
HAL Id: hal-02166916
https://hal.science/hal-02166916

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open-Belly Surgery in Omega 2
Yannis Haralambous, Gabor Bella, Atif Gulzar

To cite this version:
Yannis Haralambous, Gabor Bella, Atif Gulzar. Open-Belly Surgery in Omega 2. EuroTeX 2006, Jul
2006, Debrecen, Hungary. �hal-02166916�

https://hal.science/hal-02166916
https://hal.archives-ouvertes.fr

Open-belly surgery in Ω2

YANNIS HARALAMBOUS, GÁBOR BELLA, ATIF GULZAR
ENST Bretagne, CS 83 818, 29 283 Brest Cedex 3, France
yannis dot haralambous (at) enst-bretagne dot fr, gabor dot bella (at) enst-bretagne dot fr,

atif dot gulzar (at) gmail dot com

Abstract
TEX and its successors, including the initial version of Ω, all suffer from the same technical limitations, such as

inadequate support for TrueType/OpenType font formats and the lack of distinction between character and glyph data.

In this paper, the authors present Ω2, which provides extensibility through both external modules and the texteme
concept that supersedes TEX’s tokens and nodes as well as characters and glyphs. Ω2’s modules, while much more

powerful than macros or ΩTPs, provide relatively easy access to Ω2’s internals without needing to touch the source

code itself. Among immediate applications are full OpenType support (GSUB, GPOS, etc.), use of independent linguistic

tools such as hyphenation algorithms, and support for Unicode’s Bidirectional Algorithm.

Introduction
Since its birth, TEX has undergone significant evo-
lution, resulting in extended versions such as ǫ-TEX,
pdfTEX, Ω1, and others. However, the fundamentals
of TEX have barely changed: to cite two examples,
both its basic text model, that is, the horizontal node

list, and the concept of the single main vertical list are
almost exactly the same as 25 years ago. Ω1, as a first
step towards Unicode compatibility, introduced 16-bit
character codes and some text directionality support
but did not change TEX’s original text model, based
on token lists converted to node lists and finally to
DVI instructions.

Users and developers have long since recognised
the serious limitations of this approach. Inside the
belly of TEX, character codes included in tokens are
replaced by glyph codes, resulting in loss of infor-
mation if one does not stick to the severely limited
TEX font encodings, especially in the case of non-Latin
scripts: searchability and recovery of the original char-
acter data in general become impossible. Support for
advanced font formats such as OpenType, essential for
writing systems having contextual properties (Arabic,
Hebrew, Nastaleeq, the Indic scripts, etc.) but also
necessary for some Western typographical features, is
also impossible without a clear distinction between the
concepts of character and glyph. Still due to the same
limitation, until now, no successor of TEX could get
rid of the TFM font format and provide native support
for PostScript or TrueType-based fonts.

As of today, the most remarkable development in
the TEX world regarding support for intelligent font
formats is without doubt the X ETEX system [1]. How-
ever, as far as micro-typography is concerned, X ETEX
does not have much to do with Knuth’s original TEX:
while the latter is a stand-alone tool, X ETEX ‘out-
sources’ all the word-level typography to the under-
lying operating system and external libraries: the ICU

library initially developed by IBM [7], ATSUI under
Mac OS X, FreeType under Linux, all come into play.
So, while X ETEX succeeds in combining the OpenType
and Apple AAT font technologies with TEX’s layout
and input style, it ties the application to the operating
system.

The main reason for preferring such a solution
was without any doubt the opportunity to avoid reim-
plementing the quite complicated Unicode and Open-
Type engines that already exist on the operating sys-
tem level. Moreover, the TEX source code itself is far
from being easily extendable, despite having been writ-
ten in the didactic WEB programming language that
divides the code into small, easy-to-digest chunks. It
lacks modularity and is so highly optimised for per-
formance that the slightest modification can cause a
snowball effect of patching and debugging. The single
way of extending TEX foreseen by Knuth was the cre-
ation of new whatsit node types, each of which in prac-
tice results in a further increase of the programme’s
complexity.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 91

Yannis Haralambous, Gábor Bella, Atif Gulzar

Unlike X ETEX’s approach, the developers of Ω2

preferred to solve the problem of extensibility by in-
troducing modularity into the system. In fact, ΩTPs
were already module-like components in Ω1. ΩTPs are
capable of transforming ‘character’ strings into other
‘character’ strings and even of inserting new control
sequences. However, due to the early, token-level stage
where they intervene, they are limited by the group-
ing of input text: to show an example, processing of
the word ‘emphasis’:

{\it emph}asis

as a whole is not possible, since it is broken by markup
into two separate ΩTP buffers. Even more important
is the fact that ΩTPs are inherently character-level tools
and are unable to perform operations other than char-
acter substitutions (such as glyph positioning, adding
linguistic data, modifying colour, etc.).

Consequently, the objectives that the Omega team
have set to themselves are on one hand to solve the
character/glyph duality issue, by creating data struc-
tures capable of storing both, and on the other hand to
provide extensibility to Ω2 in a more efficient way, in
order to allow manipulation of characters, glyphs, and
other types of data independently. It will be shown
later in the article how these two improvements are
tightly related and that they provide the best results
when used together.

In the following section, the original text model of
TEX will be compared to our texteme-based approach.
Then, external modules will be presented in detail.
Finally, it will be shown how using modules together
with texteme properties opens up possibilities of im-
mediate applications such as OpenType support, lin-
guistic analysis, or fully customised typography be-
yond the limitations of TEX or current font technolo-
gies.

Of characters, glyphs, tokens, nodes,
and DVI instructions
Text in TEX and in its extensions goes through several
different states. In the beginning, it is read as character

data from the input buffer. These characters may ei-
ther be textual content or TEX markup. They will im-
mediately be converted into either character tokens or
control sequence tokens, respectively. A character token
consists of the character code and its catcode, while
a control sequence is represented by a single identi-

fier. However, the token state is ephemeral: shortly
after their creation, both types of tokens are converted
into nodes.1 Character tokens usually become charac-
ter nodes, but sometimes also ligature nodes. Other
types of nodes are also created on-the-fly: kern nodes,
glue nodes, discretionary nodes, and so on. Text is or-
ganised into horizontal and vertical lists (represented
by hlist and vlist nodes).

An important thing to notice is that fonts come
into the picture precisely at the point of converting
tokens into nodes. (Ligature, kerning, glue, etc., in-
formation all come from font resources.) This is the
very moment of TEX’s original sin: supposing that

character code≡ glyph code from the font,

characters are being replaced by glyphs in character
nodes. The reason why hyphenation, in principle a
character-based operation, still works at a latter stage2

is this assumed equality, that is in fact valid only
for a small set of characters, namely those that were
coded in locations common between character and
font encodings. Were we to use a different (say, Open-
Type) font format or a script like Arabic, subsequent
character-based operations such as searching, copying
and pasting, and hyphenation would all be doomed to
failure.

The odyssey is still not over: TEX, having done
most of its work on node lists, in the end outputs the
resulting document using the venerable DVI format
where text is encoded through glyph identifiers only,
represented in 16 or 8 bits, depending on whether
Ω1 or another TEX-based system is being used. By
this time, all the other types of nodes holding non-
character data either have already been absorbed in
the typesetting process (penalty, discretionary, etc.), or
else they now become physical dimensions (kerning,
offsets, glue, etc.) or special DVI instructions (specials,
etc.). This is the end of the story: our output DVI

document is purely presentation-oriented and in no
way is able to provide the original character data, long
lost in the process.

Textemes
Textemes3 are one solution to the problems presented
above. The idea is to replace TEX’s various data repre-

1ΩTPs extend the lives of tokens somewhat: they read character
tokens and output both character and control sequence tokens.
2Namely, at line breaking.
3Introduced as signs at the EuroTEX 2005 conference.

92 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

Open-belly surgery in Ω2

sentations, namely characters, character tokens, some
types of nodes, as well as glyphs in the output, by a
single entity: the texteme.

A texteme, as presented in detail in [5] and in [4],
is a set of properties, where a property is basically a key–

value pair. A texteme usually represents a character, its
glyph, and other related data. More specifically, char-
acter code, glyph and font identifiers, and any kind of
information related to the atomic units of electronic
text are all represented by texteme properties.

How do textemes work in Ω2 ? The general idea
is to let information accumulate inside textemes in-
stead of converting data from one form to the other.
Raw, unformatted text is a texteme string where tex-
temes contain only character properties. When raw
text (with markup) is fed into Ω2, a catcode prop-
erty is added to every texteme. When font informa-
tion is read, instead of creating character nodes, the
same textemes — texteme nodes — are carried on, only
with new glyph and font properties added. No liga-
ture nodes are created: an ‘fi’ ligature is represented
by two textemes linked together, the first with charac-

ter=f and glyph=fi, and the second with character=i

and glyph=∅ (empty). Some other information like
kerning, glue, or penalties, become texteme properties
just the same, resulting in simplified text structure.

Separating character and glyph codes while having
access to both of them throughout the whole typeset-
ting process proves to be very useful for tasks such as
hyphenation (as shown in Haralambous’s article [3]).
However, the ultimate goal is to be able to produce
final documents that keep all these accumulated (and
useful) information. A document that displays glyphs
but also holds the original character-based text has an
enormous technical advantage compared to glyph-only
documents where retrieval of characters is only possi-
ble through non-standard, error-prone glyph naming
schemes.

The PDF format makes such a double encoding
of text possible through the ActualText operator:
for every glyph or glyph sequence, the correspond-
ing character or character sequence may be defined.
This way, even cases like multiple glyphs correspond-
ing to a single character or reordered glyph sequences
can be handled correctly, something that would never
be possible through glyph naming.

Unfortunately, Ω2 does not (yet) produce PDF di-
rectly and the DVI format does not offer mechanisms

similar to PDF’s ActualText. It is therefore not pos-
sible to output texteme data into DVI without break-
ing compatibility with the original DVI format. As a
temporary solution, Ω2’s DVI format has been slightly
modified in order to include texteme-related informa-
tion that is interpreted by a patched dvipdfmx utility
that produces PDF documents with ActualText oper-
ators. This is a quick and dirty solution, but it works.

The document creator is by all means allowed
and encouraged to invent and use their own proper-
ties in their documents. First of all, the set of avail-
able texteme properties is open and extensible.4 Such
user-defined properties can be added either automati-
cally, by linguistic analysers and various text processor
tools, or manually, by a texteme-compatible text edi-
tor (a simple prototype of which has been developed
by students of ENST Bretagne). In this editor, texteme
properties are added and manipulated in an intuitive,
graphical way. Texteme-based documents can then be
saved in XML that Ω2 will be able to interpret and thus
rebuild texteme strings. (The XML reading capability
of Ω2 has not been developed yet.)

How do texteme properties come into play during
text processing? External modules are the answer.

External modules
Theoretical considerations

As mentioned before, Ω1’s ΩTPs are basically character
processors at the token level. This approach is not suf-
ficient when non-character data needs to be processed
(e.g., glyph substitution or glyph positioning). First,
with the introduction of textemes, access to individ-
ual texteme properties as opposed to mere character
strings becomes necessary. Secondly, even if an ex-
tended ΩTP syntax and input/output scheme allowed
the handling of such information, ΩTPs are still called
at the token level where font data have not yet been
read by Ω2.

Consequently, in order to allow ΩTP-like external
modules to process font-dependent information, their
point of activation needs to be displaced to a later
point, to the node level.

But there is a problem: since nodes (including tex-
teme nodes) and node lists are considerably more com-
plicated data structures than characters or tokens, Ω1’s
internal ΩTP approach is not powerful enough to de-

4Namespaces are used for semantic disambiguation.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 93

Yannis Haralambous, Gábor Bella, Atif Gulzar

scribe transformations on them. For these reasons,
our new external modules need to be standalone bi-
naries that communicate with Ω2 using a well-defined
XML format (more on this later). Since these binaries
can be written in any programming language, there
is no limitation to their computing power, unlike for-
mer internal ΩTPs that were equivalent to finite state
automata.

In reality, there are no less than three well-defined
points during Ω2’s typesetting process where external
modules may be called:

1. on token-based input text (as in the case of ΩTPs);

2. on yet unbroken horizontal node lists that repre-
sent whole paragraphs;

3. on node lists representing individual lines during
paragraph breaking.

Each of these three legal intervention points corre-
sponds to a set of well-defined processing tasks. The
first point is used by character-level transformers and
analysers. They receive a simple list of textemes, unin-
terrupted by control sequences on grouping braces (no
wonder: these tokens act as boundaries for the ΩTP

buffer), and containing mostly character information.
They are supposed either to perform character trans-
formations (e.g., converting from a local transcription
scheme or encoding to Unicode, preprocessing, etc.)
or to generate new texteme properties. (At the mo-
ment of writing the article, Ω2 is not yet capable of
adding texteme properties at this stage.)

The second type of external module reads entire
paragraphs and operates on node lists. This type of
module applies, among others, OpenType glyph sub-
stitution and positioning rules. However, as a result
of working with nodes instead of just characters, such
modules have enormous power as well as responsibil-
ity over the behaviour of Ω2: they have full access to
every aspect of the text including horizontal and verti-
cal lists, kerning, penalties, and so on. Were a module
to, say, substitute a glyph by another, it would have
the responsibility to update the corresponding kern-
ing information or at least make sure that this will be
done subsequently either by Ω2 or by another module.

Finally, the third type of module is called on indi-
vidual lines, inside the line breaking algorithm. Sim-
ilarly to modules of the second type, it operates on
node lists. Its task is to perform line-related opera-

tions such as optical kerning, OpenType JSTF (justifi-
cation) support, or line-dependent glyph substitutions
and positionings (e.g., an OpenType contextual liga-
ture invalidated by a nearby line break).

The fragility of node lists when manipulated ex-
ternally may seem worrying. Indeed, it is very easy
to produce typographically unacceptable documents
and even to freeze Ω2 through erroneous or malicious
node operations. Creators of modules should respect
rules regarding what and in what order they are al-
lowed to modify. Correct ordering of modules is of
crucial importance: for example, the order character

transformations – glyph substitutions – glyph positionings

should always be respected, otherwise regression prob-
lems may arise.

Indeed, node-level modules represent a drastic sur-
gical intervention in Ω2’s digestive system: it is as if
Ω2’s stomach and intestines were piped into external
digestion machines. The reader will kindly excuse the
authors for this somewhat disturbing analogy and read
on to see how in practice modules are called from Ω2.

Modules in Practice

Module support in Ω2 is currently in prototype stage,
that is, developer- and user-friendly macros and li-
braries are only minimally available at the moment.

External modules are implemented as standalone
binaries and communicate with Ω2 through signals
and an input-output buffer. For performance rea-
sons, these binaries run as daemons, that is, they are
spawned only once and then remain idle until they
receive data to process as well as a wakeup signal.
Once a module has finished processing, after writing
its output into the same input-output buffer, it goes
back to sleep again, and Ω2 continues by waking up
the following module.

More precisely: a module binary is launched by
the \registermodule primitive. By writing
\registermodule{mymodule}{modbin}{par}{10}

the binary programme modbin is run, in the future
referenced by the name mymodule. The par parame-
ter means that it is a type 2 (paragraph-level) module
and its number in the execution order among mod-
ules of the same type is 10. These four parameters
are mandatory. There is a fifth, optional parameter
(omitted in our example) that sends its argument to
the binary when it is launched; this may sometimes
be useful for initialisation purposes.

94 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

Open-belly surgery in Ω2

Modules are asleep by default. For performance
reasons, Ω2 does not send any data to sleeping mod-
ules. In order to perform their task, modules need to
be both waked up and activated. They are waked up
and sent back to sleep by the \wakeup{mymodule}

and \gotosleep{mymodule} primitives. Note that
paragraph- and line-level modules are waked up for
entire paragraphs, there is no point in trying to wake
them up for shorter text segments. Awake but inactive

modules receive and read all data but let them pass
through untouched. They activate themselves when
they encounter an activate special node, inserted by
the \activate{mymodule} macro. From this point,
they process the text until they either read a deactivate

node or arrive at the end of the buffer. These activate

and deactivate nodes may of course very well appear
inside paragraphs, making it possible to activate mod-
ules for text segments as small as individual characters
(more precisely, textemes).

Text (textemes and other nodes) is transmitted be-
tween Ω2 and modules in XML format. The full DTD

is not provided here for space reasons; instead, a small
but relevant example is given. As is shown, for para-
graph and line-level modules, Ω2’s current font table

is also included in the XML buffer since these mod-
ules (e.g., an OpenType engine) usually need access to
fonts. The font table is then followed by the node list
itself: in our case, a whatsit, an empty horizontal list

and two texteme nodes. In this simple example, tex-
teme nodes contain only three properties each, namely
the character and the corresponding font and glyph ID.
<?xml version="1.0"?>

<buffer version="0.1">

<preamble>

<fontlist>

<font id="51" name="ptmr"

size="1310720"/>

<font id="52" name="pala"

size="655360"/>

...

</fontlist>

</preamble>

<nodelist>

<!-- whatsit -->

<wha st="6" intpnl="0" brkpnl="0"

pardir="0">

<lbl></lbl><lbr></lbr>

</wha>

<!-- hlist -->

<hls wd="1310720" dp="0" ht="0"

shift_amount="0" gse="0" gsi="0"

go="0" dir="0">

</hls>

<!-- texteme -->

<t linkl="0" linkr="0">

<p n="c">76</p> <!-- char: L -->

<p n="g">12</p> <!-- glyph -->

<p n="f">52</p> <!-- font -->

</t>

<t linkl="0" linkr="0">

<p n="c">111</p> <!-- char: o -->

<p n="g">142</p>

<p n="f">52</p>

</t>

...

</nodelist>

</buffer>

A particular advantage of communicating with
modules in XML is that certain tasks can thus be im-
plemented by very simple XSLT transformations that
are executed by a generic XSLT driver module. This
way, the task of implementing a module is reduced to
the complexity of writing XSLT code.

Applications of modules and textemes
OpenType support

For quite a long time, the Holy Grail of typesetting
systems has been to implement robust support for the
TrueType and OpenType font formats. Development
has been slow on all platforms, due to the investment
required on a very wide scale (full Unicode support,
internationalisation, availability of actual fonts). No
wonder that no TEX-based system, apart from X ETEX,
has even come close yet to full OpenType compatibil-
ity: without the profound changes in TEX’s text model
described in earlier sections of the present article, or
at least similar improvements, OpenType support is
not fully possible.

As has been shown in numerous articles, such as
[1], the main difficulty of developing OpenType-com-
patible applications lies in the complexity of opera-
tions described in OpenType’s GSUB (glyph substitu-
tion) and GPOS (glyph positioning) tables. In order
to achieve this, apart from providing an appropriate
text model, typesetting applications also need a pow-
erful OpenType engine. Fortunately, a lot of effort
has already been made in this direction in the free
software community, and thus free and cross-platform
OpenType libraries are already available: let us men-
tion the FreeType [6] and M17N [2] projects that both

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 95

Yannis Haralambous, Gábor Bella, Atif Gulzar

offer OpenType-related functionalities. The new Ω2

system makes use of both of these libraries.5

Basically, two aspects of the OpenType format
need to be taken care of in Ω2: reading metrics and
performing glyph transformations. Most TEX-based
systems solve the former issue by falling back to util-
ities such as ttf2afm that convert TrueType metrics
into TFM files, the OpenType and the TrueType for-
mats being compatible as far as metrics are concerned.
This solution works but is inelegant from the user’s
point of view since installation and use of TrueType
or OpenType fonts require several conversion steps
and editing of various configuration files. The authors
have thus decided to implement direct access from Ω2

to OpenType metrics, without any need for OFM or
other files. At the moment of writing the article, Ω2 is
already capable of reading TrueType metrics directly
from the font.6

Glyph transformations, on the other hand, are
too big a task to implement inside the monolithic Ω2

code. Modules are an ideal place for such operations.
Both paragraph- and line-level modules are going to be
necessary: paragraph-level modules will perform both
font-independent (multilingual preprocessing similar
to what Microsoft’s Uniscribe library does) as well
as font-dependent OpenType GSUB and GPOS glyph
transformations. Finally, the same OpenType module
intervenes once again at the line breaking phase if nec-
essary; also, JSTF support can be implemented at this
point.

Hyphenation

TEX’s original hyphenation procedure is called in the
line breaking phase: at this point, text is converted
into lowercase, ligatures are replaced by their original
characters, and pattern matching is performed. Con-
sequently, the hyphenation algorithm is an integral
part of TEX that is difficult to modify or customise
according to the special needs of different languages,
apart from language-dependent pattern sets. In Ω2,
textemes and modules allow performing hyphenation
externally, in a module, opening up the possibility of
using more advanced hyphenation algorithms. The
general idea is that the external hyphenation module

5M17N, far from being just a multilingual typesetting engine, is
a whole set of libraries aiming at providing complete multilingual
support.
6Kerning data is not read by Ω2, as this operation is planned to be
implemented inside an external module.

marks potential hyphenation points in words using
texteme properties and at the line breaking stage Ω2

simply selects from the marked hyphenation points
the ones giving the least badness.

See [3] (in this same proceedings volume) for a
more detailed description of new hyphenation tech-
niques used in Ω2.

Getting rid of (some) TEX markup

Through properties, textemes provide a new way of
enriching electronic text. In some cases, such proper-
ties can substitute for markup that would otherwise
serve the same purpose. The interest in doing so lies
in the simplification of input text, an important gain
both from a technical and a usability point of view.
Consider the following example of LATEX code:
The \verb#\textcolor# command’s purpose

is to colorify text, such as this word

in \textcolor{red}{red}.

There are several problems with the above snippet:
first of all, it is far from being intuitive. To typeset
the ‘\’ character, the user needs to use the \verb com-
mand, which is one way of escaping the special role of
the backslash. Also, there is nothing indicating that
the first parameter of the \textcolor command is
the colour parameter and the second is the text to be
coloured: neither a human nor an automatic tool, say
a preprocessor, can distinguish them without proper
knowledge of the color LATEX package. Finally, the
use of control sequences and delimiters breaks up text
into small chunks causing various problems at later
processing stages.

A possible solution is to use texteme properties for
colour as well as for escaping. For example, with a cat-

code= 12 property the user could mark the backslash
as textual content. Of course, more user-friendly prop-
erty name and values could also be used. The same
point can be made for various types of spaces (non-
breakable, thin, etc.): instead of using active characters
like ‘~’ or control sequences like ‘\,’, such informa-
tion can be encoded as orthogonal properties of the
same space character. This solution is also far sim-
pler and more intuitive than using Unicode’s various
non-breakable space, thin space, non-breakable and thin

space, etc., characters.

96 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

Open-belly surgery in Ω2

Linguistic tools

One of the advantages of textemes is that the set of
available properties is open which, together with mod-
ularity, makes it possible to integrate Ω2 with new text
processing applications. For numerous linguistic prob-
lems that bear some relation to typography, such an
approach can be fruitful: automatically finding word
boundaries in Thai or Chinese text or distinguishing
dots (for abbreviations) and periods (at ends of sen-
tences) in English typography are all complicated lin-
guistic problems that transcend the limits of typeset-
ting engines. If appropriate, standalone linguistic tools
already exist and are able to perform the tasks in ques-
tion; they can be called as external modules of Ω2 in
order to add linguistic information to the input text
in the form of texteme properties. Then, an Ω2 devel-
oper just needs to implement a second, much simpler
module that interprets such linguistic properties and
takes them into account at the typesetting stage (cor-
rect line breaks for Thai, changes in the widths of
spaces for English).

Conclusions
The second version of the Ω2 system has two new as-
pects: texteme support and modularity. Although still
in a prototype stage, the basic framework for running
external modules has been implemented in Ω2 and the
underlying text model has also been adapted to the
texteme concept. As an addition, the new Ω2 out-
puts a DVI format that contains both characters and
glyphs, and with a patched dvipdfmx utility this in-
formation can be incorporated into PDF documents
that as a result will be able to provide the reader both
with formatted output and with the original character
string. On the input side, a texteme-compliant text ed-
itor tool has been developed, allowing users to enter
texteme properties into input documents. OpenType
support is partially available: Ω2 now reads metrics
from OpenType files directly. Work is underway for
modular GSUB and GPOS support. The authors are
also working on moving TEX’s hyphenation algorithm
into an external module, resulting in easier implemen-
tation of improved hyphenation tools.

Work that still needs to be done includes full ca-
pabilities of texteme input and output: texteme-based
auxiliary (.toc etc.) files and input format, as well as
development of various multilingual modules includ-
ing support for OpenType layout tables. An especially
important feature that still needs further development
is generation of PDF documents with both character
and glyph information added. The already mentioned
dvipdfmx tool is a likely candidate for such an exten-
sion. The authors kindly welcome contribution from
the TEX community in these areas.

References
[1] Jonathan Kew: The Multilingual Lion: TEX

Learns to Speak Unicode. 27th International
Unicode Conference. TUGboat 26:2, 2005,
pp. 115–124.

[2] Nishikimi Mikiko, Handa Kenichi,
Takahashi Naoto, Tomura Satoru: The

m17n Library — A General Purpose Multilingual

Library for Unix/Linux Applications. Asian
Symposium on Natural Language Processing
to Overcome Language Barriers (2004).
http://www.m17n.org

[3] Yannis Haralambous: New Hyphenation

Techniques in Omega 2. Proceedings of the
EuroTEX 2006 (Debrecen, Hungary) conference.
In this volume, pp. 98–103.

[4] Yannis Haralambous, Gábor Bella: Injecting

Information into Atomic Units of Text. ACM

Symposium on Document Engineering 2005.

[5] Yannis Haralambous, Gábor Bella: Omega

Becomes a Sign Processor. Proceedings of the
EuroTEX 2005 (Pont-à-Mousson, France)
conference, pp. 99–110.

[6] The FreeType Project.
http://www.freetype.org

[7] International Components for Unicode.
http://icu.sourceforge.net/

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 97

