
104, no. 10, pp. 1864-1893, Oct. 2016.

[12] R. Piscitelli, S. Bhasin and F. Regazzoni, "Fault attacks, injection
techniques and tools for simulation," 2015 10th International
Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS), Naples, 2015, pp. 1-6.

[13] A. Barenghi, L. Breveglieri, I. Koren and D. Naccache, "Fault
Injection Attacks on Cryptographic Devices: Theory, Practice, and
Countermeasures," in Proceedings of the IEEE, vol. 100, no. 11, pp.
3056-3076, Nov. 2012.

[14] Synopsys. (2015). DesignWare True Random Number Generator
Core.

