
HAL Id: hal-02166903
https://hal.science/hal-02166903

Submitted on 27 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Method overloading and overriding cause encapsulation
flaw

Antoine Beugnard

To cite this version:
Antoine Beugnard. Method overloading and overriding cause encapsulation flaw. Object-Oriented
Programming Languages ans Systems (OOPS), 21st ACM Symposium On Applied Computing (SAC),
Apr 2006, Dijon, France. pp.1424 - 1428. �hal-02166903�

https://hal.science/hal-02166903
https://hal.archives-ouvertes.fr


Method overloading and overriding cause
encapsulation flaw

An experiment on assembly of heterogeneous components

Antoine Beugnard
ENST Bretagne

Computer Science Department
CS83818, F-29238 Brest cedex 3

Antoine.Beugnard@enst-bretagne.fr

ABSTRACT
Based on an experiment using three languages under .NET,
this paper argues that the semantic differences between these
languages regarding method overloading and overriding give
rise to significant complexity and break encapsulation. We
first recalls the various interpretations of overriding and
overloading in object oriented languages through what we
call language signatures. Then, we realize an experimenta-
tion with .NET components coded in different programming
languages in order to observe the global behavior. From this,
we show that overriding and overloading are not compati-
ble with a key property of components: encapsulation. We
conclude that, in the current state of the art, in order to
build predictable assembly, components must expose their
internal structure! We propose a solution to this problem.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.2.3 [Software Engineering]: Coding Tools
and Techniques; D.2.12 [Software Engineering]: Interop-
erability

Keywords
objet oriented language interoperability, encapsulation, soft-
ware component

1. INTRODUCTION
For the past 25 years, object technologies have been spread-

ing in programming languages, development method, and
modelling technique. Almost all non-object languages have
their "OO-extension": ADA, Caml, C and even COBOL.
Analysis and design methods rely more and more on a uni-
fying modelling language (UML) that relies itself on objects.
But it seems that the hope object is the silver bullet solution
has gone. Reusing is not so simple and assembling object

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

remains complex. The need for a better engineering process
leads to the development of software by assembly of soft-
ware components. The idea to develop software systems
as electronic ones is not new [10], but only recently have
we seen many components models being industrially used
(CCM, DCOM, EJB, Fractal, .NET). All are implemented
with objects.
We demonstrate that the various behaviors that object

programming languages have relatively to methods overrid-
ing and overloading semantics misfit with one of the main
feature of components: encapsulation.
The article is organized as follows. We first recall in

the next section some of these behaviors, and in section 3
how components interfaces can be described with contracts.
Then, in section 4 we present the experiment that demon-
strates that the assembly of heterogeneous components can-
not be predictable if their interface is not precise enough;
that is exposes many implementation details. We conclude
with some suggestions to solve this problem.

2. OVERLOADING AND OVERRIDING
The main contribution of object programming is, to our

point of view, the easy access to dynamic dispatching that
makes possible the development of frameworks. Frameworks
can be easily extended, specialized thanks to dynamic dis-
patching. Being easy to use and safe, thanks to type systems
(unlike in C where function pointers could be used to imple-
ment it), object-oriented languages allow the development of
more flexible and reusable softwares. However, the benefit
of this "late-binding" is balanced out by the time required
to apply the lookup procedure that implements the dynamic
dispatching and by the fact that any user needs to know the
extension points (methods) of the framework s/he uses.
This powerful mechanism is however difficult to use since

the overriding intent expressed in a diagram such as in fig-
ure 1 is understood differently by object programming lan-
guages. As it has already been published in [3] the interac-
tions between overloading and overriding lead to very dif-
ferent behaviors. For instance, overriding can be invariant,
covariant or contravariant, but nothing prevents a language
to accept these three possibilities at the same time. The
late-binding resulting of the detection of this overriding can
be simple, the most frequent case, or multiple, like in CLOS.
Overloading can be allowed or not.
In order to show the different interpretations we have im-

plemented the model of figure 1 in many languages. Then we



Bottom

Middle

Top

cv(Top)

ctv(Bottom)

Up

cv(Middle)

ctv(Middle)

Down

Figure 1: How will this model behave?

called all possible cases and built what is called a language
signature [3]. Table 1 shows how the signature is elaborated.
Each slot1 contains the name of the class where the applied
method was found. The word "Error" denotes a compilation
error.

Table 1: Signature elaboration

procedure main
– receivers

Up u, ud;
Down d;

– parameters
Top t = new Top();
Middle m = new Middle();
Bottom b = new Bottom();

– First test – Second test – Third test
u := new Up(); d := new Down(); ud := new Down();
u.cv(t); d.cv(t); ud.cv(t);
u.cv(m); d.cv(m); ud.cv(m);
u.cv(b); d.cv(b); ud.cv(b);
u.ctv(t); d.ctv(t); ud.ctv(t);
u.ctv(m); d.ctv(m); ud.ctv(m);
u.ctv(b); d.ctv(b); ud.ctv(b);

The next three tables show the signatures of C++ [15]
(table 2), Visual Basic [13] (table 3) and C# [9] (table 4)
since we use them in the experiment of section 4.

Table 2: C++ signature
calls u d ud
cv(t) Up Error Up
cv(m) Up Down Up
cv(b) Up Down Up
ctv(t) Error Error Error
ctv(m) Error Down Error
ctv(b) Up Down Up

First and third columns are identical since the three lan-
guages adopt an invariant overriding policy. Hence, in our
1We use the word "slot" in this context and the word "cell"
in the more complex tables of the following section.

Table 3: Visual Basic signature
calls u d ud
cv(t) Up Up Up
cv(m) Up Down Up
cv(b) Up Down Up
ctv(t) Error Error Error
ctv(m) Error Down Error
ctv(b) Up Up Up

experiment, u and ud return the same results since both are
statically declared as Up. All differences are in the second
column, when a receiver d is declared Down and actually
Down. Differences (in bold in the tables) are due to the
overloading rules that are different in C++, C# and Visual
Basic.
C++ rejects the first line (of column 2) considering that

the method cv(Middle) hides the previously defined method
cv(Top).
The last line of the second column is Down for C++ and

C# following the intuitive semantics of OO languages where
the most specific method, accordingly to the receiver, is se-
lected.
The result of the last line for Visual Basic is due to the

priority given to the parameter over the receiver in order
to select the method; Bottom in ctv(Bottom) of Up is con-
sidered by Visual Basic as more specialized than Middle in
ctv(Middle) of Down. This is a strict interpretation of over-
loading; the parameter is used to select the method.

Table 4: C# signature
calls u d ud
cv(t) Up Up Up
cv(m) Up Down Up
cv(b) Up Down Up
ctv(t) Error Error Error
ctv(m) Error Down Error
ctv(b) Up Down Up

3. COMPONENT AND CONTRACT
A software component is defined in [16] as independent

software entity, that can be deployed and composed with
others. Many models of component have been proposed.
All rely on a feature that allows to describe components
while hiding unnecessary details: encapsulation. Informa-
tion needed to assemble a component is not the compo-
nent itself - considered as a white-box - but the interface
of the component. In that case, the component is seen as
a black-box. Many authors have noticed that to be able to
compound components some implementation details must
be exposed in order to ensure a correct assembly [5]. The
component is then viewed as a grey-box.
Beugnard and al. have proposed in [4] to attach a con-

tract to a component in order to organize information of
its interface. A contract may contain 4 levels: syntactic,
semantic, behavioral, and quality of service. Only the first
level is needed for the experiment we have realized. This



Bottom

Middle

Top

cv(Top)

ctv(Bottom)

Up

cv(Middle)

ctv(Middle)

Down C2

L2

L1

C1

Client

C3

L3

Figure 2: How will this assembly behave?

level ensures the "compilability" of interfaces; it is used to
check that method names, return types, parameter numbers
and types are compatible with components it is assembled
with.
In case of an assembly of heterogeneous components what

is level of greyness of a component? As we will see, in order
to be able to predict the behavior of some assembly the
syntactic contract of a component may need to expose its
implementation language but also make explicit assumption
on the implementation languages of its clients!

4. COMPONENTS ASSEMBLY

4.1 .NET Experiment
The model of figure 1 may serve as an experiment of com-

ponents assembly. Imagine, as in figure 2, that classes Up,
Top, Middle and Bottom define a framework C1 written in
a language L1. Later, an evolution of C1 is realized by the
class Down written in a language L2 that extends Up. This
defines the component C2. A client C3 is written in a lan-
guage L3.
We have realized this experiment with the .NET [12] frame-

work that claims language interoperability. We used 3 lan-
guages integrated into the framework: C#, Visual Basic and
C++. Each of them was used to develop the 3 components,
leading to 27 (3*3*3) different assemblies.
The language signatures of many languages including (ADA,

Java1.3, Java 1.42, Smalltalk, CLOS) and the source code
of the experiment can be seen at (hidden)

4.2 Results
Results are organized in 3 tables of 9 signatures. A ta-

ble is associated to a client language (C#, Visual Basic,
C++ respectively). The programming language of the ba-
sic framework (L1) appears by column. The programming
language of the extension (L2) appears by line. Each cell is
the observed language signature.
Table 5 shows result for a C# client. The result is mainly

a C# signature but for the C++ column where the C++
signature is observed.
Table 6 shows result for a Visual Basic client. The result

is mainly a Visual Basic signature but for the C++ column
2Yes, Java signature changed between 1.3 and 1.4!

Table 5: C# client results (L3 = C#)
L2/L1 C# VB C++
C# C# C# C++
VB C# C# C++
C++ C# C# C++

where the C++ signature is observed. Another difference is
observed. When the framework is written in Visual Basic
and the extension in C++, the observed signature is C#
which is not used at all!

Table 6: Visual Basic client results (L3 = VB)
L2/L1 C# VB C++
C# VB VB C++
VB VB VB C++
C++ VB C# C++

Table 7 shows result for a C++ client. The result is mainly
a C++ signature but for the C# line where the observed
signature does not match any known signature. The new
signature is a mixing of C++ and Visual Basic signatures.

Table 7: C++ client results (L3 = C++)
L2/L1 C# VB C++
C# (C++/VB) (C++/VB) (C++/VB)
VB C++ C++ C++
C++ C++ C++ C++

Table 8 shows the detailed results of the first line of the
previous table (D denotes Down, U Up and E Error). It
shows the mixing of C++ and Visual Basic signatures. No-
tice the last line where the Visual Basic behavior appears
everywhere, even when Visual Basic is not used!

4.3 Interpretation
The signatures observed are mainly those expected by the

client, i.e. the client’s signature. C# and C++ client are
the more stable with 6 over 9 "good" cells while Visual Basic
has only 5 over 9 "good" results. The reasons for the "bad"
behavior are mainly due to C++ when clients are C# or
Visual Basic, probably because of the inheritance exception
of C++ in slot line 1, column 2 of table 2 where cv(Top) of
Up is hidden by the overloading cv(Middle) of Down.
If we try to write down the syntactic contract of the com-

ponent C2, we would produce something like what is pre-
sented in table 9. C3 is the client.
This table reveals that the contract makes references to

implementation details of the component and, worst, to a
client internal feature: the implementation language. The
encapsulation is broken. The black-box whitens and borders
fade away . . .
Explicit references to the implementation language could

be replaced by generic language features following the ap-
proach proposed in [6]. However, language signatures diver-
sity and the finer points of the interpretations convinced us



Table 9: Component extension (C2) contract attempt
Services Returns the result of method found in:
cv(Top) Up

Error when receiver is Down declared Down and C1 is written in C++
or if C3 is written in C++.

ctv(Bottom) Up often, but
Down when
(1) C3 is written in C# and when receiver is Down declared Down, or
(2) C3 is written in Visual Basic and when C1 is written in C++ or

when (C1 is written in Visual Basic and C2 in C++), or
(3) C3 is written in C++ and when C2 is written in Visual Basic or C++.

cv(Middle) Up often, but
Down when receiver is Down declared Down.

ctv(Middle) Down
Error when receiver is not Down declared Down.

Table 8: Detailed results for a C++ client and a C#
extension

C#C# VBC# C++C#
u d ud u d ud u d ud

cv(T) U E U U E U U E U
cv(M) U D U U D U U D U
cv(B) U D U U D U U D U
ctv(T) E E E E E E E E E
ctv(M) E D E E D E E D E
ctv(B) U U U U U U U U U

that such generic language features would be more complex
to describe than the simple reference to the language.
Beyond a deep understanding of these results, this exper-

iment shows that in order to be able to predict the behavior
of a component assembly, the client of a component must
have information on the way the overriding and overloading
are interpreted. This information relies on the languages
used to realize the component but also on the whole internal
structure such as inheritance relationships, overloading and
overriding actually done. So, what about encapsulation?

4.4 More Experiments
We are convinced, but experiments remain to be done,

that the use of the Eiffel language in the experiment would
increase the diversity of behaviors. The semantic distance
between Eiffel and C++, C# and Visual Basic being larger
as Eiffel signature of table 10 shows. Eiffel forbids overload-
ing (Errors on line 4 and 5) and allows covariant overriding
(see column 3 lines 1,2 and 3). Column 2 is a mixing of
C++ on the first line (Error) and Visual Basic on the last
line (Up).

Table 10: Eiffel signature
calls u d ud
cv(t) Up Error Down
cv(m) Up Down Down
cv(b) Up Down Down
ctv(t) Error Error Error
ctv(m) Error Error Error
ctv(b) Up Up Up

5. CONCLUSION
Our experiment is limited to the .NET environment, with

very semantically close languages; overriding is invariant and
overloading is allowed. In this context, the diversity of be-
haviors is great.
Theoretical researches on component assembly mainly fo-

cuss on static aspects of linking [7, 2, 1] even when they
deal with dynamic linking; it is in the sense of "compiler
linkers" not in the sense of "object-oriented late-binding".
They look for typing theories that ensure error-free compi-
lations, ignoring the expected behavior. On the other hand,
practical approaches propose component models implemen-
tations in homogeneous contexts (Java for instance) or let
the responsibility to programmers to manage the composi-
tion of components (CCM or CORBA for instance).
In order to be fully usable, components need to be reused

in open and multi-languages contexts. The behavior of the
components assembly must be predictable from components
interface specification3.
In order to reach this goal, here are some suggestions:

• We could study the interactions combination among
languages. But, as our experiment shows for only 3
languages rather semantically close, all combinations
are to be considered. This is exponential, and as ta-
ble 8 shows in its first line, the "combination opera-
tor" can lead to unexpected signatures. It is not a
binary operation. Because of the number of program-
ming languages and the diversity of their signatures,
this approach seems untractable. But could we do oth-
erwise?

• We could enrich the level of information in the con-
tract in order to express how the component interprets
overloading and overriding. Overloading and overrid-
ing semantics should not remain implicit, but as our
experiment shows, should be explicit. This solution
also requires the previous approach and a good under-
standing of language combination.

• We could eventually compel the use of overriding to
the invariant case and forbid overloading. With such
a restriction, all object programming languages have
the same behavior, hence the assembly is simple. This
solution requires to modify compilers and languages.

3Probably with more information than the simple syntactic
contract used during this experiment.



An interesting study would be to count the number of
"difficult cases" to be able to evaluate the impact on
existing codes4.

The latter solution seems to be the most tractable. But
it may be considered as too strong a change. Limiting this
restriction to the public interface would allow programmers
to continue to use their well-known programming patterns
involving overloading inside the component. Programming
language history shows that programming language evolu-
tion follows a double movement; first a generation of ideas
and concepts that are implemented and tested, then a se-
lection among these concepts. This selection generates lan-
guage restrictions. For instance, the "GOTO" has been re-
placed in order to improve the structure of programs. It
may be time for object programming languages to make a
decision and select the good (and constraining) rules of over-
riding and overloading.
Overloading have already been criticized [11, 8] and this

article can be considered as another argument against over-
loading; it interacts badly with overriding. The choice for a
covariant, invariant or contravariant overriding is more open.
In practice, invariance is largely used and its implementa-
tion is rather easy. Covariance is hard to implement, and
not always safe as Eiffel signature shows at column 3 line 1.
Contravariant, if theoretically sound, is rarely implemented.
Hence, a tradeoff could be to choose invariant overriding.
More experiments need to be made with more languages,

and different scenarios. For instance, we could imagine ex-
periments with 2 components without extension or exten-
sion within the client component. Whatever, we feel strange
that researches on overriding and overloading interactions
are uncommon. In a context where model transformations
(MDA [14]), language interoperability through middleware
(CORBA, SOAP) or virtual machine (.NET, Java), and as-
sembly of components are considered as key technologies, it
is astonishing!
The problem of assembling components realized in dif-

ferent languages is real. We believe that the extension of
components in different languages may become frequent in
the future. Whatever, both situations can occur and should
be considered in theories and in programming languages de-
sign.

6. ACKNOWLEDGMENTS
I want to thank the anonymous reviewers for their precise

comments and suggestions.

7. REFERENCES
[1] D. Ancona, S. Fagorzi, and E. Zucca. A calculus for

dynamic linking. In Springer, editor, ICTCS’03 -
Italian Conference on Theoretical Computer Science,
Lecture Notes in Computer Science 2841, 2003.

[2] D. Ancona and E. Zucca. Sound and complete
inter-checking (the very essence of principal typings).
Technical report, Universita di Genova, 2004.

[3] A. Beugnard. OO languages late-binding signature. In
FOOL 9 (The Ninth International Workshop on
Foundations of Object-Oriented Languages), Portland,
Oregon, January 19 2002.

4An "object composability" metric that takes into account
overriding and overloading problems is probably to be de-
fined.

[4] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and
D. Watkins. Making components contract aware.
Computer, pages 38–45, 1999.

[5] M. Büchi and W. Weck. The greybox approach: When
blackbox specifications hide too much. Technical
Report 297, Turku Center for Computer Science,
August 1999.
http://www.abo.fi/~mbuechi/publications/TR297.html.

[6] A. Capouillez, P. Crescenzo, and P. Lahire. Le modèle
ofl au service du métaprogrammeur – application à
java. L’objet, LMO’2002, pages 11 – 24, 8 2002.

[7] S. Drossopoulou, S. Eisenbach, and D. Wragg. A
fragment calculus towards a model of separate
compilation, linking and binary compatibility. In Logic
in Computer Science, pages 147–156, 1999.

[8] R. Ducournau. Spécialisation et sous-typage : thème
et variations. Technique et Science Informatique,
21(10):1305–1342, 2002.

[9] ECMA. Standard-ecma334, C# language
specification. http://www.ecma-
international.org/publications/standards/Ecma-
334.htm.

[10] M. D. McIlroy. Mass produced software components.
In NATO Conference on Software Engineering,
Garmisch, Germany, 1968.

[11] B. Meyer. Overloading vs. object technology. Journal
of Object-Oriented Programming, pages 3 – 7,
October/November 2001.

[12] Microsoft. Microsoft .NET.
http://www.microsoft.com/net.

[13] Microsoft. Visual basic .net language specification.
http://msdn.microsoft.com/library/en-
us/vbls7/html/vbspecstart.asp.

[14] OMG. site mda. http://www.omg.org/mda.
[15] B. Stroustrup. The C++ Programming Language.

Addison-Wesley, 1997.
[16] C. Szyperski. Component Software - Beyond

Object-Oriented Programming. Addison-Wesley and
ACM Press, 1998.


