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Abstract—The growth in complexity of Integrated Circuits 

(IC) is supported, amongst other factors, by the development of 

standardized test infrastructures. The feasibility of both end-of-

manufacturing and in-field tests heavily depends on the 

presence of these infrastructures that give detailed access to the 

IC. The standard test infrastructures are referred as IEEE Std. 

1149.1 (JTAG), IEEE Std. 1500 and IEEE Std. 1687 (IJTAG). 

The security issues arising from the presence of these 

infrastructures have been fully exposed in the last two decades. 

This led to the publication of several practical attacks showing 

how a non-protected test infrastructure can end into the 

jeopardizing of the entire system. As a consequence, many 

countermeasures have been proposed. In this survey, we 

provide: (i) a taxonomy of the attacks that can be performed 

exploiting the standard test infrastructures; (ii) a taxonomy of 

countermeasures inspired by the kind of security primitives that 

are granted in each case. 

Keywords—Testing vs Security; Hardware Security; Test 

Standards. 

I.  INTRODUCTION 

The continuous shrinking of the semiconductor 
technology, always leads to new kinds of defects that can 
possibly affect Integrated Circuits (IC). The increasing usage 
of cutting-edge technologies in safety-critical applications, 
leads to strict requirements on the detection of these defects 
both at the end-of-manufacturing and in-field. For this 
reason, the importance of testing has become essential in the 
production flow of semiconductor-based devices. The 
presence of testing infrastructures inside an IC is vital to be 
able to successfully perform testing of complex systems. 
Moreover, these infrastructures have to be kept accessible by 
the external world also during the mission of the device, in 
order to perform in-field test and to be compliant with 
regulations in the case of safety-critical applications. 

Scan chains are the fundamental testing infrastructure. All 
the flip-flops (FFs) of the circuit are replaced with scan FFs, 
which are serially connected with each other. When the 
circuit is in test mode, the FFs switch to scan mode. This way 
they establish a serial connection between the Scan In (SI) 
and the Scan Out (SO) ports of the circuit. The tester can 
exploit the presence of the scan chain in order to have deeper 
controllability and observability on the circuit internal logic. 
When the circuit is in test mode, test data are shifted into the 

circuit through the SI port of each scan chain. The circuit is 
then set to normal mode and run for a specific number of 
clock cycles. In this phase, the circuit reaches a target state. 
At this point, the circuit is switched back in test mode and the 
content of the scan chains is shifted out from the SO ports. 
Finally, the tester compares test responses with the expected 
values. Since the complexity of the ICs is always increasing, 
the ratio of external pins over the number of internal nets gets 
smaller and smaller. In modern Systems-on-Chip (SoC), the 
number of needed SI/SO pins would be too big. For this 
reason, test standards propose an access mechanism based on 
the Test Access Port (TAP), which is composed of only five 
pins. The TAP requires the tester to implement a standardized 
protocol in order to access the inner resources of the IC, such 
as the scan chains. 

The first test standard to be introduced was the IEEE Std. 
1149.1, also called JTAG, which was conceived for board 
testing [1]. The user accesses the board through the TAP port, 
which is composed of four mandatory pins (TDI, TDO, TMS 
and TCK) and one optional reset pin (TRST). Each device 
mounted on the board has its own TAP controller, which 
implements a 16-states FSM that allows the user to perform 
basic operations with data that are shifted in and out the 
device (respectively through the TDI and TDO pins). TMS 
and TCK signals are broadcasted from the board interface to 
all the devices. The TDI/TDO signals are connected in order 
to include all the devices into a daisy-chain serial connection. 
Each device includes an Instruction Register (IR) and a 
certain number of Data Registers (DR). The IR is loaded with 
the instruction to be executed. According to the instruction, a 
different DR is connected between the TDI and TDO 
terminals. Each device can execute a set of instructions that 
are mandated by the standard, such as the BYPASS 
instruction. The BYPASS instruction connects a single flip-
flop between the TDI and TDO ports. When data must be 
shifted to a certain device in the daisy-chain network, all the 
other devices are set in BYPASS mode. Other instructions 
access the Boundary Scan Register (BSR), which is a scan 
register that allows the tester to reach all the pins of the 
device. When the device is in test mode, Boundary Scan Cells 
(BSC) are interposed between the device pins and the internal 
logic. In the capture phase, the BSCs are loaded with new 
values coming from the external pins or the internal logic. In 
the shift phase, these values are shifted out the device and 



new data is shifted in. In the update phase, the test data is 
applied to the external pins or the internal logic. When the 
EXTEST instruction is executed, test stimuli are sent to the 
external pins. This way, the board connections, external to the 
devices, are tested. When the INTEST instruction is 
executed, test stimuli are applied to the internal logic of the 
device. The INTEST instruction can also be used in order to 
access the internal scan chains of the circuit. When the scan 
chains are connected to the JTAG Boundary Scan, the circuit 
is tested by serially shifting the test stimuli into the TDI port 
and the test responses out from the TDO port. Even if the 
JTAG standard was conceived for board testing, it is still the 
de facto standard for the test interface of all kinds of ICs. The 
TAP port is used as external interface in the other test 
standards as well. 

The IEEE Std. 1500 has been developed to ease the test 
of IP cores [2]. SoC manufacturers use to acquire IP cores 
from different vendors. Each vendor independently integrates 
the test infrastructure inside its IP core. The IEEE 1500 
provides a standardized testing wrapper for this purpose. It 
includes a wrapper controller with its own instruction and 
data registers, also including the Wrapper Boundary Scan 
Register (WBSR). The difference with JTAG, is that a 
parallel input/output interface is provided on the test wrapper. 
This way, IP cores can be selectively tested resorting to a 
parallel access that must be provided on the external pins of 
the SoC. All the IEEE 1500 test wrappers are connected to 
the SoC-level test infrastructure, which is accessible through 
the TAP controller.  

The latest test standard is the IEEE Std. 1687, also called 
IJTAG [3]. It deals with the great number of embedded 
instruments that are integrated inside modern SoCs. These 
instruments may consist in Built-In Self-Test (BIST) engines 
for specific IP cores, voltage or current monitors, temperature 
sensors, aging detectors, SoC configuration registers, etc. 
Embedded instruments are connected to a Reconfigurable 
Scan Network (RSN), made by programmable Segment 
Insertion Bits (SIBs). Each SIB, if opened, gives access to an 
instrument or to another reconfigurable sub-network. When 
an instrument is included in the RSN, its Test Data Register 
(TDR) becomes part of the test infrastructure. This way, the 
user can dynamically choose the instruments that he or she 
wants to include in the RSN. The IJTAG RSN is integrated 
in the SoC test infrastructure. When the tester wants to access 
the IJTAG RSN, the TAP controller is instructed to select the 
RSN between the TDI and the TDO pins of the SoC. 

Nowadays, many SoCs integrate security primitives 
inside. Most processors are coupled with cryptographic co-
processors that perform, for instance, encryption operations, 
random numbers generation and hash functions computation. 
The Advanced Encryption Standard (AES) is the most used 
encryption scheme. AES hardware implementations are very 
commonly found in crypto-processors. The security of these 
modules depends entirely on the secrecy of the encryption 
key. This means that secret information is stored inside the 
SoCs, usually inside secure memories dedicated to the 
storage of secret keys. Intellectual Property (IP) protection of 
both hardware design and software source code poses 
important confidentiality requirements in the SoC design 

flow. Each stakeholder participating to the production of the 
SoC wants to keep its IP confidential from the other 
stakeholders and most of all, from the final users of the SoC. 
For this reason, it is extremely important to avoid that any 
sensitive information leaks to undesired entities. 

The development of test standards goes decisively into 
contrast with the need for confidentiality and access 
restrictions. The test infrastructure typically gives the user 
highlighted controllability and observability on the internal 
details of the circuit. Moreover, the daisy-chain 
configuration, typical of the test infrastructures, ensures that 
multiple independent entities inside the system share the 
same data connection. This scenario opens many 
vulnerabilities when sensitive data are shifted through the 
network. A typical integrated system, designed without 
security in mind, is vulnerable to many kinds of attacks that 
can ultimately lead to huge financial losses of the 
stakeholders. 

From a general point of view, the threats involving the 
test infrastructure of an IC belong to two main categories 
(Fig. 1): 

i. External threats: they come from an unauthorized 
user that has the control of the device TAP controller. 

ii. Internal threats: they come from a malicious device 
or IP core that is planted inside the system by a third-
party entity (3PIP). In this case, the malicious device 
can access data propagated through the infrastructure 
it is connected to. 

Many solutions have been proposed in order to protect 
ICs against the fraudulent usage of the test infrastructures. 
Each proposed solution has been conceived to counteract 
more or less specific threats. 

In this paper, we present a complete taxonomy of the 
threats and the countermeasures considered in the literature 
(Section II-III). In Section IV we provide a final discussion 
and some prospects on the most recent research trends. In 
Section V we present what we believe are the research 
challenges that emerge by this survey. In Section VI the 
conclusions are drawn. 

II. TAXONOMY OF THREATS 

Fig. 2 gives the tree structure of the proposed taxonomy. 
The first level of classification is represented by the two 
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Fig. 1 Threats on the test infrastructure can be originated by (i) an 
external threat, caused by an unauthorized user accessing the IC; (ii) an 

internal threat, caused by malicious hardware planted inside the IC. 



categories that have already been mentioned in the 
introduction: the external and the internal threats. Each of 
these two categories is more detailed hereafter according to 
the action performed by the attacker. 

A. Untrusted user accessing the test interface 

In this category of attacks, all the components of the 
system are supposed being trusted. However, if the attacker 
has physical access to the device, he or she is able to connect 
to the TAP controller. In this situation, the attacker exploits 
the highlighted controllability and observability on the 
devices provided by the test infrastructure. The consequent 
classification principle is based on the kind of infrastructure 
that is targeted, namely (i) scan chains, (ii) the debug 
infrastructure, (iii) the IJTAG reconfigurable network. 

1) Exploiting Scan Chains 

Internal scan chains of a target device are accessed 
through the TAP controller. Scan chains can be connected to 
the TDI/TDO pins of the test interface executing specific 
instructions on the TAP controller, such as INTEST. 
Alternatively, accessing the IEEE 1500 test wrappers of the 
internal IP cores of a SoC gives access to the internal scan 
chains of each IP core. In these cases, the attacker can shift 
arbitrary values into the scan chains. Additionally, any 
memory element of the circuit connected to the scan chain 
can be observed shifting its content out. This procedure is the 
basis of several attacks, called scan attacks, which aim to 
steal secret keys stored inside crypto-processors. Another 
possibility is to use the scan chain in order to stimulate and 
observe the responses of the internal logic of IP cores, hence 
to reverse engineer it. 

SCAN ATTACKS 

When crypto-processors are present inside a device, 
secret keys are usually stored into integrated secure 
memories. Even if these secure memories are excluded by the 
scan chain insertion, scan attacks allow the attacker to 
retrieve the secret key. Several attacks have been proposed, 
targeting both symmetric and asymmetric cryptography 
implementations. 

B. Yang et al. presented in 2004 the first scan attack 
targeting the Data Encryption Standard (DES) [4]. After that, 
this attack was extended in [5] and executed on an AES 
crypto-processor. The 128-bit key AES algorithm resorts to 
10 rounds of computation to provide the required security. 
The scan attack exploits the fact that the result of the first 
round is correlated to the encryption key. In the AES 
hardware implementations, the result of each round is stored 
into the round register, whose FFs are part of the scan chain. 
The scan attack can be performed by stopping the execution 
of the AES after one round of encryption. After that, the 
circuit is switched to test mode and the value of the round 
register is observed shifting out the content of the scan chain. 
This procedure is repeated several times until the key can be 
deduced from the observed data. The attack strategy is to run 
the encryption of pairs of plaintexts having Hamming 
distance equal to one. When the Hamming distance of the two 
related first round results hits some specific values, the 
attacker can determine one key byte. The encryption of 32 
plaintexts is required on average in order to retrieve one key 
byte. The same procedure is iterated on all the bytes of the 
secret key. Overall, the attacker needs to apply on average 
512 plaintexts to retrieve the 128-bit secret key. 

Stream ciphers have also been the target of scan attacks. 
Y. Liu et al. [6] presented an attack targeting LFSR based 
stream ciphers. The principle is to run the LFSR for several 
clock cycles. After that, the circuit is switched to test mode 
and the content of the LFSR is retrieved through the scan 
chains. The algorithms developed by the authors bring to 
light some relations between the internal states of the LFSR. 
The attacker is thus able to discover the structure of the LFSR 
and predict the generated keystream. 

J. Da Rolt et al. presented in [7] a differential scan attack 
on Elliptic Curve Cryptography (ECC). The core of the 
computation in ECC crypto-processors is a point 
multiplication between the secret key and a scalar value. This 
operation is performed resorting to several iterations, each 
involving a different portion of the key. In the target 
implementation, the attacker is able to observe the result of 
all the intermediate multiplications resorting to the scan 

 

Fig. 2 Taxonomy of the known threats that can be put in place on the standard test infrastructures. 



chains. Exploiting this, it is possible to retrieve part of the 
secret key. This vulnerability can be exploited in all the use 
cases of the ECC crypto-processor (e.g. signature generation, 
key exchange). 

J. Da Rolt et al. [8][9] extended the concept of scan attack 
to advanced test infrastructures. Industrial solutions usually 
deploy test vector decompressors, test responses compactors, 
X-masking and X-tolerance, in order to deal with multiple 
scan chains and complex test infrastructures. Specifically, 
compacting the test responses inside the chip has often been 
considered by the EDA (Electronic Design Automation) 
vendors as a built-in protection mechanism. This paper shows 
how a differential attack on crypto-processors is feasible, 
even when these advanced test infrastructures are used. 
Successively, A. Das et al. [10] performed these attacks on 
industrial solutions, provided by the main EDA vendors, and 
proved their vulnerability against the scan attacks. 

The described scan attacks are possible as long as the 
attacker has the capability of switching the circuit from 
functional mode to test mode and vice versa. For this reason, 
countermeasures have been developed, based on resetting the 
scan chains when the circuit is switched from test mode to 
functional mode. S. Ali et al. [11] conceived a scan attack on 
AES that is entirely executed in test mode. In test mode, the 
AES inputs are set through the scan chain, as well as the 
observation of the round register value. This threat model is 
conceived in order to overcome the countermeasures based 
on scan chain reset (or obfuscation) when switching from 
normal mode to test mode. 

REVERSE ENGINEERING 

The access to the scan chains gives the user the possibility 
to observe the internal states of the circuit. Exploiting this, an 
attacker can set specific state values and retrieve the response 
of the combinational layers of the circuit. Hence, building a 
database with stimuli/responses couples is possible. A 
thorough analysis of these data allows the attacker to exactly 
reverse engineer the netlist of the circuit. Even if this scenario 
has been assumed as a threat model by many authors, only L. 
Azriel et al. in [12] showed an implementation of the attack. 

2) Exploiting the Debug Interface 

Most of the modern ICs integrate a microprocessor. The 
availability of a debug infrastructure is essential in these 
systems. The debugging capability must be granted by the 
hardware designer, in order to assist the software 
development process. The JTAG interface allows the user to 
access the debug infrastructure and perform On-Chip 
Debugging (OCD). If the debug interface is left accessible 
when the device is sent to the market, malevolent users can 
exploit it. OCD tools allow the user to tamper the code 
execution at very low level. This means that security 
mechanisms implemented at software level can be overcome 
by OCD. Halting the software execution, a malicious 
debugger can modify and read the content of specific 
addresses of the memory, in order to cause unwanted 
behaviour in the system. All these operations can be easily 
performed using automated tools and high-level 
programming languages. Notably, reading memory values is 

the foundation of attacks aimed at memory dumping and 
device cloning. On the other hand, the modification of 
memory values is performed to modify the software 
execution flow and attain privilege escalation. 

MEMORY DUMPING 

The first memory dumps relying on JTAG were 
performed in 2006 by S. Willassenn [13] and M.F. 
Breeuwsma [14]. The objective in both cases was to dump 
the whole content of a mobile phone memory for forensic 
purposes. In [13], the target device was a Nokia 5110 mobile 
phone. The author explains a detailed procedure, in order to 
access the external flash memory through the CPU JTAG 
controller and read all data out. However, the procedure 
presented in [14] is more comprehensive. It shows a more 
general attack that can be carried out on any portable device 
with JTAG access. A complete JTAG reverse engineering 
flow is presented, including the employed technique to find 
the TAP pins on the board. Once the JTAG infrastructure is 
accessed, the EXTEST or the DEBUG instructions are 
selected through the TAP controller. At this point, the 
attacker is able to send commands to the flash memory and 
read its content. 

F. Domke presented in [15] a reverse engineering 
procedure to explore undocumented JTAG instructions. 
Hardware manufacturers usually implement custom 
instructions in the JTAG infrastructure. They are meant for 
private in-house utilization, for this reason they are not 
referred in the device documentation. However, this paper 
shows a procedure that explores all the undocumented 
instructions. The final result is that the attacker was able to 
access the internal scan chains and the internal bus, hence 
memory data could be read out. 

JTAG related vulnerabilities have also affected high-
security range devices. In [16], S. Skorobogatov and C. 
Woods discovered a backdoor in a military chip. The victim 
device was an ASIC from Microsemi, including a secured 
FPGA. The authors reverse engineered the JTAG 
infrastructure and found some undocumented instructions. 
Through these instructions, it is possible to download or 
overwrite the FPGA configuration, overcoming all the 
security features. Exploiting this backdoor, the ASIC 
producer could virtually retrieve all proprietary designs that 
their customers synthesized on their products. 

PRIVILEGE ESCALATION 

Penetration testers find serious vulnerabilities on 
consumer electronics devices on a day-to-day basis. In low-
cost devices, producers keep the production costs to a 
minimum, necessarily scarifying the security concern. For 
instance, the company in [17] published a JTAG attack 
performed on a very popular TPLink Router. Once the JTAG 
interface is found, OCD allows the attacker to halt the 
execution of the bootloader at any moment. At this point, the 
memory can be conveniently tampered, in order to force the 
Linux kernel to run in Single User Mode, i.e. with root 
privileges.  

F. Majéric et al. presented in [18] a JTAG attack 
exploiting a vulnerability of the Android kernel. Changing 



some specific values in the memory, it is possible to unlock 
the visualization of kernel modules addresses. Knowing the 
exact memory location of kernel modules is the starting point 
of several software attacks (i.e. buffer overflow). This 
vulnerability affected an Android build for Samsung Exynos 
SoCs and it was patched via software as soon as it was 
disclosed. However, the authors of this paper showed how, 
acting through OCD, it was still possible to perform the attack 
on these SoCs. 

3) Exploiting the IJTAG network 

An attacker who manages to take control of the TAP 
controller, can also access the IJTAG reconfigurable 
network, if present. The target of the attacker is to access the 
configuration register of specific instruments embedded in 
the SoC. Since the design of the RSN is not known a priori, 
the attacker needs to reverse engineer it and figure out the 
arrangement of the SIBs. At this point, the attacker can 
configure them in order to have access to the target 
instrument. 

Hundreds of embedded instruments can be connected to a 
reconfigurable network. These instruments can be, for 
instance, BIST configuration registers. BIST engines wrap IP 
cores and they are activated in order to perform on-line 
testing. The tester accesses the SoC test infrastructure and 
writes the right value on the associated TDR, in order to start 
the BIST procedure. While the BIST is running, the tester can 
deploy the test infrastructure in order to perform other tasks 
at the same time. In on-line testing applications, the tester is 
a circuit that schedules the test at the board level or at the SoC 
level. Since the BIST engines cause high power adsorption 
from the device under test, their activation must be carefully 
scheduled during the test phase [19]. If a malicious user is 
able to access the IJTAG network, many BIST engines can 
be activated at the same time and possibly cause overheating 
of the whole circuit. This scenario can lead to a Denial of 
Service (DoS) attack on the system. Even though any 
implementation of this threat has never been published, it has 
been mentioned as a threat in several publications. For 
example, in [20] the authors mention this menace in order to 
justify an IJTAG security countermeasure, which is the main 
contribution of the paper. 

Embedded instruments connected to the IJTAG network 
also comprise SoC configuration registers. These 
configuration registers may be used to tune SoC parameters, 
which are determined by the hardware integrator after the 
production of the chip (e.g. internal voltage levels, clock 
frequencies). These configurations are part of the intellectual 
property of the SoC vendor. The authors of [20] mention this 
scenario as another possible menace affecting non-protected 
IJTAG infrastructures. 

B. Malicious hardware 

The actual trend in the IC industry is the globalization of 
the design and the production. For this reason, the final 
products come from a design flow that involves many 
different companies. Third-party companies can provide 
proprietary IP cores to integrate inside the final SoC. In a 
typical design flow, the SoC integrator assembles together all 

the IP cores, coming from different vendors, and designs the 
SoC level circuitry to grant the correct integration. At this 
phase, the SoC level testing infrastructure is inserted inside 
the design. The infrastructure is connected to the test 
interfaces of each IP core (e.g. TAP controller, IEEE 1500 
test wrapper, BIST). How the parties interact in this process 
is of extreme importance for hardware security purposes. For 
instance, the SoC integrator does not necessarily have trust in 
the IP core vendors. Similarly, the IP core vendors does not 
have trust in each other. However, the IP cores are usually 
connected to the test infrastructure in a daisy-chain fashion. 
When the tester sends data to a target IP core through the TAP 
interface of the SoC, they are shared with other IP cores. The 
trust level of the SoC integrator with respect to the IP vendors 
can change according to different scenarios: (i) the IP cores 
are provided without test wrappers. At this point, the SoC 
integrator itself provides the IP cores with trusted test 
wrappers; (ii) the IP cores are already provided with test 
wrappers. In this case, the SoC integrator cannot have the 
same trust level in connecting the IP core to the SoC test 
infrastructure. The same considerations hold at board level, 
where ICs coming from different parties are mounted on the 
same board. In general, when test data are shifted through the 
test infrastructure of an untrusted IP core, there is no certainty 
that it handles the data according to predefined rules. Two 
possible threats have been envisaged in the literature so far: 
(i) the untrusted IP core holds a copy of the test data are 
shifted through; (ii) the untrusted IP core modifies the value 
of the test data while they are shifting through. 

As far as we know, there is no record in the literature of 
malicious devices that have been actually found tampering 
with a test infrastructure. However, some authors have 
published several attack scenarios involving malicious 
devices in test infrastructures. These threat models have been 
largely used by researchers in order to motivate their 
countermeasures. Therefore, we believe they deserve a 
section in this survey. 

1) Sniffing 

Each time a user wants to start a communication with a 
target device connected to the test infrastructure, he or she 
loads a certain instruction in the IR of the target. The other 
devices on the same network are programmed in BYPASS 
mode. A malicious device can be designed in order to store a 
copy of the data that are shifted through the bypass register. 
The stolen data can be used by the malicious device in 
different ways, according to the attack scenario. For instance, 
test data can be properly filtered in order to store the sensitive 
information into an internal memory, which is read by the 
attacker in a second moment. In more complex scenarios, the 
malicious device can be able to send the data to a remote 
server. The attacker can process the collected data and 
retrieve sensitive information about the SoC and the other IP 
cores. 

K. Rosenfeld and R. Karri presented in [21] a threat 
model involving malicious devices connected to a board level 
JTAG infrastructure. One of the presented attacks involves a 
sniffing device recording test vectors sent to another device 
connected to the same infrastructure. The malicious device 



must be upstream the victim in order to make the attack 
successful. They state that illegally recording test vectors can 
leak confidential information on the design of the device 
under test. In a more complex scenario, two colluding 
devices, one upstream and one downstream the device under 
test, can record respectively test vectors and responses. This 
gives even more information about the internal logic structure 
of the victim. 

Many boards on the market embed both a microprocessor 
and an FPGA, which is used to accelerate part of the 
computation. The FPGA is configured by downloading a 
bitstream through the JTAG interface. The content of the 
configuration bitstream consists in confidential information 
about the IP core implemented on the FPGA. Moreover, 
sensitive information about the internal structure of the 
FPGA is also contained inside the configuration bitstream. If 
the TAP port of the JTAG is connected to the same network 
where other devices are connected, the bitstream can be the 
target of a sniffing attack. In other cases, the configuration 
bitstream is stored into an external non-volatile memory and 
it is loaded into the FPGA at the system power-on. In this 
case, the content of this memory can be accessed through the 
JTAG interface of the system. It is possible to find track of 
the importance of this threat model in the technical 
documentation of FPGA manufacturers. For instance, Altera 
in [22] presents this kind of threat model, in order to motivate 
the importance of the security features, which they implement 
on their FPGA. 

S. Kan et al. proposed in [23] a threat model involving 
malicious instruments connected to the IJTAG 
reconfigurable network. In this scenario, sniffing instruments 
can read out confidential configuration data that shifted 
through the infrastructure. More recently, R. Elnaggar et al. 
in [24] mentioned the same threat model. 

2) Tampering 

Malicious devices connected to the infrastructure, can 
modify the content of the shifted data when they are in 
BYPASS mode. In the case of sniffing attacks, the behavior 
of the malicious device is completely passive. The sniffing 
action has no consequences on the behavior of the system. In 
the case of tampering devices, the behavior of the malicious 
device is the same as if it was set in BYPASS mode (i.e. it 
shifts the values from the TDI pin to the TDO pin in one clock 
cycle). However, the data that are shifted out the TDO pin are 
different with respect to the data entering the TDI pin. This 
kind of attack causes a different behavior of the system. 

K. Rosenfeld and R. Karri described in [21] a possible 
data corruption scenario. If the tampering device is upstream 
the victim one, the data shifted into the victim can be 
corrupted. If the tampering device is able to smartly elaborate 
the modification of the data, it can lead the victim device to 
behave out of the specifications. For example, the target 
device can be a microprocessor whose firmware is loaded via 
the test infrastructure. If the content of the firmware is 
modified while loaded, it can be replaced with whatsoever 
kind of code, which can cause a very different behaviour of 
the system. 

Another hypothetical scenario presented in [21] can lead 
to a DoS attack, employing a malicious device. The test 
infrastructure can be exploited to perform the on-line testing 
of an IP core inside a SoC. In this scenario, test vectors are 
stored into an internal memory. When the testing procedure 
starts, the test vectors are shifted through the test 
infrastructure and loaded into the device under test. When the 
responses of the device under test are ready, they are shifted 
out and compared with the golden ones. In an on-line testing 
scenario, the comparison is performed on-chip. If the 
tampering device is downstream the victim one, corrupted 
responses can be delivered to the comparator. If the 
tampering device is properly programmed, test responses 
generated by the device under test can be modified into 
always being equal to the golden ones. At this point, if the 
device under test is faulty, the comparator is not able to detect 
it. This can lead to dangerous situations where the system 
goes into failure without the possibility for the system to 
forecast it. However, the malicious device must know the test 
responses and the exact moment when the test is run, in order 
to successfully fake test responses. 

The same principle can be exploited to threaten data 
integrity in IJTAG RSNs. In [24], R. Elnaggar et al. presented 
a threat model involving malicious instruments connected to 
a reconfigurable network. Untrusted instruments are 
supposed to be capable of changing the value of specific bits 
that are shifted through their internal TDRs. This capability 
can be exploited in order to maliciously change the 
configuration of the RSN. A possible scenario is the 
following: a user starts a configuration session in order to 
include a set of instruments in the RSN. During this process, 
the configuration bits are shifted through the malicious 
instrument, which changes the value of specific bits. The 
result is that an unwanted set of instruments is included in the 
RSN, without the user even realizing it. Another possibility 
for a malicious instrument is tampering with input data or 
with responses involving the victim instrument. 

III. TAXONOMY AND CLASSIFICATION OF COUNTERMEASURES 

Many countermeasures have been proposed in the 
literature, aimed to face one or more of the threats described 
in Section II. In this Section, we propose a taxonomy of 
countermeasures and we classify the state-of-the-art 
proposals. A graphical support is presented in the taxonomy 
tree in Fig. 3. 

A. Restricted access to the test infrastructure 

This category of countermeasures aims to avoid 
unauthorized entities to access the test infrastructure. If the 
user is not authorized, the TAP controller is disabled and the 
JTAG instructions cannot be executed. This way, further 
access to the internal IP cores or to the IJTAG reconfigurable 
network is not possible. As a consequence, the exploitation 
of the internal scan chains or of the debug infrastructure is 
prevented. An authorized user is defined as someone that 
access the test infrastructure without causing any damage to 
all the parties involved in the development of the system. 

Two categories of authentication techniques have been 
identified. One is based on the insertion of a password inside 



the TAP controller in order to lock or unlock it completely. 
The other category regroups a series of techniques based on 
challenge-response protocols implementing cryptographic 
primitives.  

1) Password-based authentication 

Testing infrastructures protected with locking/unlocking 
countermeasures have the TAP controller locked by default. 
In the locked state, the execution of the JTAG instructions is 
not permitted, except from instructions that do not give access 
to sensitive data. In order to unlock the TAP controller, a 
secret password must be shifted inside a dedicated register. If 
the password is correct, the test infrastructure is unlocked and 
the authenticated user can access all its functionality. We 
recall two solutions based on this principle, one targeting the 
JTAG TAP controller of a generic device, the other one 
targeting the IEEE 1500 test wrapper of an IP core integrated 
inside a SoC. 

F. Novak and A. Biasizzo [25] presented a solution based 
on the modification of the TAP controller. The modified TAP 
controller is able to execute two extra instructions, LOCK and 
UNLOCK. When the LOCK instruction is executed, the user 
needs to insert a password inside a special register. As a 
consequence, the TAP controller goes into a locked state. 
While in the locked state, the TAP controller decodes all the 
instructions into the BYPASS instruction. This condition does 
not allow the access to the test infrastructure. When the 
UNLOCK instruction is executed, the user is asked to insert 
the correct password. If the inserted password matches the 
one used to lock the system, the TAP controller is unlocked 
and full access is granted to the user. 

G. Chiu and J. Li [26] proposed a solution based on the 
integration of an LFSR inside the IEEE 1500 test wrapper. 
The polynomial implemented by the LFSR is secret. When 

the test infrastructure is in idle state, the test wrapper is 
locked. The user that wants to unlock the test wrapper must 
send a seed value to the LFSR. A golden key is produced by 
the LFSR and stored inside the wrapper. After that, the user 
must shift into the test wrapper a value that matches the 
golden key produced by the LFSR. If the value is correct, the 
test wrapper is unlocked. The efficacy of this countermeasure 
is based on the secrecy of the LFSR structure. Only the user 
that knows the LFSR polynomial is able to send the right 
combination seed/key. 

All the countermeasures of this category base their 
efficacy on the presence of a secret element that is shared 
between the target device and the authorized user. The 
efficacy can be though easily jeopardized if this secret is 
leaked to unauthorized entities. It can be observed that in the 
solution [25] the secret password can be dynamically changed 
programming each device with a different password. In this 
case, the leakage of one password undermines the security of 
only one specific device and it does not affect the whole 
production. The password can be changed every time the TAP 
controller is unlocked and relocked. This gives the possibility 
to the producer to easily change the protection password when 
needed. In the solution [26] the secret element is the structure 
of the LFSR. According to the design choices, each IP core 
can be sold with a different LFSR structure, in order to limit 
the damage in the case of leakage. However, if the LFSR 
structure of a specific IP core is leaked, this cannot be changed 
during the device lifetime. 

2) Challenge-response protocol 

In order to improve the security of the test interface, more 
complex techniques have been proposed. These techniques 
are based on challenge-response protocols. The device sends 
a challenge to the user, which needs to prove his authenticity 
sending the right response back. The different 
countermeasures differ according to the kind of 
cryptographic primitive implemented (e.g. symmetric or 
asymmetric cryptography) and the kind of infrastructure 
needed at the user’s side. In the simpler cases, the user 
directly performs the challenge-response exchange with the 
device and personally holds the secret key that is necessary 
for the authentication. There are also more complex solutions 
where the user needs to obtain credentials from a secure 
server that holds the secrets required to compute the response. 
Only if the user successfully authenticates himself with the 
server, the latter computes the response and sends it to the 
device. This way the user does not need to directly hold the 
secrets and the risk of leakage is drastically decreased. 

K. Park et al. [27] proposed an authentication protocol for 
the activation of the TAP controller. The protocol relies on 
symmetric cryptography and on the verification of the user’s 
credentials based on a secure server. The authentication 
procedure is based on two steps. In the first step the user is 
authenticated by the server and obtains a credential that is 
stored into the device. An authentication between the server 
and the device is also performed. The device holds a secret 
key and the server stores a database with the key associated 
with each device ID. In the second step the user asks the 
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device for access. The access is granted only if both the user 
and the device hold a valid credential. 

CJ Clark [28] proposed an authentication protocol relying 
on the computation of the hash function of a random number. 
The challenge is a random number that is generated by the 
device. The challenge is sent to the user that appends a secret 
key to it. The resulting message is hashed with the SHA-256 
algorithm. The result is sent back to the device, which verifies 
its validity computing the hash function itself resorting to the 
internally stored key. The authentication process is therefore 
based on the knowledge by the user of the secret key stored 
inside the device. 

A. Das et al. [29] presented an authentication protocol 
based on Physical Unclonable Functions (PUFs) to protect 
the access to IEEE 1500 compliant test wrappers. A PUF 
must be implemented inside the device. A PUF is an element 
whose behavior depends on physical characteristics that are 
unique for each single device. Input challenges can be sent to 
the PUF, which gives unique responses as output.  Moreover, 
the user must have access to a database collecting all 
Challenge-Response Pairs (CRPs) of the target PUF. The 
user must send a request to the device when the access to the 
target test wrapper is needed. At this point, the device sends 
a random value Δ to the user. The user searches through the 
CRP database for two responses having distance Δ. The two 
corresponding challenges are sent to the device, which are 
processed by the PUF. The device verifies if the produced 
responses have distance Δ. In the affirmative case, the access 
to the test wrapper is granted. The PUF needs to be queried 
at production time in order to create the CRP database. For 
this reason, a read-out system for the PUF response must be 
implemented and permanently disabled after the creation of 
the CRP database. 

R. Buskey and B. Frosik [30] proposed an authentication 
protocol based on asymmetric cryptography. In this solution, 
the device holds the public key and a secure server holds the 
private key. The device sends a challenge to the server 
together with the device ID and the credentials of the user. 
The server checks if the user has the authorization for the 
requested operation. In the affirmative case, the server 
computes a response using the private key associated with the 
target device. This response is sent to the device. Finally, the 
device evaluates the authenticity of the response, using its 
public key. The challenge-response protocol is based on ECC 
cryptography. 

A. Das, J. Da Rolt et al. [31] proposed another 
authentication protocol based on asymmetric cryptography. 
The utilization of the Schnorr protocol is proposed, which 
implements a signature algorithm based on ECC 
cryptography, called ECDSA. Using this primitive, an 
authentication scheme has been designed. The user and the 
device hold both a public key and a private key. At first, the 
user sends its public key and ID to the device. The device 
sends its ID and a challenge to the server in order to verify if 
the user’s public key is linked to a valid certificate. The server 
retrieves the public key associated with the device ID from 
its internal storage. After that, it creates a signature using the 
ECDSA based on the public key itself, the ID and the 

challenge. This signature is then sent to the device that checks 
its validity. At this point, the device knows the user’s public 
key. The device then starts the Schnorr authentication 
procedure. In this exchange, the device, knowing the user’s 
public key, is able to verify the validity of its private key. 

The key management is simpler for authentication 
protocols based on asymmetric cryptography. This is due to 
the fact that the public key does not need to be kept secret. In 
the solution [30], for instance, the device stores the public 
key, and there is no need to keep it secret. The only secret key 
is the private key, which is stored into a secure server. The 
solutions based on symmetric cryptography have the 
advantage of a low implementation cost. For example, the 
solution [28] is based on hash functions. The implementation 
cost of hash functions is decisively lower than asymmetric 
cryptography, such as ECC. 

B. Restricted access to the IJTAG network 

SoC designers can decide to apply different policies to 
access embedded instruments connected to the IJTAG 
reconfigurable network. This network is accessible through 
the TAP controller of the IC. When a specific JTAG 
instruction is executed, the RSN is connected between the 
TDI and TDO pins. However, the policy used to secure the 
access to the whole JTAG infrastructure can be different with 
respect to the one used for the IJTAG network. For instance, 
the designer could be interested in protecting only the IJTAG 
network, while there is no interest in limiting the access to 
the TAP controller. In another possible scenario, the access 
to the IJTAG network is granted to a subset of the entities that 
have access to the TAP controller. In this case, the secret to 
access the TAP controller is handed out to authorized users, 
but only a subset of these users also owns the secret to access 
the IJTAG network. For this reason, several authentication 
mechanisms have been proposed in the literature to secure the 
access to the IJTAG RSN. 

When an attacker tries to illegally access the IJAG 
network, he or she does not know its exact structure. At first, 
the attacker has to figure out the length of the network in its 
default configuration. After that, he or she tries to spot the 
SIBs and to open them, in order to progressively reverse 
engineer its structure. 

Three categories of authentication techniques have been 
identified. The first one is based on special SIBs that gate the 
access to private regions of the network. The knowledge of a 
secret password is necessary in order to open these SIBs. The 
second category is based on challenge-response protocols 
that enable the access to the network (or to smaller parts of 
it) only to authorized users. The last category aims to make 
more difficult for the attacker to figure out the structure of the 
network, increasing the complexity of the algorithms used to 
perform reverse engineering. 

1) Locking SIB 

It is possible to restrict the access to specific instruments 
connected to the IJTAG network hiding them behind special 
SIBs. These SIBs are locked by default and only authorized 
users, who know a specific secret, can open them. 



J. Dworak et al. [20] proposed a special SIB, called 
Locking SIB (LSIB). The LSIB is a modified SIB with 
additional logic that enables its opening only if a predefined 
value is sent to the additional key ports. The key is stored into 
add-on FFs connected to the RSN. These FFs are connected 
to the key ports of the target LSIB. When the right value is 
loaded into these FFs, the target LSIB is opened. LSIBs 
protect segments of the network that can be accessed only by 
authorized users that know the secret key. In [32], Gupta et 
al. showed that the LSIB is extremely flexible. In fact, the 
authors proposed a parallel IJTAG structure with increased 
bandwidth and showed that using LSIBs instead of SIBs, the 
same security level is granted. 

H. Liu and V. Agrawal [33] proposed a different kind of 
LSIB that relies on a Secure LFSR (SLFSR) integrated in the 
scan network. The SLFSR is placed downstream the LSIB 
that must be protected. When the LSIB is closed, the SLFSR 
is activated and the data that are shifted through it are 
scrambled. This way, the attacker is confused while trying to 
reverse engineer the network. The parallel output of the 
SLFSR is connected to the key pins of the LSIB. When the 
right value is generated by the SLFSR, the LSIB is unlocked. 
Once the LSIB is unlocked, the SLFSR switches to a simple 
shift mode and data passing through the RSN are not 
perturbed anymore. The security of this solution relies on 
both the knowledge of the secret key to unlock the LSIB and 
the knowledge of the structure of the SLFSR. 

N. Satheesh et al. [34] presented a countermeasure in 
which the LSIB is unlocked resorting to a PUF-based security 
module. The security module receives a challenge from the 
user. This challenge is sent to the PUF, which generates a 
response. The response is compared with the output of an 
LFSR. If they are equal, the LSIB is opened. The LFSR 
produces the same output of the PUF when the user clocks it 
for n cycles. The value n is a secret that the authorized user 
must know. The secret n depends on the challenge given to 
the circuit. Since the PUF has not connection with the 
external pins of the IC, its CRPs cannot be collected at 
manufacturing time. The value n associated with each 
challenge is measured at post-manufacturing running the 
LFSR until the LSIB is unlocked. This system provides weak 
security, because its complexity needs to be kept low for the 
feasibility of the key determination procedure. 

The techniques based on LSIBs presented in [20] and [33] 
rely on a secret password established at design time and 
hardwired inside the logic of the LSIB. Moreover, the 
solution [33] also relies on an LFSR whose polynomial is 
established at design time. For this reason, any leak of this 
information undermines the security of all the samples that 
share the same design. The same can be said for the solution 
[34], even if the behavior of the PUF is different for each 
device. In any case, retrieving the secret for a single device is 
not hard, because the complexity of the attack is equal to the 
complexity of the key derivation procedure executed at 
design time. 

2) Challenge-response protocol 

The IJTAG network can be also protected by an 
authentication module that implements a challenge-response 

protocol. According to the implementation, the 
authentication procedure can protect the whole RSN, a part 
of it, or a specific embedded instrument. 

The solution proposed by CJ Clark [28] can be applied to 
the IJTAG network, or to a specific instrument connected to 
it. The authentication mechanism is the same explained in 
Section II.A. The difference is that each instrument owns a 
different key. However, the SHA-256 engine, used to verify 
the validity of the response, can be shared by all the 
instruments. 

R. Baranowski et al. [35] presented an authentication 
protocol that gives the access to a secure region of the IJTAG 
network. In the first step of the protocol the device sends a 
challenge to the user. The challenge is a random number 
produced by a TRNG. The user concatenates the received 
challenge with the keys of the instruments that must be 
accessed. The obtained message is hashed and the result is 
the response that is sent back to the device. The device checks 
if the hash is valid; if this is the case, the user is authorized to 
access the target instruments. When the authentication is 
successful, the controller opens the part of the RSN 
containing the secured instruments. 

The techniques based on challenge-response protocols 
require each instrument to have a secret key associated with 
it. Therefore, each instrument must manage its access rights 
independently. For example, in the solution [28], each 
instrument has to manage the verification of the response sent 
by the user. This means that each instrument has necessarily 
an area overhead due to the verification logic. In the solution 
[35], the authentication controller is centralized. Nonetheless, 
it is necessary to guarantee a path in the RSN where only the 
accessible devices are connected. This shows not negligible 
routing issues. 

3) Obfuscation of the RSN structure 

Another way to secure the access to the IJTAG network 
is to rise the complexity of the exploration algorithms. The 
attacker who does not know the design of the circuit tries to 
figure out the structure of the RSN in order to spot the 
position of the SIBs and open them in order to access the 
associated instruments. If the geometry of the RSN is 
unpredictable, the time required by an attacker to reverse 
engineer it increases considerably. 

A couple of techniques to complicate the structure of the 
RSN were presented in [20]. In order to make the attack more 
difficult, trap bits are introduced. These special cells are 
inserted in the RSN: if the wrong value is updated into them, 
the output of the cell is irreversibly asserted until a global 
reset is issued. Trap bits can be connected to a key input of 
the LSIB, in order to do not allow the attacker to unlock them 
even if the right key is set in the key bits. Another solution is 
to use the trap bits to activate an alternative path, in order to 
put the key bits of the LSIB out of the scan path. This way it 
is impossible for the attacker to continue forcing the key 
without a reset of the whole circuit. Trap bits can also be used 
independently from the LSIBs. For instance, it is possible to 
connect them to simple SIBs in order to force their closure. 
Alternatively, they can be set in order to block the shifting of 



the RSN. Another technique proposed in [20] is the 
implementation of hierarchical locks. They are structures that 
aim to further complicate the unlocking of the LSIBs. The 
key bits are spread on multiple levels of the network. For this 
reason, it is necessary to unlock specific LSIBs before being 
able to access all the key bits that are needed to unlock the 
target LSIB. 

A. Zygmontowicz et al. proposed in [36] other techniques 
to be combined with the LSIBs. The first one is the 
introduction of special LSIBs, called honeypots (HLSIB). 
HLSIBs provide access to a sub-network that does not 
contain any instruments. Instead, a target LSIB is disabled as 
far as the HLSIB stays open. This gives a fake feedback to 
the attacker, who may think to have successfully opened the 
LSIB. In this case, the attacker is motivated to explore the 
sub-network opened by the HLSIB without knowing that it is 
a dummy one (i.e. a honeypot). The second proposal is to 
create a network where some LSIBs are open by default and 
they need to be closed in order to be able to open other LSIBs. 
This should confuse the attacker who does not expect to have 
to reduce the length of the network in order to completely 
open it. The third proposal is to introduce switching LSIBs 
(SLSIB) that open different networks according to the value 
that is updated into them. One of the hidden networks is a 
dead end, the other gives access to the protected instrument. 
If both the networks have the same length, the attacker don’t 
realize that an LSIB was there, because the length of the 
network does not change. 

S. Kan et al. proposed in [23] a technique that gives the 
possibility to program the geometry of the RSN at post-
manufacturing. The authors proposed the insertion of stub 
chains. They are additional portions of the scan network that 
can have different lengths. The configuration of the stub 
chains is set selecting multiplexers that convey the scan flow 
on stubs of different lengths. This configuration is decided at 
manufacturing time using fuses or PUFs. This way, each 
sample of the device has a different configuration of the stub 
chains. Therefore, the attacker that is able to reverse engineer 
the RSN of one device is not able to perform the same attack 
on all the others. 

In the solutions [20] and [36] the countermeasure is 
coupled to the use of the LSIBs. The time required to open an 
LSIB with a brute force attack is 2n, where n is the number of 
bits of the secret key. These techniques aim at increasing the 
attack time. In the solution [23], the structure of the RSN is 
simply made unpredictable because it is different on each 
sample of the target device. 

C. Privilege-based access restriction 

The countermeasures regrouped in this category are an 
extension of the user authentication techniques. In this case, 
the users do not have all the same kind of authentication, but 
they get different privileges on the testing infrastructure 
according to the trust level they have. 

The authentication protocol presented in [28] allows the 
system to provide different authentications according to the 
group of JTAG instructions that can be executed. For 
example, each set of private instructions can be associated 

with a different key. This way, the users are authorized to use 
a set of instructions by knowing the associated keys. 

J. Backer et al. presented in [37] an authentication 
mechanism for the debug infrastructure. The debug 
infrastructure is accessed resorting to the JTAG port of the 
IC. The aim is to filter out sensible assets that can be retrieved 
from the system in debug mode. Each asset is tagged in order 
to indicate its owner. The user must be authenticated to access 
the debug infrastructure. At the end of the authentication 
procedure, a privilege level is assigned to the user. Finally, 
the authenticated user can access the debug infrastructure. 
Each asset that is read from the system is checked runtime to 
verify that the user’s privileges lay him amongst the owners 
of that asset. 

L. Pierce and S. Tragoudas presented in [38] a technique 
based on a module that manages the authentication protocol 
and gives the user a privilege level. Moreover, an access 
monitor filters the update signal of the boundary scan cells. 
A memory stores the access levels of each resource. When 
the resource is accessed, its access level is compared with the 
actual privilege level of the user. The update signal is 
forwarded only if the access level of the resource is less or 
equal than the privilege level of the user. 

The solution proposed in [35] expects each instrument 
connected to the IJTAG network to have a secret key, which 
is used for the user’s authentication. At the end of the 
authentication procedure, the user can access only the 
instruments that he or she is authenticated for. In order to 
guarantee this condition, a Secure Scan Chain (SSC) is 
activated. The SSC has only the cleared instruments 
connected to it. The other instruments are connected to 
another portion of the RSN that is not physically reachable 
by the SSC. 

The solutions proposed in [28] and [38] target the JTAG 
infrastructure. In [28], the privilege of the user determines the 
kind of JTAG instructions that can be executed, regardless 
the content of the accessed data. In [38] the user having 
access to the TAP controller can execute any instruction. 
However, the content of the accessed data is checked. For 
example, two users having different privilege levels can both 
perform debugging, but only one of them may be allowed to 
access a range of memory locations containing confidential 
data. The solution [37] is specifically related to the debug 
infrastructure, which is accessed by the JTAG interface. In 
the solution [35] the instruments in the IJTAG network must 
be grouped in different chains, each one accessible only by 
the users having some specific privileges. The user that wants 
to obtain the privilege to access a specific SSC must know 
the secret keys of all the instruments attached to it. In the case 
in which an instrument belongs to more than one privilege 
group, it must be necessarily reached by more than one SSC. 
This may cause non-negligible routing issues. 

D. Confidentiality of data 

When sensible data are exchanged between the user and 
the device, the possibility of sniffing from a third malicious 
entity is possible. This risk is present both in a board 
environment and inside a SoC, where the malicious entity is 



an internal IP core. In addition, the IJTAG networks need to 
be protected when confidential data risk to be shifted through 
embedded instruments that are not trusted. Countermeasures 
to provide data confidentiality have been largely developed 
by researchers. 

We have divided the countermeasures for confidentiality 
in two categories. The first one is based on the encryption of 
the data scanned through the testing infrastructure. This way 
a sniffing device is not able to steal secret information 
contained in the data. The second category is more oriented 
to protect the IJTAG networks. The configuration of the RSN 
is properly modified in order to isolate the untrusted 
instruments when confidential data are shifted through it. 

1) Data Encryption 

When using this kind of technique, the user needs to 
encrypt the test data using a secret key. The encrypted data 
are sent to the target device, which decrypts them. 
Afterwards, the responses produced by the device are 
encrypted and sent to the user. Finally, the user decrypts the 
responses using the same key used by the device. This way, 
a malicious sniffing device placed either upstream or 
downstream the target one, does not manage to steal 
confidential information. The encryption can be performed 
using different kinds of cipher. The most common are the 
stream cipher and the block cipher. 

a) Stream cipher 

All the countermeasures that we are going to present are 
based on the Trivium stream cipher. This stream cipher is 
preferred because of its implementation cost. The stream 
cipher takes as input a seed and generates a pseudo-random 
bit sequence, called keystream. The keystream is then XORed 
with the message to encrypt. The same is performed for the 
decryption. If the same keystream is used, consecutive 
encryption and decryption result in the starting plaintext. The 
Trivium stream cipher uses a seed that is made by an 80-bit 
Initialization Vector (IV), which is publicly known, and an 
80-bit secret key. 

K. Rosenfeld and R. Karri proposed in [21] an encryption 
technique for the JTAG infrastructure. The IV is hardwired in 
the device using fuses that are programmed at manufacturing 
time. The secret key is derived from a challenge sent by the 
user. The challenge is sent to the key input of the Trivium 
cipher. The first 80 bits of the produced keystream are used 
as response. This response is the secret key that is then used 
to initialize again the Trivium for data encryption. The user 
is able to successfully negotiate the encryption key only if the 
CRPs of the device are known. 

Encryption was also proposed in [23] to protect the 
IJTAG network. The IV management is not specified. The 
secret key is fixed and stored inside the device. The key can 
be set using fuses or generated exploiting a PUF. In the 
second case, the output of the PUF should be readable by the 
external IC pins only at manufacturing time. After that, this 
connection should be blown in order to avoid the attacker to 
retrieve the secret key. 

K. Rosenfeld and R. Karri proposed in [39] the encryption 
of test vectors that are fed to an IEEE 1500 compliant IP core. 

The encryption and decryption of the test vectors is 
performed with the Trivium stream cipher. The secret key is 
chosen at the beginning of the session by the user. The key is 
shifted inside the target core using a dedicated channel that 
does not go through the other cores. 

These different encryption techniques differ only from 
the key management point of view. In solution [21], the user 
knowing the fixed IV of the target device can successfully 
generate the secret key. In the solution [23] the key is 
hardwired. In solution [39], the key is directly decided by the 
user at each encryption session. 

b) Block cipher 

The encryption techniques based on the block cipher have 
found their application limited to the encryption of the scan 
chains so far. However, the same principle can be applied to 
the whole testing infrastructure. The block cipher takes as 
input a block of data of n bits. Each data block is processed 
in order to obtain an n-bit block of ciphertext as output. The 
block cipher uses a fixed key, which the authors supposed to 
be stored inside a Secure Key Management Unit (SKMU) 
present inside the device. 

M. Da Silva et al. proposed in [40] the encryption of test 
data using block ciphers. This proposal targets the protection 
of the scan chains. The method can also be extended to a 
wider test infrastructure. The method has been adapted to 
different scenarios, such as the presence of multiple scan 
chains. Different implementations of the block cipher have 
been evaluated in [41] and [42]. Lightweight block ciphers 
offer a good trade-off between security and implementation 
costs. 

The block cipher technique requires easier key 
management with respect to the stream cipher. The same key 
can be used many times in the case of the block cipher. On 
the other hand, the stream cipher is better fitted to the serial 
interface of the scan network. In fact, the block cipher 
technique needs some extra hardware in order to adapt the 
serial interface of the test infrastructure to the parallel 
interface of the block cipher. Another drawback of the block 
cipher technique is the low security level of the encryption 
configuration. Using this configuration, the encryption is 
weak. The attacker can know when two plaintext blocks are 
identical simply observing the equality between ciphertext 
blocks. 

2) Secure configuration of the IJAG network 

When dealing with IJTAG networks, it is possible to keep 
confidential data away from untrusted instruments. This is 
performed acting on the configuration of the network. 

The countermeasure proposed in [35] allows the designer 
to keep the untrusted instruments away from the secure scan 
chains. If an instrument deals with confidential data, it can be 
connected to a secure scan chain. This way, the user is sure 
that sensitive data are not shifted through untrusted devices. 
Only authenticated users have access to the secure scan 
chains. 

M. Kochte et al. proposed in [43] a design technique for 
secure IJTAG networks. Secure access patterns can be 



generated, such that untrusted instruments are not involved in 
the network when confidential data are present in the 
communication. The secure patterns configure the network in 
order to keep untrusted instruments isolated. When this 
configuration cannot be achieved due to the structure of the 
network, a modification of the design is performed. A bypass 
segment is added in order to redirect the data flow. When 
confidential data are shifted through the network, the bypass 
segments are activated and the data are not shifted through 
the untrusted instruments. 

The solution [35] is very efficient when the untrusted 
instruments do not belong to the set of devices that need the 
user authentication. In this case, they are not part of the secure 
scan chain. Thus the confidential data, which are shifted 
through the secure scan chain, are not exposed to them. The 
solution [43] is more versatile, because any instrument 
considered untrusted can be isolated from the confidential 
data. The main limitation is that this technique is applied at 
design time, without the possibility to update the security 
policies at a later stage. Moreover, the insertion of bypass 
segments does not avoid the possibility to electrically leak the 
confidential data on the untrusted branch. 

E. Device Authentication 

The authentication of the device is fundamental in order 
to fight the presence of untrusted devices. The user 
communicating with a target device on a testing 
infrastructure, needs to be sure that the target is an authentic 
device, not a fake one. Malicious devices often come from a 
counterfeiting process. Several countermeasures have been 
proposed in the literature. 

The countermeasure proposed in [21] also deals with the 
authentication of the device. The user sends a challenge to the 
device. The challenge is sent to the key port of the Trivium 
stream cipher. The device computes the response using the 
initialization phase of the stream cipher (i.e. generating the 
first 80 bits of the keystream). The user knows the associated 
response resorting to a database. This way the user is able to 
check if the device has given the right response. The relation 
between the challenge and the response depends on the IV 
value of the stream cipher. This value is hardwired in the 
device using fuses. This configuration is secret and it is set at 
manufacturing time. 

The solution proposed in [31], based on the Schnorr 
protocol, can be also used for the authentication of the device. 
This protocol has a bidirectional property that allows the 
authentication of both the user and the device. The same 
procedure described in Section III.A can be performed on the 
other way around to allow the user to verify the authenticity 
of the device. 

J. Dworak et al. proposed in [44] a technique to provide 
the authentication of a device mounted on a board. Each 
device owns a unique and secret ID number. When the tester 
wants to start a communication with a target device, the ID 
number is requested and checked against the correct one. An 
attacker, who wants to fake the target device, has to know the 
right ID associated with it. Hence, the ID must be kept 
confidential. For this reason, the ID number is encrypted in 

the transmission, in order to avoid other entities sniffing the 
JTAG network to steal its value. The encryption is performed 
by the device. The ID is XORed with a secret key, which must 
be as long as the ID. At the beginning of the authentication 
session, the user sends the secret key. In order to protect the 
key from sniffing, the sent key is obfuscated spreading it 
inside a random stream of bits. The obfuscation rule is secret 
and chosen at design time. A hardware module implemented 
inside the device performs the de-obfuscation of the received 
key. 

The solution presented in [21] does not show high 
implementation cost, because the Trivium cipher used for 
computing the response is the same that is used for the 
encryption of the test data. In [31], the ECC cryptography 
needed for the implementation of the Schnorr protocol leads 
to use a high amount of resources. The solution presented in 
[44] proposes the obfuscation of the key, which does not 
provide high security. Moreover, the constraint to implement 
the obfuscation algorithm inside the device at design time 
does not permit flexibility.  

F. Data Integrity 

Granting the integrity of the communication allows the 
user and/or the device to be sure that the exchanged data have 
not been modified during the transmission. One of the 
techniques uses a Message Authentication Code (MAC) 
appended at the end of each transmitted message. The MAC 
is a unique signature that is a function of the content of the 
message. The most used MAC algorithm in this field is the 
Hash MAC (HMAC). The HMAC is based on hash functions, 
such as SHA-256. The security of this primitive lies in the 
shared secret key used by both the user and the device to 
compute the HMAC algorithm. 

The countermeasure proposed in [21] also provides the 
integrity of the exchanged messages between user and device. 
This is performed appending a MAC signature to the 
message. The key used to compute the signature comes from 
the internal Trivium stream cipher employed for the 
encryption of the data. A challenge is sent by the user, which 
is sent to the key port of the Trivium. The IV is hardwired 
with fuses preset at post-production. The Trivium produces 
the first 80 bits of the keystream and this value is used as 
secret key for HMAC. The user knows the value of the key 
because he or she owns the challenge/response pairs that 
depends on the configuration of the fuses. 

R. Elnaggar et al. proposed in [24] a countermeasure that 
provides integrity in IJTAG reconfigurable networks. 
Untrusted embedded instruments are supposed to tamper 
with data, when shifted through their TDR. Therefore, the 
authors of the present paper proposed to create an alternative 
path that circumvents untrusted instruments. The alternative 
path is inserted by the SoC integrator, which is supposed 
being trusted. The implementation of this solution relies on 
doubling each untrusted TDR. This way, when data are 
shifted through the untrusted TDR, the alternative path is 
activated and the trusted TDR is inserted in the RSN. 

The usage of the MAC for integrity is based on a shared 
secret between the user and the device. The MAC also 



provides a weak authentication of the user. An unauthorized 
user, who does not know the key to compute a valid MAC, 
can only send invalid messages to the device. 

G. On-line detection 

All countermeasures presented so far aim to avoid attacks 
on the target system. In this section, we present some 
techniques aiming to detect the execution of the attacks while 
they are running. This is achieved by on-chip monitoring of 
the user behavior. When the behavior of the user is 
considered illegitimate, the system has to be set in protection 
mode. 

Detection techniques can be divided in two categories. 
The first one comprises all the detection methods based on 
static rules. As soon as these rules are not respected, the user 
is considered to be an attacker. The second category 
comprises methods based on machine learning. 

1) Static detection 

Static detection techniques are based on rules that are set 
at design time. Static detectors are synthetized during the 
design flow of the device. These detectors usually take as 
input the patterns sent by the user. If the patterns are not 
considered compliant to a legitimate behavior, the user is 
classified as an attacker trying to exploit the circuit. 

R. Baranowski et al. proposed in [45] a detection 
technique for filtering the access to the testing infrastructure. 
This solution is based on sequence filters that are placed on 
the TAP controller. They prevent the access to protected 
instruments and restrain it for instruments that are not 
completely protected. The filters take as input the sequence 
of instructions and data at the TDI port to decide whether the 
access pattern is allowed or forbidden. If the user tries to 
access a forbidden instrument, the operation is not allowed 
by the filter. The filters are deactivated by default to enable 
post-manufacturing test. After that, they can be activated by 
blowing fuses. Alternatively, an authentication mechanism 
could be integrated in order to manage the activation of the 
filters. 

In [23] the authors proposed a detection technique for the 
identification of attempts to reverse engineer the IJTAG 
reconfigurable network. A checker counts the number of shift 
cycles that are performed by the user while trying to 
configure the RSN. A legitimate user knows the structure, 
hence the length, of the RSN. Therefore, the number of shift 
cycles necessary to configure the RSN are exactly known. On 
the opposite, the attacker needs to explore the RSN 
performing several attempts.  The user trying to perform this 
operation, must perform an inexact number of shift cycles. 
When the checker detects this situation, the user is considered 
as an attacker. 

 X. Ren at al. presented in [46] a detection technique 
based on representative sequences of instructions. These 
sequences are chosen at design time as representative of 
legitimate operations. If the behavior of the user goes 
sideways for long time with respect to the representative 
sequences, an attack is detected. In the implementation, a 
counter is associated with each representative sequence. 
When all counters stop incrementing, a non-representative 

sequence is being performed by the user, thus the circuit is 
subject to an attack. 

The countermeasure proposed in [24] can be expanded in 
order to also detect attempts of data tampering. Genuine 
instrument responses (not shifted through the internal TDR 
of the untrusted instruments) are compared with the 
responses coming from the internal TDR of the instrument. If 
a difference is detected a tainted bit is set in an extra RSN. 
When the tester collects the test responses, the presence of a 
taint bit indicates that an instrument has tried to tamper with 
some data. 

The rules that underlie the static detection techniques 
must be set at design time. This implies that it is not possible 
to change the access policies without a complete redesign of 
the detectors. In the solution [45] the possibility of 
performing post-manufacturing test using different policies is 
contemplated. Nevertheless, once the filters are activated, it 
is not possible to obtain the higher privileges anymore. 

2) Machine learning-based detection 

Detection techniques based on machine learning require 
the implementation of on-chip binary classifiers. They are 
special circuits that are able to evaluate the sequences of 
instructions sent by the user and label them as normal or 
abnormal behavior. The classifiers must be trained before 
being operative. During the training phase, instruction 
sequences belonging to both categories are labeled and sent 
to the classifier. This way the classifier sets its internal 
classification parameters. After that, the classifier is able to 
successfully classify the sequences autonomously in the 
operative phase. Input data are pre-processed in order to 
obtain the so-called feature vectors. They are a different 
representation of the data. The feature vectors are the input of 
the classifier in both the training and operative phase. 

In [46], the authors presented two detection techniques 
based on machine learning. They proposed the deployment of 
two different classifiers, the random forest and the Support 
Vector Machine (SVM).  

The random forest classifier is based on decision trees. 
Each tree takes as input a feature vector (or a part of it) and 
outputs a binary value that corresponds to its classification. 
The result of each tree is then sent to a majority voter that 
establishes the final result. The feature vectors given as input 
to the random forest classifier are extracted by the executed 
JTAG instructions. The features are derived from static 
elements taken by the instruction, plus one transition bit. The 
transition bit indicates if the transition from the previous 
instruction to the present one is typical or not. 

The SVM is a classifier that defines a decision boundary 
during the training phase. The decision boundary separates 
the two classes of samples such that the smallest distance 
between the decision boundary and any of the samples is 
maximized. The input of the SVM is a sequence of JTAG 
instructions. The optimal length of the sequences, which is 
four instructions, has been determined empirically by the 
authors. 



While the detector based on the random forest classifier 
is able to provide a classification based on static features of 
the instruction under execution, the SVM relies on sequences 
of more instructions. This makes the classification based on 
the SVM more efficient against attacks that are unknown at 
the training phase. A common drawback of these two 
solutions is that each time a new attack is conceived, could 
be necessary to perform the whole training process again. 
Moreover, machine-learning techniques show more 
efficiency if coupled with other protections. This is due to the 
fact that in some situations the detection can fail because the 
attack is not recognized. Once the classifier has detected that 
the user is performing an attack, the system must activate a 
locking feature or going into a secure mode. 

IV. DISCUSSION 

In this section we discuss about three aspects that derive 
from what has been presented so far. The first one is an 
evaluation of how state-of-the-art countermeasures are able 
to protect against the known threats. The second aspect is a 
brief description of the vulnerabilities that have emerged so 
far on some of the presented countermeasure. Finally, we are 
going to discuss about the formalization of the security in the 
test infrastructures, which we believe being an emerging 
topic in this field. 

A. What do we need to reach complete protection? 

In Table 1, an analysis of the protection capability of each 
countermeasure is reported. The content of the present table 
is derived by what the authors of each countermeasure stated 
with respect to its security capabilities. The first conclusion 
that can be drawn is that there is no countermeasure able to 
cover all the existent threats. On the other hand, it is possible 
to conclude that integrating together no more than two 
different countermeasures is enough to provide a complete 
protection. For instance, providing both confidentiality and 

integrity of the communication is enough to protect the test 
infrastructure from all the know threats. 

It is possible to state that when the TAP controller is 
protected by an authentication mechanism, also the IJTAG 
reconfigurable network is protected as a consequence. The 
authentication mechanisms for the IJTAG networks are 
strictly necessary only when the TAP controller cannot be 
protected. 

The encryption and the integrity of the communication 
are the only countermeasures that are able to protect from 
both internal and external threats at the same time. All the 
other countermeasures have their efficacy limited to only one 
of these categories. 

Table 1 reports a binary criterion for defining the 
protection of the countermeasures. As we discussed in 
Section III, many of these countermeasures are declared to be 
effective against some threats. Nevertheless, the specific 
implementation leaves space to perform attacks on them, 
making their security ineffective. In the present analysis we 
provide an evaluation of the theoretical protection granted by 
each countermeasure based on the kind of cryptographic 
primitive that is used. As a matter of fact, the specific way in 
which the cryptography is implemented leaves space to many 
possible attacks. We will deal with this aspect in the next 
subsection. 

B. Attacks on the countermeasures 

Many of the presented countermeasures can be threatened 
by known attacks. For many countermeasures we have 
largely discussed their weak points in Section III. However, 
some attacks targeting the countermeasures have been 
presented in the literature. 

In [47] the authors showed that the LSIB key logic is 
subject to simple power analysis. This is a side-channel attack 

Table 1 Analysis of the protection granted from each countermeasure against the known threats 

  External Threats, exploiting: Internal Threats 

  Scan Chains Debug Interface IJTAG Sniffing Tampering 

Access 
Authentication 

Password 
based 

Yes Yes Yes No No 

Challenge-
Response 
Protocol 

Yes Yes Yes No No 

IJTAG Access 
Authentication 

Locking SIB No No Yes No No 

Challenge-
Response 
Protocol 

No No Yes No No 

Obfuscation No No Yes No No 

Privilege based authentication Yes Yes Yes No No 

Data 
Confidentiality 

Encryption Yes Yes Yes Yes No 

Secure 
Configuration 

No No No Yes Yes 

Device Authentication No No No Yes Yes 

Data Integrity Yes Yes Yes No Yes 

On-line 
Detection 

Static Yes Yes Yes No Only when 
JTAG 

instructions are 
tampered 

Machine 
Learning  

Yes Yes Yes No 

 



based on the observation of the power traces produced along 
the computation time of the IC. They solve this problem 
proposing to share some key bits in the RSN between 
multiple LSIBs. 

In [48] the authors showed a vulnerability present on all 
the encryption methods based on stream cipher. The 
weakness relies on the bad management of the secret key and 
the IV of the stream cipher. The problem is that the chosen 
management of these parameters allows a malicious user to 
perform the two times pad attack. In this attack, the user can 
lead the stream cipher to perform two consecutive 
encryptions using the same secret key and IV values. This 
leads to the easy retrieval of information on the plaintext, 
performing a simple XOR operation between the two 
resulting ciphertexts. 

C. Towards a formalization of security 

The reconfigurable scan networks of the IJTAG standard 
are modeled resorting to a description language called 
Instrument Connectivity Language (ICL). This 
representation is well suited to the development of formal 
models that facilitate the efficient generation of access 
patterns. In [49] the authors introduced the CSU-accurate 
RSN model (CAM) that permits the complete formal 
verification of the RSN. In [50] the same authors enhanced 
this approach resorting to a model checking technique to 
verify some security properties of the RSN. More recently, in 
[51] the authors proposed a new method that detects security 
violations in the RSN and structurally transforms it into a 
secure RSN. The security specification for applying this 
model is based on the definition of a trust category for each 
instrument, together with the definition of a sensitivity level 
of the data that are shifted through the RSN. 

The ongoing research on the security aspects of the RSNs 
was one of the reasons that inspired the introduction of a suite 
of IEEE 1687 benchmark networks [52]. It is composed of a 
series of IJTAG networks, described in the ICL language, of 
different complexities. These benchmarks have recently 
found their first application as experimental platform for 
RSN security purpose in [51]. 

V. EMERGING CHALLENGES 

The classification proposed in this survey highlights some 
trends in this research field. It is evident that the majority of 
the proposed countermeasures consists in authentication 
mechanisms for the test infrastructure. Security 
countermeasures based on user authentication can protect the 
system only against external threats. The classification of the 
attacks shows that external attacks are the only ones that have 
found large implementation in the reality. External attacks 
can be easily performed, even by not specialized entities. For 
this reason, the primary effort of the IC vendors is the 
protection of the TAP controller, in order to try to avoid the 
plethora of external threats. 

As it was largely discussed, the authentication 
mechanisms are based on symmetric or asymmetric 
cryptography. Asymmetric cryptography offers superior 
capabilities in terms of security and key management; 
however, the implementation cost is very high. In general, 

authentication mechanisms require the hardware 
implementation of crypto-circuits. This overhead can be 
tolerated in high-end products, where budget restrictions are 
loosened. However, the need for security is starting to affect 
market sectors where the aggressive cost reduction is not an 
option. For instance, in the IoT domain, many vendors 
participate in selling out very low-cost microcontroller-based 
devices. Microcontrollers are programmed to perform very 
simple operations (e.g. acquiring data from sensors, 
performing a simple computation and sending the results over 
the network). Since the final price of these devices must be 
kept extremely low, the employment of SoCs, equipped with 
crypto-hardware dedicated to the authentication of the test 
infrastructure, is definitely out of the question. This leaves 
the whole network, where unprotected devices are connected 
to, vulnerable to attacks. For these reasons, we strongly 
believe that there is a significant interest for researchers in 
lightweight authentication mechanisms for testing 
infrastructures. 

As far as lightweight security is concerned, we believe 
that this concept is not only limited to low hardware overhead 
of the secure infrastructure. Another important aspect to face 
is keeping the design effort low. The lack of secure standards 
in the test infrastructures make the security design a 
prerogative of big companies, which can allow themselves to 
invest money in order to build a domestic know-how on 
security matters. The availability of standardized guidelines 
and implementations for secure test infrastructures can allow 
smaller companies to provide protection to their devices, 
keeping their investments contained. 

Analyzing the state-of-the-art, it is also clear that a deeper 
study on the feasibility of internal threats is required. Even 
though real-world attacks of this kind have not been 
witnessed yet, they must not be neglected. We believe that 
internal threats must be addressed by researchers with the 
same emphasis that is given to the research on hardware 
Trojan horses. Due to the importance of these kind of threats, 
it is also important to develop more extensive protection 
mechanisms that also include confidentiality and integrity of 
test data. 

VI. CONCLUSION 

The development of IEEE test standards gave a big 
benefit to the development of complex SoCs. Users can rely 
on the simple interface provided by the TAP port and easily 
access the hundreds of resources and functionalities present 
inside the system. Granting the access to the test 
infrastructure while the system is in the field is necessary in 
order to provide on-line testing and maintenance. On the 
other hand, several attacks can be performed exploiting the 
test infrastructure. In this paper, we have provided a proposal 
of taxonomy for organizing the different kind of threats and 
countermeasures that have been published so far. The 
evaluation of the kind of protection provided by  each 
countermeasure shows that a major effort has been performed 
by the scientific community on the development of complex 
authentication mechanisms. While these techniques provide 
a strong protection against unauthorized access to the 
infrastructure, they lack of protection against internal threats. 



Nevertheless, we have also shown how the countermeasures 
based on encryption and integrity can provide together a more 
complete protection. Hence, we believe that it could even be 
possible to integrate encryption and integrity into the test 
standards themselves, in order to provide a smooth design-
for-test flow, equipped with strong security primitives. 
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