
HAL Id: hal-02166858
https://hal.science/hal-02166858

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A Survey on Security Threats and Countermeasures in
IEEE Test Standards

Emanuele Valea, Mathieu da Silva, Giorgio Di Natale, Marie-Lise Flottes,
Bruno Rouzeyre

To cite this version:
Emanuele Valea, Mathieu da Silva, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre. A Survey
on Security Threats and Countermeasures in IEEE Test Standards. IEEE Design & Test, 2019, 36
(3), pp.95-116. �10.1109/MDAT.2019.2899064�. �hal-02166858�

https://hal.science/hal-02166858
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

A Survey on Security Threats and

Countermeasures in IEEE Test Standards

Emanuele Valea, Mathieu Da Silva, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre

LIRMM (Université Montpellier - CNRS), Montpellier, France

{valea,mdasilva,dinatale,flottes,rouzeyre}@lirmm.fr

Abstract—The growth in complexity of Integrated Circuits

(IC) is supported, amongst other factors, by the development of

standardized test infrastructures. The feasibility of both end-of-

manufacturing and in-field tests heavily depends on the

presence of these infrastructures that give detailed access to the

IC. The standard test infrastructures are referred as IEEE Std.

1149.1 (JTAG), IEEE Std. 1500 and IEEE Std. 1687 (IJTAG).

The security issues arising from the presence of these

infrastructures have been fully exposed in the last two decades.

This led to the publication of several practical attacks showing

how a non-protected test infrastructure can end into the

jeopardizing of the entire system. As a consequence, many

countermeasures have been proposed. In this survey, we

provide: (i) a taxonomy of the attacks that can be performed

exploiting the standard test infrastructures; (ii) a taxonomy of

countermeasures inspired by the kind of security primitives that

are granted in each case.

Keywords—Testing vs Security; Hardware Security; Test

Standards.

I. INTRODUCTION

The continuous shrinking of the semiconductor
technology, always leads to new kinds of defects that can
possibly affect Integrated Circuits (IC). The increasing usage
of cutting-edge technologies in safety-critical applications,
leads to strict requirements on the detection of these defects
both at the end-of-manufacturing and in-field. For this
reason, the importance of testing has become essential in the
production flow of semiconductor-based devices. The
presence of testing infrastructures inside an IC is vital to be
able to successfully perform testing of complex systems.
Moreover, these infrastructures have to be kept accessible by
the external world also during the mission of the device, in
order to perform in-field test and to be compliant with
regulations in the case of safety-critical applications.

Scan chains are the fundamental testing infrastructure. All
the flip-flops (FFs) of the circuit are replaced with scan FFs,
which are serially connected with each other. When the
circuit is in test mode, the FFs switch to scan mode. This way
they establish a serial connection between the Scan In (SI)
and the Scan Out (SO) ports of the circuit. The tester can
exploit the presence of the scan chain in order to have deeper
controllability and observability on the circuit internal logic.
When the circuit is in test mode, test data are shifted into the

circuit through the SI port of each scan chain. The circuit is
then set to normal mode and run for a specific number of
clock cycles. In this phase, the circuit reaches a target state.
At this point, the circuit is switched back in test mode and the
content of the scan chains is shifted out from the SO ports.
Finally, the tester compares test responses with the expected
values. Since the complexity of the ICs is always increasing,
the ratio of external pins over the number of internal nets gets
smaller and smaller. In modern Systems-on-Chip (SoC), the
number of needed SI/SO pins would be too big. For this
reason, test standards propose an access mechanism based on
the Test Access Port (TAP), which is composed of only five
pins. The TAP requires the tester to implement a standardized
protocol in order to access the inner resources of the IC, such
as the scan chains.

The first test standard to be introduced was the IEEE Std.
1149.1, also called JTAG, which was conceived for board
testing [1]. The user accesses the board through the TAP port,
which is composed of four mandatory pins (TDI, TDO, TMS
and TCK) and one optional reset pin (TRST). Each device
mounted on the board has its own TAP controller, which
implements a 16-states FSM that allows the user to perform
basic operations with data that are shifted in and out the
device (respectively through the TDI and TDO pins). TMS
and TCK signals are broadcasted from the board interface to
all the devices. The TDI/TDO signals are connected in order
to include all the devices into a daisy-chain serial connection.
Each device includes an Instruction Register (IR) and a
certain number of Data Registers (DR). The IR is loaded with
the instruction to be executed. According to the instruction, a
different DR is connected between the TDI and TDO
terminals. Each device can execute a set of instructions that
are mandated by the standard, such as the BYPASS
instruction. The BYPASS instruction connects a single flip-
flop between the TDI and TDO ports. When data must be
shifted to a certain device in the daisy-chain network, all the
other devices are set in BYPASS mode. Other instructions
access the Boundary Scan Register (BSR), which is a scan
register that allows the tester to reach all the pins of the
device. When the device is in test mode, Boundary Scan Cells
(BSC) are interposed between the device pins and the internal
logic. In the capture phase, the BSCs are loaded with new
values coming from the external pins or the internal logic. In
the shift phase, these values are shifted out the device and

new data is shifted in. In the update phase, the test data is
applied to the external pins or the internal logic. When the
EXTEST instruction is executed, test stimuli are sent to the
external pins. This way, the board connections, external to the
devices, are tested. When the INTEST instruction is
executed, test stimuli are applied to the internal logic of the
device. The INTEST instruction can also be used in order to
access the internal scan chains of the circuit. When the scan
chains are connected to the JTAG Boundary Scan, the circuit
is tested by serially shifting the test stimuli into the TDI port
and the test responses out from the TDO port. Even if the
JTAG standard was conceived for board testing, it is still the
de facto standard for the test interface of all kinds of ICs. The
TAP port is used as external interface in the other test
standards as well.

The IEEE Std. 1500 has been developed to ease the test
of IP cores [2]. SoC manufacturers use to acquire IP cores
from different vendors. Each vendor independently integrates
the test infrastructure inside its IP core. The IEEE 1500
provides a standardized testing wrapper for this purpose. It
includes a wrapper controller with its own instruction and
data registers, also including the Wrapper Boundary Scan
Register (WBSR). The difference with JTAG, is that a
parallel input/output interface is provided on the test wrapper.
This way, IP cores can be selectively tested resorting to a
parallel access that must be provided on the external pins of
the SoC. All the IEEE 1500 test wrappers are connected to
the SoC-level test infrastructure, which is accessible through
the TAP controller.

The latest test standard is the IEEE Std. 1687, also called
IJTAG [3]. It deals with the great number of embedded
instruments that are integrated inside modern SoCs. These
instruments may consist in Built-In Self-Test (BIST) engines
for specific IP cores, voltage or current monitors, temperature
sensors, aging detectors, SoC configuration registers, etc.
Embedded instruments are connected to a Reconfigurable
Scan Network (RSN), made by programmable Segment
Insertion Bits (SIBs). Each SIB, if opened, gives access to an
instrument or to another reconfigurable sub-network. When
an instrument is included in the RSN, its Test Data Register
(TDR) becomes part of the test infrastructure. This way, the
user can dynamically choose the instruments that he or she
wants to include in the RSN. The IJTAG RSN is integrated
in the SoC test infrastructure. When the tester wants to access
the IJTAG RSN, the TAP controller is instructed to select the
RSN between the TDI and the TDO pins of the SoC.

Nowadays, many SoCs integrate security primitives
inside. Most processors are coupled with cryptographic co-
processors that perform, for instance, encryption operations,
random numbers generation and hash functions computation.
The Advanced Encryption Standard (AES) is the most used
encryption scheme. AES hardware implementations are very
commonly found in crypto-processors. The security of these
modules depends entirely on the secrecy of the encryption
key. This means that secret information is stored inside the
SoCs, usually inside secure memories dedicated to the
storage of secret keys. Intellectual Property (IP) protection of
both hardware design and software source code poses
important confidentiality requirements in the SoC design

flow. Each stakeholder participating to the production of the
SoC wants to keep its IP confidential from the other
stakeholders and most of all, from the final users of the SoC.
For this reason, it is extremely important to avoid that any
sensitive information leaks to undesired entities.

The development of test standards goes decisively into
contrast with the need for confidentiality and access
restrictions. The test infrastructure typically gives the user
highlighted controllability and observability on the internal
details of the circuit. Moreover, the daisy-chain
configuration, typical of the test infrastructures, ensures that
multiple independent entities inside the system share the
same data connection. This scenario opens many
vulnerabilities when sensitive data are shifted through the
network. A typical integrated system, designed without
security in mind, is vulnerable to many kinds of attacks that
can ultimately lead to huge financial losses of the
stakeholders.

From a general point of view, the threats involving the
test infrastructure of an IC belong to two main categories
(Fig. 1):

i. External threats: they come from an unauthorized
user that has the control of the device TAP controller.

ii. Internal threats: they come from a malicious device
or IP core that is planted inside the system by a third-
party entity (3PIP). In this case, the malicious device
can access data propagated through the infrastructure
it is connected to.

Many solutions have been proposed in order to protect
ICs against the fraudulent usage of the test infrastructures.
Each proposed solution has been conceived to counteract
more or less specific threats.

In this paper, we present a complete taxonomy of the
threats and the countermeasures considered in the literature
(Section II-III). In Section IV we provide a final discussion
and some prospects on the most recent research trends. In
Section V we present what we believe are the research
challenges that emerge by this survey. In Section VI the
conclusions are drawn.

II. TAXONOMY OF THREATS

Fig. 2 gives the tree structure of the proposed taxonomy.
The first level of classification is represented by the two

Core 1

Core 2

Core 3

W
T
A
P

R
S
N

Instr. 1

Instr. 2

Instr. 3
IJTAG

SIB

SIB

SIB

1500T
A
P

JTAG

External Threat:
Unauthorized Access

Internal Threat:
Malicious Hardware

Fig. 1 Threats on the test infrastructure can be originated by (i) an
external threat, caused by an unauthorized user accessing the IC; (ii) an

internal threat, caused by malicious hardware planted inside the IC.

categories that have already been mentioned in the
introduction: the external and the internal threats. Each of
these two categories is more detailed hereafter according to
the action performed by the attacker.

A. Untrusted user accessing the test interface

In this category of attacks, all the components of the
system are supposed being trusted. However, if the attacker
has physical access to the device, he or she is able to connect
to the TAP controller. In this situation, the attacker exploits
the highlighted controllability and observability on the
devices provided by the test infrastructure. The consequent
classification principle is based on the kind of infrastructure
that is targeted, namely (i) scan chains, (ii) the debug
infrastructure, (iii) the IJTAG reconfigurable network.

1) Exploiting Scan Chains

Internal scan chains of a target device are accessed
through the TAP controller. Scan chains can be connected to
the TDI/TDO pins of the test interface executing specific
instructions on the TAP controller, such as INTEST.
Alternatively, accessing the IEEE 1500 test wrappers of the
internal IP cores of a SoC gives access to the internal scan
chains of each IP core. In these cases, the attacker can shift
arbitrary values into the scan chains. Additionally, any
memory element of the circuit connected to the scan chain
can be observed shifting its content out. This procedure is the
basis of several attacks, called scan attacks, which aim to
steal secret keys stored inside crypto-processors. Another
possibility is to use the scan chain in order to stimulate and
observe the responses of the internal logic of IP cores, hence
to reverse engineer it.

SCAN ATTACKS

When crypto-processors are present inside a device,
secret keys are usually stored into integrated secure
memories. Even if these secure memories are excluded by the
scan chain insertion, scan attacks allow the attacker to
retrieve the secret key. Several attacks have been proposed,
targeting both symmetric and asymmetric cryptography
implementations.

B. Yang et al. presented in 2004 the first scan attack
targeting the Data Encryption Standard (DES) [4]. After that,
this attack was extended in [5] and executed on an AES
crypto-processor. The 128-bit key AES algorithm resorts to
10 rounds of computation to provide the required security.
The scan attack exploits the fact that the result of the first
round is correlated to the encryption key. In the AES
hardware implementations, the result of each round is stored
into the round register, whose FFs are part of the scan chain.
The scan attack can be performed by stopping the execution
of the AES after one round of encryption. After that, the
circuit is switched to test mode and the value of the round
register is observed shifting out the content of the scan chain.
This procedure is repeated several times until the key can be
deduced from the observed data. The attack strategy is to run
the encryption of pairs of plaintexts having Hamming
distance equal to one. When the Hamming distance of the two
related first round results hits some specific values, the
attacker can determine one key byte. The encryption of 32
plaintexts is required on average in order to retrieve one key
byte. The same procedure is iterated on all the bytes of the
secret key. Overall, the attacker needs to apply on average
512 plaintexts to retrieve the 128-bit secret key.

Stream ciphers have also been the target of scan attacks.
Y. Liu et al. [6] presented an attack targeting LFSR based
stream ciphers. The principle is to run the LFSR for several
clock cycles. After that, the circuit is switched to test mode
and the content of the LFSR is retrieved through the scan
chains. The algorithms developed by the authors bring to
light some relations between the internal states of the LFSR.
The attacker is thus able to discover the structure of the LFSR
and predict the generated keystream.

J. Da Rolt et al. presented in [7] a differential scan attack
on Elliptic Curve Cryptography (ECC). The core of the
computation in ECC crypto-processors is a point
multiplication between the secret key and a scalar value. This
operation is performed resorting to several iterations, each
involving a different portion of the key. In the target
implementation, the attacker is able to observe the result of
all the intermediate multiplications resorting to the scan

Fig. 2 Taxonomy of the known threats that can be put in place on the standard test infrastructures.

chains. Exploiting this, it is possible to retrieve part of the
secret key. This vulnerability can be exploited in all the use
cases of the ECC crypto-processor (e.g. signature generation,
key exchange).

J. Da Rolt et al. [8][9] extended the concept of scan attack
to advanced test infrastructures. Industrial solutions usually
deploy test vector decompressors, test responses compactors,
X-masking and X-tolerance, in order to deal with multiple
scan chains and complex test infrastructures. Specifically,
compacting the test responses inside the chip has often been
considered by the EDA (Electronic Design Automation)
vendors as a built-in protection mechanism. This paper shows
how a differential attack on crypto-processors is feasible,
even when these advanced test infrastructures are used.
Successively, A. Das et al. [10] performed these attacks on
industrial solutions, provided by the main EDA vendors, and
proved their vulnerability against the scan attacks.

The described scan attacks are possible as long as the
attacker has the capability of switching the circuit from
functional mode to test mode and vice versa. For this reason,
countermeasures have been developed, based on resetting the
scan chains when the circuit is switched from test mode to
functional mode. S. Ali et al. [11] conceived a scan attack on
AES that is entirely executed in test mode. In test mode, the
AES inputs are set through the scan chain, as well as the
observation of the round register value. This threat model is
conceived in order to overcome the countermeasures based
on scan chain reset (or obfuscation) when switching from
normal mode to test mode.

REVERSE ENGINEERING

The access to the scan chains gives the user the possibility
to observe the internal states of the circuit. Exploiting this, an
attacker can set specific state values and retrieve the response
of the combinational layers of the circuit. Hence, building a
database with stimuli/responses couples is possible. A
thorough analysis of these data allows the attacker to exactly
reverse engineer the netlist of the circuit. Even if this scenario
has been assumed as a threat model by many authors, only L.
Azriel et al. in [12] showed an implementation of the attack.

2) Exploiting the Debug Interface

Most of the modern ICs integrate a microprocessor. The
availability of a debug infrastructure is essential in these
systems. The debugging capability must be granted by the
hardware designer, in order to assist the software
development process. The JTAG interface allows the user to
access the debug infrastructure and perform On-Chip
Debugging (OCD). If the debug interface is left accessible
when the device is sent to the market, malevolent users can
exploit it. OCD tools allow the user to tamper the code
execution at very low level. This means that security
mechanisms implemented at software level can be overcome
by OCD. Halting the software execution, a malicious
debugger can modify and read the content of specific
addresses of the memory, in order to cause unwanted
behaviour in the system. All these operations can be easily
performed using automated tools and high-level
programming languages. Notably, reading memory values is

the foundation of attacks aimed at memory dumping and
device cloning. On the other hand, the modification of
memory values is performed to modify the software
execution flow and attain privilege escalation.

MEMORY DUMPING

The first memory dumps relying on JTAG were
performed in 2006 by S. Willassenn [13] and M.F.
Breeuwsma [14]. The objective in both cases was to dump
the whole content of a mobile phone memory for forensic
purposes. In [13], the target device was a Nokia 5110 mobile
phone. The author explains a detailed procedure, in order to
access the external flash memory through the CPU JTAG
controller and read all data out. However, the procedure
presented in [14] is more comprehensive. It shows a more
general attack that can be carried out on any portable device
with JTAG access. A complete JTAG reverse engineering
flow is presented, including the employed technique to find
the TAP pins on the board. Once the JTAG infrastructure is
accessed, the EXTEST or the DEBUG instructions are
selected through the TAP controller. At this point, the
attacker is able to send commands to the flash memory and
read its content.

F. Domke presented in [15] a reverse engineering
procedure to explore undocumented JTAG instructions.
Hardware manufacturers usually implement custom
instructions in the JTAG infrastructure. They are meant for
private in-house utilization, for this reason they are not
referred in the device documentation. However, this paper
shows a procedure that explores all the undocumented
instructions. The final result is that the attacker was able to
access the internal scan chains and the internal bus, hence
memory data could be read out.

JTAG related vulnerabilities have also affected high-
security range devices. In [16], S. Skorobogatov and C.
Woods discovered a backdoor in a military chip. The victim
device was an ASIC from Microsemi, including a secured
FPGA. The authors reverse engineered the JTAG
infrastructure and found some undocumented instructions.
Through these instructions, it is possible to download or
overwrite the FPGA configuration, overcoming all the
security features. Exploiting this backdoor, the ASIC
producer could virtually retrieve all proprietary designs that
their customers synthesized on their products.

PRIVILEGE ESCALATION

Penetration testers find serious vulnerabilities on
consumer electronics devices on a day-to-day basis. In low-
cost devices, producers keep the production costs to a
minimum, necessarily scarifying the security concern. For
instance, the company in [17] published a JTAG attack
performed on a very popular TPLink Router. Once the JTAG
interface is found, OCD allows the attacker to halt the
execution of the bootloader at any moment. At this point, the
memory can be conveniently tampered, in order to force the
Linux kernel to run in Single User Mode, i.e. with root
privileges.

F. Majéric et al. presented in [18] a JTAG attack
exploiting a vulnerability of the Android kernel. Changing

some specific values in the memory, it is possible to unlock
the visualization of kernel modules addresses. Knowing the
exact memory location of kernel modules is the starting point
of several software attacks (i.e. buffer overflow). This
vulnerability affected an Android build for Samsung Exynos
SoCs and it was patched via software as soon as it was
disclosed. However, the authors of this paper showed how,
acting through OCD, it was still possible to perform the attack
on these SoCs.

3) Exploiting the IJTAG network

An attacker who manages to take control of the TAP
controller, can also access the IJTAG reconfigurable
network, if present. The target of the attacker is to access the
configuration register of specific instruments embedded in
the SoC. Since the design of the RSN is not known a priori,
the attacker needs to reverse engineer it and figure out the
arrangement of the SIBs. At this point, the attacker can
configure them in order to have access to the target
instrument.

Hundreds of embedded instruments can be connected to a
reconfigurable network. These instruments can be, for
instance, BIST configuration registers. BIST engines wrap IP
cores and they are activated in order to perform on-line
testing. The tester accesses the SoC test infrastructure and
writes the right value on the associated TDR, in order to start
the BIST procedure. While the BIST is running, the tester can
deploy the test infrastructure in order to perform other tasks
at the same time. In on-line testing applications, the tester is
a circuit that schedules the test at the board level or at the SoC
level. Since the BIST engines cause high power adsorption
from the device under test, their activation must be carefully
scheduled during the test phase [19]. If a malicious user is
able to access the IJTAG network, many BIST engines can
be activated at the same time and possibly cause overheating
of the whole circuit. This scenario can lead to a Denial of
Service (DoS) attack on the system. Even though any
implementation of this threat has never been published, it has
been mentioned as a threat in several publications. For
example, in [20] the authors mention this menace in order to
justify an IJTAG security countermeasure, which is the main
contribution of the paper.

Embedded instruments connected to the IJTAG network
also comprise SoC configuration registers. These
configuration registers may be used to tune SoC parameters,
which are determined by the hardware integrator after the
production of the chip (e.g. internal voltage levels, clock
frequencies). These configurations are part of the intellectual
property of the SoC vendor. The authors of [20] mention this
scenario as another possible menace affecting non-protected
IJTAG infrastructures.

B. Malicious hardware

The actual trend in the IC industry is the globalization of
the design and the production. For this reason, the final
products come from a design flow that involves many
different companies. Third-party companies can provide
proprietary IP cores to integrate inside the final SoC. In a
typical design flow, the SoC integrator assembles together all

the IP cores, coming from different vendors, and designs the
SoC level circuitry to grant the correct integration. At this
phase, the SoC level testing infrastructure is inserted inside
the design. The infrastructure is connected to the test
interfaces of each IP core (e.g. TAP controller, IEEE 1500
test wrapper, BIST). How the parties interact in this process
is of extreme importance for hardware security purposes. For
instance, the SoC integrator does not necessarily have trust in
the IP core vendors. Similarly, the IP core vendors does not
have trust in each other. However, the IP cores are usually
connected to the test infrastructure in a daisy-chain fashion.
When the tester sends data to a target IP core through the TAP
interface of the SoC, they are shared with other IP cores. The
trust level of the SoC integrator with respect to the IP vendors
can change according to different scenarios: (i) the IP cores
are provided without test wrappers. At this point, the SoC
integrator itself provides the IP cores with trusted test
wrappers; (ii) the IP cores are already provided with test
wrappers. In this case, the SoC integrator cannot have the
same trust level in connecting the IP core to the SoC test
infrastructure. The same considerations hold at board level,
where ICs coming from different parties are mounted on the
same board. In general, when test data are shifted through the
test infrastructure of an untrusted IP core, there is no certainty
that it handles the data according to predefined rules. Two
possible threats have been envisaged in the literature so far:
(i) the untrusted IP core holds a copy of the test data are
shifted through; (ii) the untrusted IP core modifies the value
of the test data while they are shifting through.

As far as we know, there is no record in the literature of
malicious devices that have been actually found tampering
with a test infrastructure. However, some authors have
published several attack scenarios involving malicious
devices in test infrastructures. These threat models have been
largely used by researchers in order to motivate their
countermeasures. Therefore, we believe they deserve a
section in this survey.

1) Sniffing

Each time a user wants to start a communication with a
target device connected to the test infrastructure, he or she
loads a certain instruction in the IR of the target. The other
devices on the same network are programmed in BYPASS
mode. A malicious device can be designed in order to store a
copy of the data that are shifted through the bypass register.
The stolen data can be used by the malicious device in
different ways, according to the attack scenario. For instance,
test data can be properly filtered in order to store the sensitive
information into an internal memory, which is read by the
attacker in a second moment. In more complex scenarios, the
malicious device can be able to send the data to a remote
server. The attacker can process the collected data and
retrieve sensitive information about the SoC and the other IP
cores.

K. Rosenfeld and R. Karri presented in [21] a threat
model involving malicious devices connected to a board level
JTAG infrastructure. One of the presented attacks involves a
sniffing device recording test vectors sent to another device
connected to the same infrastructure. The malicious device

must be upstream the victim in order to make the attack
successful. They state that illegally recording test vectors can
leak confidential information on the design of the device
under test. In a more complex scenario, two colluding
devices, one upstream and one downstream the device under
test, can record respectively test vectors and responses. This
gives even more information about the internal logic structure
of the victim.

Many boards on the market embed both a microprocessor
and an FPGA, which is used to accelerate part of the
computation. The FPGA is configured by downloading a
bitstream through the JTAG interface. The content of the
configuration bitstream consists in confidential information
about the IP core implemented on the FPGA. Moreover,
sensitive information about the internal structure of the
FPGA is also contained inside the configuration bitstream. If
the TAP port of the JTAG is connected to the same network
where other devices are connected, the bitstream can be the
target of a sniffing attack. In other cases, the configuration
bitstream is stored into an external non-volatile memory and
it is loaded into the FPGA at the system power-on. In this
case, the content of this memory can be accessed through the
JTAG interface of the system. It is possible to find track of
the importance of this threat model in the technical
documentation of FPGA manufacturers. For instance, Altera
in [22] presents this kind of threat model, in order to motivate
the importance of the security features, which they implement
on their FPGA.

S. Kan et al. proposed in [23] a threat model involving
malicious instruments connected to the IJTAG
reconfigurable network. In this scenario, sniffing instruments
can read out confidential configuration data that shifted
through the infrastructure. More recently, R. Elnaggar et al.
in [24] mentioned the same threat model.

2) Tampering

Malicious devices connected to the infrastructure, can
modify the content of the shifted data when they are in
BYPASS mode. In the case of sniffing attacks, the behavior
of the malicious device is completely passive. The sniffing
action has no consequences on the behavior of the system. In
the case of tampering devices, the behavior of the malicious
device is the same as if it was set in BYPASS mode (i.e. it
shifts the values from the TDI pin to the TDO pin in one clock
cycle). However, the data that are shifted out the TDO pin are
different with respect to the data entering the TDI pin. This
kind of attack causes a different behavior of the system.

K. Rosenfeld and R. Karri described in [21] a possible
data corruption scenario. If the tampering device is upstream
the victim one, the data shifted into the victim can be
corrupted. If the tampering device is able to smartly elaborate
the modification of the data, it can lead the victim device to
behave out of the specifications. For example, the target
device can be a microprocessor whose firmware is loaded via
the test infrastructure. If the content of the firmware is
modified while loaded, it can be replaced with whatsoever
kind of code, which can cause a very different behaviour of
the system.

Another hypothetical scenario presented in [21] can lead
to a DoS attack, employing a malicious device. The test
infrastructure can be exploited to perform the on-line testing
of an IP core inside a SoC. In this scenario, test vectors are
stored into an internal memory. When the testing procedure
starts, the test vectors are shifted through the test
infrastructure and loaded into the device under test. When the
responses of the device under test are ready, they are shifted
out and compared with the golden ones. In an on-line testing
scenario, the comparison is performed on-chip. If the
tampering device is downstream the victim one, corrupted
responses can be delivered to the comparator. If the
tampering device is properly programmed, test responses
generated by the device under test can be modified into
always being equal to the golden ones. At this point, if the
device under test is faulty, the comparator is not able to detect
it. This can lead to dangerous situations where the system
goes into failure without the possibility for the system to
forecast it. However, the malicious device must know the test
responses and the exact moment when the test is run, in order
to successfully fake test responses.

The same principle can be exploited to threaten data
integrity in IJTAG RSNs. In [24], R. Elnaggar et al. presented
a threat model involving malicious instruments connected to
a reconfigurable network. Untrusted instruments are
supposed to be capable of changing the value of specific bits
that are shifted through their internal TDRs. This capability
can be exploited in order to maliciously change the
configuration of the RSN. A possible scenario is the
following: a user starts a configuration session in order to
include a set of instruments in the RSN. During this process,
the configuration bits are shifted through the malicious
instrument, which changes the value of specific bits. The
result is that an unwanted set of instruments is included in the
RSN, without the user even realizing it. Another possibility
for a malicious instrument is tampering with input data or
with responses involving the victim instrument.

III. TAXONOMY AND CLASSIFICATION OF COUNTERMEASURES

Many countermeasures have been proposed in the
literature, aimed to face one or more of the threats described
in Section II. In this Section, we propose a taxonomy of
countermeasures and we classify the state-of-the-art
proposals. A graphical support is presented in the taxonomy
tree in Fig. 3.

A. Restricted access to the test infrastructure

This category of countermeasures aims to avoid
unauthorized entities to access the test infrastructure. If the
user is not authorized, the TAP controller is disabled and the
JTAG instructions cannot be executed. This way, further
access to the internal IP cores or to the IJTAG reconfigurable
network is not possible. As a consequence, the exploitation
of the internal scan chains or of the debug infrastructure is
prevented. An authorized user is defined as someone that
access the test infrastructure without causing any damage to
all the parties involved in the development of the system.

Two categories of authentication techniques have been
identified. One is based on the insertion of a password inside

the TAP controller in order to lock or unlock it completely.
The other category regroups a series of techniques based on
challenge-response protocols implementing cryptographic
primitives.

1) Password-based authentication

Testing infrastructures protected with locking/unlocking
countermeasures have the TAP controller locked by default.
In the locked state, the execution of the JTAG instructions is
not permitted, except from instructions that do not give access
to sensitive data. In order to unlock the TAP controller, a
secret password must be shifted inside a dedicated register. If
the password is correct, the test infrastructure is unlocked and
the authenticated user can access all its functionality. We
recall two solutions based on this principle, one targeting the
JTAG TAP controller of a generic device, the other one
targeting the IEEE 1500 test wrapper of an IP core integrated
inside a SoC.

F. Novak and A. Biasizzo [25] presented a solution based
on the modification of the TAP controller. The modified TAP
controller is able to execute two extra instructions, LOCK and
UNLOCK. When the LOCK instruction is executed, the user
needs to insert a password inside a special register. As a
consequence, the TAP controller goes into a locked state.
While in the locked state, the TAP controller decodes all the
instructions into the BYPASS instruction. This condition does
not allow the access to the test infrastructure. When the
UNLOCK instruction is executed, the user is asked to insert
the correct password. If the inserted password matches the
one used to lock the system, the TAP controller is unlocked
and full access is granted to the user.

G. Chiu and J. Li [26] proposed a solution based on the
integration of an LFSR inside the IEEE 1500 test wrapper.
The polynomial implemented by the LFSR is secret. When

the test infrastructure is in idle state, the test wrapper is
locked. The user that wants to unlock the test wrapper must
send a seed value to the LFSR. A golden key is produced by
the LFSR and stored inside the wrapper. After that, the user
must shift into the test wrapper a value that matches the
golden key produced by the LFSR. If the value is correct, the
test wrapper is unlocked. The efficacy of this countermeasure
is based on the secrecy of the LFSR structure. Only the user
that knows the LFSR polynomial is able to send the right
combination seed/key.

All the countermeasures of this category base their
efficacy on the presence of a secret element that is shared
between the target device and the authorized user. The
efficacy can be though easily jeopardized if this secret is
leaked to unauthorized entities. It can be observed that in the
solution [25] the secret password can be dynamically changed
programming each device with a different password. In this
case, the leakage of one password undermines the security of
only one specific device and it does not affect the whole
production. The password can be changed every time the TAP
controller is unlocked and relocked. This gives the possibility
to the producer to easily change the protection password when
needed. In the solution [26] the secret element is the structure
of the LFSR. According to the design choices, each IP core
can be sold with a different LFSR structure, in order to limit
the damage in the case of leakage. However, if the LFSR
structure of a specific IP core is leaked, this cannot be changed
during the device lifetime.

2) Challenge-response protocol

In order to improve the security of the test interface, more
complex techniques have been proposed. These techniques
are based on challenge-response protocols. The device sends
a challenge to the user, which needs to prove his authenticity
sending the right response back. The different
countermeasures differ according to the kind of
cryptographic primitive implemented (e.g. symmetric or
asymmetric cryptography) and the kind of infrastructure
needed at the user’s side. In the simpler cases, the user
directly performs the challenge-response exchange with the
device and personally holds the secret key that is necessary
for the authentication. There are also more complex solutions
where the user needs to obtain credentials from a secure
server that holds the secrets required to compute the response.
Only if the user successfully authenticates himself with the
server, the latter computes the response and sends it to the
device. This way the user does not need to directly hold the
secrets and the risk of leakage is drastically decreased.

K. Park et al. [27] proposed an authentication protocol for
the activation of the TAP controller. The protocol relies on
symmetric cryptography and on the verification of the user’s
credentials based on a secure server. The authentication
procedure is based on two steps. In the first step the user is
authenticated by the server and obtains a credential that is
stored into the device. An authentication between the server
and the device is also performed. The device holds a secret
key and the server stores a database with the key associated
with each device ID. In the second step the user asks the

Fig. 3 Classification of the existing countermeasures against the
threats on standard test infrastructures

device for access. The access is granted only if both the user
and the device hold a valid credential.

CJ Clark [28] proposed an authentication protocol relying
on the computation of the hash function of a random number.
The challenge is a random number that is generated by the
device. The challenge is sent to the user that appends a secret
key to it. The resulting message is hashed with the SHA-256
algorithm. The result is sent back to the device, which verifies
its validity computing the hash function itself resorting to the
internally stored key. The authentication process is therefore
based on the knowledge by the user of the secret key stored
inside the device.

A. Das et al. [29] presented an authentication protocol
based on Physical Unclonable Functions (PUFs) to protect
the access to IEEE 1500 compliant test wrappers. A PUF
must be implemented inside the device. A PUF is an element
whose behavior depends on physical characteristics that are
unique for each single device. Input challenges can be sent to
the PUF, which gives unique responses as output. Moreover,
the user must have access to a database collecting all
Challenge-Response Pairs (CRPs) of the target PUF. The
user must send a request to the device when the access to the
target test wrapper is needed. At this point, the device sends
a random value Δ to the user. The user searches through the
CRP database for two responses having distance Δ. The two
corresponding challenges are sent to the device, which are
processed by the PUF. The device verifies if the produced
responses have distance Δ. In the affirmative case, the access
to the test wrapper is granted. The PUF needs to be queried
at production time in order to create the CRP database. For
this reason, a read-out system for the PUF response must be
implemented and permanently disabled after the creation of
the CRP database.

R. Buskey and B. Frosik [30] proposed an authentication
protocol based on asymmetric cryptography. In this solution,
the device holds the public key and a secure server holds the
private key. The device sends a challenge to the server
together with the device ID and the credentials of the user.
The server checks if the user has the authorization for the
requested operation. In the affirmative case, the server
computes a response using the private key associated with the
target device. This response is sent to the device. Finally, the
device evaluates the authenticity of the response, using its
public key. The challenge-response protocol is based on ECC
cryptography.

A. Das, J. Da Rolt et al. [31] proposed another
authentication protocol based on asymmetric cryptography.
The utilization of the Schnorr protocol is proposed, which
implements a signature algorithm based on ECC
cryptography, called ECDSA. Using this primitive, an
authentication scheme has been designed. The user and the
device hold both a public key and a private key. At first, the
user sends its public key and ID to the device. The device
sends its ID and a challenge to the server in order to verify if
the user’s public key is linked to a valid certificate. The server
retrieves the public key associated with the device ID from
its internal storage. After that, it creates a signature using the
ECDSA based on the public key itself, the ID and the

challenge. This signature is then sent to the device that checks
its validity. At this point, the device knows the user’s public
key. The device then starts the Schnorr authentication
procedure. In this exchange, the device, knowing the user’s
public key, is able to verify the validity of its private key.

The key management is simpler for authentication
protocols based on asymmetric cryptography. This is due to
the fact that the public key does not need to be kept secret. In
the solution [30], for instance, the device stores the public
key, and there is no need to keep it secret. The only secret key
is the private key, which is stored into a secure server. The
solutions based on symmetric cryptography have the
advantage of a low implementation cost. For example, the
solution [28] is based on hash functions. The implementation
cost of hash functions is decisively lower than asymmetric
cryptography, such as ECC.

B. Restricted access to the IJTAG network

SoC designers can decide to apply different policies to
access embedded instruments connected to the IJTAG
reconfigurable network. This network is accessible through
the TAP controller of the IC. When a specific JTAG
instruction is executed, the RSN is connected between the
TDI and TDO pins. However, the policy used to secure the
access to the whole JTAG infrastructure can be different with
respect to the one used for the IJTAG network. For instance,
the designer could be interested in protecting only the IJTAG
network, while there is no interest in limiting the access to
the TAP controller. In another possible scenario, the access
to the IJTAG network is granted to a subset of the entities that
have access to the TAP controller. In this case, the secret to
access the TAP controller is handed out to authorized users,
but only a subset of these users also owns the secret to access
the IJTAG network. For this reason, several authentication
mechanisms have been proposed in the literature to secure the
access to the IJTAG RSN.

When an attacker tries to illegally access the IJAG
network, he or she does not know its exact structure. At first,
the attacker has to figure out the length of the network in its
default configuration. After that, he or she tries to spot the
SIBs and to open them, in order to progressively reverse
engineer its structure.

Three categories of authentication techniques have been
identified. The first one is based on special SIBs that gate the
access to private regions of the network. The knowledge of a
secret password is necessary in order to open these SIBs. The
second category is based on challenge-response protocols
that enable the access to the network (or to smaller parts of
it) only to authorized users. The last category aims to make
more difficult for the attacker to figure out the structure of the
network, increasing the complexity of the algorithms used to
perform reverse engineering.

1) Locking SIB

It is possible to restrict the access to specific instruments
connected to the IJTAG network hiding them behind special
SIBs. These SIBs are locked by default and only authorized
users, who know a specific secret, can open them.

J. Dworak et al. [20] proposed a special SIB, called
Locking SIB (LSIB). The LSIB is a modified SIB with
additional logic that enables its opening only if a predefined
value is sent to the additional key ports. The key is stored into
add-on FFs connected to the RSN. These FFs are connected
to the key ports of the target LSIB. When the right value is
loaded into these FFs, the target LSIB is opened. LSIBs
protect segments of the network that can be accessed only by
authorized users that know the secret key. In [32], Gupta et
al. showed that the LSIB is extremely flexible. In fact, the
authors proposed a parallel IJTAG structure with increased
bandwidth and showed that using LSIBs instead of SIBs, the
same security level is granted.

H. Liu and V. Agrawal [33] proposed a different kind of
LSIB that relies on a Secure LFSR (SLFSR) integrated in the
scan network. The SLFSR is placed downstream the LSIB
that must be protected. When the LSIB is closed, the SLFSR
is activated and the data that are shifted through it are
scrambled. This way, the attacker is confused while trying to
reverse engineer the network. The parallel output of the
SLFSR is connected to the key pins of the LSIB. When the
right value is generated by the SLFSR, the LSIB is unlocked.
Once the LSIB is unlocked, the SLFSR switches to a simple
shift mode and data passing through the RSN are not
perturbed anymore. The security of this solution relies on
both the knowledge of the secret key to unlock the LSIB and
the knowledge of the structure of the SLFSR.

N. Satheesh et al. [34] presented a countermeasure in
which the LSIB is unlocked resorting to a PUF-based security
module. The security module receives a challenge from the
user. This challenge is sent to the PUF, which generates a
response. The response is compared with the output of an
LFSR. If they are equal, the LSIB is opened. The LFSR
produces the same output of the PUF when the user clocks it
for n cycles. The value n is a secret that the authorized user
must know. The secret n depends on the challenge given to
the circuit. Since the PUF has not connection with the
external pins of the IC, its CRPs cannot be collected at
manufacturing time. The value n associated with each
challenge is measured at post-manufacturing running the
LFSR until the LSIB is unlocked. This system provides weak
security, because its complexity needs to be kept low for the
feasibility of the key determination procedure.

The techniques based on LSIBs presented in [20] and [33]
rely on a secret password established at design time and
hardwired inside the logic of the LSIB. Moreover, the
solution [33] also relies on an LFSR whose polynomial is
established at design time. For this reason, any leak of this
information undermines the security of all the samples that
share the same design. The same can be said for the solution
[34], even if the behavior of the PUF is different for each
device. In any case, retrieving the secret for a single device is
not hard, because the complexity of the attack is equal to the
complexity of the key derivation procedure executed at
design time.

2) Challenge-response protocol

The IJTAG network can be also protected by an
authentication module that implements a challenge-response

protocol. According to the implementation, the
authentication procedure can protect the whole RSN, a part
of it, or a specific embedded instrument.

The solution proposed by CJ Clark [28] can be applied to
the IJTAG network, or to a specific instrument connected to
it. The authentication mechanism is the same explained in
Section II.A. The difference is that each instrument owns a
different key. However, the SHA-256 engine, used to verify
the validity of the response, can be shared by all the
instruments.

R. Baranowski et al. [35] presented an authentication
protocol that gives the access to a secure region of the IJTAG
network. In the first step of the protocol the device sends a
challenge to the user. The challenge is a random number
produced by a TRNG. The user concatenates the received
challenge with the keys of the instruments that must be
accessed. The obtained message is hashed and the result is
the response that is sent back to the device. The device checks
if the hash is valid; if this is the case, the user is authorized to
access the target instruments. When the authentication is
successful, the controller opens the part of the RSN
containing the secured instruments.

The techniques based on challenge-response protocols
require each instrument to have a secret key associated with
it. Therefore, each instrument must manage its access rights
independently. For example, in the solution [28], each
instrument has to manage the verification of the response sent
by the user. This means that each instrument has necessarily
an area overhead due to the verification logic. In the solution
[35], the authentication controller is centralized. Nonetheless,
it is necessary to guarantee a path in the RSN where only the
accessible devices are connected. This shows not negligible
routing issues.

3) Obfuscation of the RSN structure

Another way to secure the access to the IJTAG network
is to rise the complexity of the exploration algorithms. The
attacker who does not know the design of the circuit tries to
figure out the structure of the RSN in order to spot the
position of the SIBs and open them in order to access the
associated instruments. If the geometry of the RSN is
unpredictable, the time required by an attacker to reverse
engineer it increases considerably.

A couple of techniques to complicate the structure of the
RSN were presented in [20]. In order to make the attack more
difficult, trap bits are introduced. These special cells are
inserted in the RSN: if the wrong value is updated into them,
the output of the cell is irreversibly asserted until a global
reset is issued. Trap bits can be connected to a key input of
the LSIB, in order to do not allow the attacker to unlock them
even if the right key is set in the key bits. Another solution is
to use the trap bits to activate an alternative path, in order to
put the key bits of the LSIB out of the scan path. This way it
is impossible for the attacker to continue forcing the key
without a reset of the whole circuit. Trap bits can also be used
independently from the LSIBs. For instance, it is possible to
connect them to simple SIBs in order to force their closure.
Alternatively, they can be set in order to block the shifting of

the RSN. Another technique proposed in [20] is the
implementation of hierarchical locks. They are structures that
aim to further complicate the unlocking of the LSIBs. The
key bits are spread on multiple levels of the network. For this
reason, it is necessary to unlock specific LSIBs before being
able to access all the key bits that are needed to unlock the
target LSIB.

A. Zygmontowicz et al. proposed in [36] other techniques
to be combined with the LSIBs. The first one is the
introduction of special LSIBs, called honeypots (HLSIB).
HLSIBs provide access to a sub-network that does not
contain any instruments. Instead, a target LSIB is disabled as
far as the HLSIB stays open. This gives a fake feedback to
the attacker, who may think to have successfully opened the
LSIB. In this case, the attacker is motivated to explore the
sub-network opened by the HLSIB without knowing that it is
a dummy one (i.e. a honeypot). The second proposal is to
create a network where some LSIBs are open by default and
they need to be closed in order to be able to open other LSIBs.
This should confuse the attacker who does not expect to have
to reduce the length of the network in order to completely
open it. The third proposal is to introduce switching LSIBs
(SLSIB) that open different networks according to the value
that is updated into them. One of the hidden networks is a
dead end, the other gives access to the protected instrument.
If both the networks have the same length, the attacker don’t
realize that an LSIB was there, because the length of the
network does not change.

S. Kan et al. proposed in [23] a technique that gives the
possibility to program the geometry of the RSN at post-
manufacturing. The authors proposed the insertion of stub
chains. They are additional portions of the scan network that
can have different lengths. The configuration of the stub
chains is set selecting multiplexers that convey the scan flow
on stubs of different lengths. This configuration is decided at
manufacturing time using fuses or PUFs. This way, each
sample of the device has a different configuration of the stub
chains. Therefore, the attacker that is able to reverse engineer
the RSN of one device is not able to perform the same attack
on all the others.

In the solutions [20] and [36] the countermeasure is
coupled to the use of the LSIBs. The time required to open an
LSIB with a brute force attack is 2n, where n is the number of
bits of the secret key. These techniques aim at increasing the
attack time. In the solution [23], the structure of the RSN is
simply made unpredictable because it is different on each
sample of the target device.

C. Privilege-based access restriction

The countermeasures regrouped in this category are an
extension of the user authentication techniques. In this case,
the users do not have all the same kind of authentication, but
they get different privileges on the testing infrastructure
according to the trust level they have.

The authentication protocol presented in [28] allows the
system to provide different authentications according to the
group of JTAG instructions that can be executed. For
example, each set of private instructions can be associated

with a different key. This way, the users are authorized to use
a set of instructions by knowing the associated keys.

J. Backer et al. presented in [37] an authentication
mechanism for the debug infrastructure. The debug
infrastructure is accessed resorting to the JTAG port of the
IC. The aim is to filter out sensible assets that can be retrieved
from the system in debug mode. Each asset is tagged in order
to indicate its owner. The user must be authenticated to access
the debug infrastructure. At the end of the authentication
procedure, a privilege level is assigned to the user. Finally,
the authenticated user can access the debug infrastructure.
Each asset that is read from the system is checked runtime to
verify that the user’s privileges lay him amongst the owners
of that asset.

L. Pierce and S. Tragoudas presented in [38] a technique
based on a module that manages the authentication protocol
and gives the user a privilege level. Moreover, an access
monitor filters the update signal of the boundary scan cells.
A memory stores the access levels of each resource. When
the resource is accessed, its access level is compared with the
actual privilege level of the user. The update signal is
forwarded only if the access level of the resource is less or
equal than the privilege level of the user.

The solution proposed in [35] expects each instrument
connected to the IJTAG network to have a secret key, which
is used for the user’s authentication. At the end of the
authentication procedure, the user can access only the
instruments that he or she is authenticated for. In order to
guarantee this condition, a Secure Scan Chain (SSC) is
activated. The SSC has only the cleared instruments
connected to it. The other instruments are connected to
another portion of the RSN that is not physically reachable
by the SSC.

The solutions proposed in [28] and [38] target the JTAG
infrastructure. In [28], the privilege of the user determines the
kind of JTAG instructions that can be executed, regardless
the content of the accessed data. In [38] the user having
access to the TAP controller can execute any instruction.
However, the content of the accessed data is checked. For
example, two users having different privilege levels can both
perform debugging, but only one of them may be allowed to
access a range of memory locations containing confidential
data. The solution [37] is specifically related to the debug
infrastructure, which is accessed by the JTAG interface. In
the solution [35] the instruments in the IJTAG network must
be grouped in different chains, each one accessible only by
the users having some specific privileges. The user that wants
to obtain the privilege to access a specific SSC must know
the secret keys of all the instruments attached to it. In the case
in which an instrument belongs to more than one privilege
group, it must be necessarily reached by more than one SSC.
This may cause non-negligible routing issues.

D. Confidentiality of data

When sensible data are exchanged between the user and
the device, the possibility of sniffing from a third malicious
entity is possible. This risk is present both in a board
environment and inside a SoC, where the malicious entity is

an internal IP core. In addition, the IJTAG networks need to
be protected when confidential data risk to be shifted through
embedded instruments that are not trusted. Countermeasures
to provide data confidentiality have been largely developed
by researchers.

We have divided the countermeasures for confidentiality
in two categories. The first one is based on the encryption of
the data scanned through the testing infrastructure. This way
a sniffing device is not able to steal secret information
contained in the data. The second category is more oriented
to protect the IJTAG networks. The configuration of the RSN
is properly modified in order to isolate the untrusted
instruments when confidential data are shifted through it.

1) Data Encryption

When using this kind of technique, the user needs to
encrypt the test data using a secret key. The encrypted data
are sent to the target device, which decrypts them.
Afterwards, the responses produced by the device are
encrypted and sent to the user. Finally, the user decrypts the
responses using the same key used by the device. This way,
a malicious sniffing device placed either upstream or
downstream the target one, does not manage to steal
confidential information. The encryption can be performed
using different kinds of cipher. The most common are the
stream cipher and the block cipher.

a) Stream cipher

All the countermeasures that we are going to present are
based on the Trivium stream cipher. This stream cipher is
preferred because of its implementation cost. The stream
cipher takes as input a seed and generates a pseudo-random
bit sequence, called keystream. The keystream is then XORed
with the message to encrypt. The same is performed for the
decryption. If the same keystream is used, consecutive
encryption and decryption result in the starting plaintext. The
Trivium stream cipher uses a seed that is made by an 80-bit
Initialization Vector (IV), which is publicly known, and an
80-bit secret key.

K. Rosenfeld and R. Karri proposed in [21] an encryption
technique for the JTAG infrastructure. The IV is hardwired in
the device using fuses that are programmed at manufacturing
time. The secret key is derived from a challenge sent by the
user. The challenge is sent to the key input of the Trivium
cipher. The first 80 bits of the produced keystream are used
as response. This response is the secret key that is then used
to initialize again the Trivium for data encryption. The user
is able to successfully negotiate the encryption key only if the
CRPs of the device are known.

Encryption was also proposed in [23] to protect the
IJTAG network. The IV management is not specified. The
secret key is fixed and stored inside the device. The key can
be set using fuses or generated exploiting a PUF. In the
second case, the output of the PUF should be readable by the
external IC pins only at manufacturing time. After that, this
connection should be blown in order to avoid the attacker to
retrieve the secret key.

K. Rosenfeld and R. Karri proposed in [39] the encryption
of test vectors that are fed to an IEEE 1500 compliant IP core.

The encryption and decryption of the test vectors is
performed with the Trivium stream cipher. The secret key is
chosen at the beginning of the session by the user. The key is
shifted inside the target core using a dedicated channel that
does not go through the other cores.

These different encryption techniques differ only from
the key management point of view. In solution [21], the user
knowing the fixed IV of the target device can successfully
generate the secret key. In the solution [23] the key is
hardwired. In solution [39], the key is directly decided by the
user at each encryption session.

b) Block cipher

The encryption techniques based on the block cipher have
found their application limited to the encryption of the scan
chains so far. However, the same principle can be applied to
the whole testing infrastructure. The block cipher takes as
input a block of data of n bits. Each data block is processed
in order to obtain an n-bit block of ciphertext as output. The
block cipher uses a fixed key, which the authors supposed to
be stored inside a Secure Key Management Unit (SKMU)
present inside the device.

M. Da Silva et al. proposed in [40] the encryption of test
data using block ciphers. This proposal targets the protection
of the scan chains. The method can also be extended to a
wider test infrastructure. The method has been adapted to
different scenarios, such as the presence of multiple scan
chains. Different implementations of the block cipher have
been evaluated in [41] and [42]. Lightweight block ciphers
offer a good trade-off between security and implementation
costs.

The block cipher technique requires easier key
management with respect to the stream cipher. The same key
can be used many times in the case of the block cipher. On
the other hand, the stream cipher is better fitted to the serial
interface of the scan network. In fact, the block cipher
technique needs some extra hardware in order to adapt the
serial interface of the test infrastructure to the parallel
interface of the block cipher. Another drawback of the block
cipher technique is the low security level of the encryption
configuration. Using this configuration, the encryption is
weak. The attacker can know when two plaintext blocks are
identical simply observing the equality between ciphertext
blocks.

2) Secure configuration of the IJAG network

When dealing with IJTAG networks, it is possible to keep
confidential data away from untrusted instruments. This is
performed acting on the configuration of the network.

The countermeasure proposed in [35] allows the designer
to keep the untrusted instruments away from the secure scan
chains. If an instrument deals with confidential data, it can be
connected to a secure scan chain. This way, the user is sure
that sensitive data are not shifted through untrusted devices.
Only authenticated users have access to the secure scan
chains.

M. Kochte et al. proposed in [43] a design technique for
secure IJTAG networks. Secure access patterns can be

generated, such that untrusted instruments are not involved in
the network when confidential data are present in the
communication. The secure patterns configure the network in
order to keep untrusted instruments isolated. When this
configuration cannot be achieved due to the structure of the
network, a modification of the design is performed. A bypass
segment is added in order to redirect the data flow. When
confidential data are shifted through the network, the bypass
segments are activated and the data are not shifted through
the untrusted instruments.

The solution [35] is very efficient when the untrusted
instruments do not belong to the set of devices that need the
user authentication. In this case, they are not part of the secure
scan chain. Thus the confidential data, which are shifted
through the secure scan chain, are not exposed to them. The
solution [43] is more versatile, because any instrument
considered untrusted can be isolated from the confidential
data. The main limitation is that this technique is applied at
design time, without the possibility to update the security
policies at a later stage. Moreover, the insertion of bypass
segments does not avoid the possibility to electrically leak the
confidential data on the untrusted branch.

E. Device Authentication

The authentication of the device is fundamental in order
to fight the presence of untrusted devices. The user
communicating with a target device on a testing
infrastructure, needs to be sure that the target is an authentic
device, not a fake one. Malicious devices often come from a
counterfeiting process. Several countermeasures have been
proposed in the literature.

The countermeasure proposed in [21] also deals with the
authentication of the device. The user sends a challenge to the
device. The challenge is sent to the key port of the Trivium
stream cipher. The device computes the response using the
initialization phase of the stream cipher (i.e. generating the
first 80 bits of the keystream). The user knows the associated
response resorting to a database. This way the user is able to
check if the device has given the right response. The relation
between the challenge and the response depends on the IV
value of the stream cipher. This value is hardwired in the
device using fuses. This configuration is secret and it is set at
manufacturing time.

The solution proposed in [31], based on the Schnorr
protocol, can be also used for the authentication of the device.
This protocol has a bidirectional property that allows the
authentication of both the user and the device. The same
procedure described in Section III.A can be performed on the
other way around to allow the user to verify the authenticity
of the device.

J. Dworak et al. proposed in [44] a technique to provide
the authentication of a device mounted on a board. Each
device owns a unique and secret ID number. When the tester
wants to start a communication with a target device, the ID
number is requested and checked against the correct one. An
attacker, who wants to fake the target device, has to know the
right ID associated with it. Hence, the ID must be kept
confidential. For this reason, the ID number is encrypted in

the transmission, in order to avoid other entities sniffing the
JTAG network to steal its value. The encryption is performed
by the device. The ID is XORed with a secret key, which must
be as long as the ID. At the beginning of the authentication
session, the user sends the secret key. In order to protect the
key from sniffing, the sent key is obfuscated spreading it
inside a random stream of bits. The obfuscation rule is secret
and chosen at design time. A hardware module implemented
inside the device performs the de-obfuscation of the received
key.

The solution presented in [21] does not show high
implementation cost, because the Trivium cipher used for
computing the response is the same that is used for the
encryption of the test data. In [31], the ECC cryptography
needed for the implementation of the Schnorr protocol leads
to use a high amount of resources. The solution presented in
[44] proposes the obfuscation of the key, which does not
provide high security. Moreover, the constraint to implement
the obfuscation algorithm inside the device at design time
does not permit flexibility.

F. Data Integrity

Granting the integrity of the communication allows the
user and/or the device to be sure that the exchanged data have
not been modified during the transmission. One of the
techniques uses a Message Authentication Code (MAC)
appended at the end of each transmitted message. The MAC
is a unique signature that is a function of the content of the
message. The most used MAC algorithm in this field is the
Hash MAC (HMAC). The HMAC is based on hash functions,
such as SHA-256. The security of this primitive lies in the
shared secret key used by both the user and the device to
compute the HMAC algorithm.

The countermeasure proposed in [21] also provides the
integrity of the exchanged messages between user and device.
This is performed appending a MAC signature to the
message. The key used to compute the signature comes from
the internal Trivium stream cipher employed for the
encryption of the data. A challenge is sent by the user, which
is sent to the key port of the Trivium. The IV is hardwired
with fuses preset at post-production. The Trivium produces
the first 80 bits of the keystream and this value is used as
secret key for HMAC. The user knows the value of the key
because he or she owns the challenge/response pairs that
depends on the configuration of the fuses.

R. Elnaggar et al. proposed in [24] a countermeasure that
provides integrity in IJTAG reconfigurable networks.
Untrusted embedded instruments are supposed to tamper
with data, when shifted through their TDR. Therefore, the
authors of the present paper proposed to create an alternative
path that circumvents untrusted instruments. The alternative
path is inserted by the SoC integrator, which is supposed
being trusted. The implementation of this solution relies on
doubling each untrusted TDR. This way, when data are
shifted through the untrusted TDR, the alternative path is
activated and the trusted TDR is inserted in the RSN.

The usage of the MAC for integrity is based on a shared
secret between the user and the device. The MAC also

provides a weak authentication of the user. An unauthorized
user, who does not know the key to compute a valid MAC,
can only send invalid messages to the device.

G. On-line detection

All countermeasures presented so far aim to avoid attacks
on the target system. In this section, we present some
techniques aiming to detect the execution of the attacks while
they are running. This is achieved by on-chip monitoring of
the user behavior. When the behavior of the user is
considered illegitimate, the system has to be set in protection
mode.

Detection techniques can be divided in two categories.
The first one comprises all the detection methods based on
static rules. As soon as these rules are not respected, the user
is considered to be an attacker. The second category
comprises methods based on machine learning.

1) Static detection

Static detection techniques are based on rules that are set
at design time. Static detectors are synthetized during the
design flow of the device. These detectors usually take as
input the patterns sent by the user. If the patterns are not
considered compliant to a legitimate behavior, the user is
classified as an attacker trying to exploit the circuit.

R. Baranowski et al. proposed in [45] a detection
technique for filtering the access to the testing infrastructure.
This solution is based on sequence filters that are placed on
the TAP controller. They prevent the access to protected
instruments and restrain it for instruments that are not
completely protected. The filters take as input the sequence
of instructions and data at the TDI port to decide whether the
access pattern is allowed or forbidden. If the user tries to
access a forbidden instrument, the operation is not allowed
by the filter. The filters are deactivated by default to enable
post-manufacturing test. After that, they can be activated by
blowing fuses. Alternatively, an authentication mechanism
could be integrated in order to manage the activation of the
filters.

In [23] the authors proposed a detection technique for the
identification of attempts to reverse engineer the IJTAG
reconfigurable network. A checker counts the number of shift
cycles that are performed by the user while trying to
configure the RSN. A legitimate user knows the structure,
hence the length, of the RSN. Therefore, the number of shift
cycles necessary to configure the RSN are exactly known. On
the opposite, the attacker needs to explore the RSN
performing several attempts. The user trying to perform this
operation, must perform an inexact number of shift cycles.
When the checker detects this situation, the user is considered
as an attacker.

 X. Ren at al. presented in [46] a detection technique
based on representative sequences of instructions. These
sequences are chosen at design time as representative of
legitimate operations. If the behavior of the user goes
sideways for long time with respect to the representative
sequences, an attack is detected. In the implementation, a
counter is associated with each representative sequence.
When all counters stop incrementing, a non-representative

sequence is being performed by the user, thus the circuit is
subject to an attack.

The countermeasure proposed in [24] can be expanded in
order to also detect attempts of data tampering. Genuine
instrument responses (not shifted through the internal TDR
of the untrusted instruments) are compared with the
responses coming from the internal TDR of the instrument. If
a difference is detected a tainted bit is set in an extra RSN.
When the tester collects the test responses, the presence of a
taint bit indicates that an instrument has tried to tamper with
some data.

The rules that underlie the static detection techniques
must be set at design time. This implies that it is not possible
to change the access policies without a complete redesign of
the detectors. In the solution [45] the possibility of
performing post-manufacturing test using different policies is
contemplated. Nevertheless, once the filters are activated, it
is not possible to obtain the higher privileges anymore.

2) Machine learning-based detection

Detection techniques based on machine learning require
the implementation of on-chip binary classifiers. They are
special circuits that are able to evaluate the sequences of
instructions sent by the user and label them as normal or
abnormal behavior. The classifiers must be trained before
being operative. During the training phase, instruction
sequences belonging to both categories are labeled and sent
to the classifier. This way the classifier sets its internal
classification parameters. After that, the classifier is able to
successfully classify the sequences autonomously in the
operative phase. Input data are pre-processed in order to
obtain the so-called feature vectors. They are a different
representation of the data. The feature vectors are the input of
the classifier in both the training and operative phase.

In [46], the authors presented two detection techniques
based on machine learning. They proposed the deployment of
two different classifiers, the random forest and the Support
Vector Machine (SVM).

The random forest classifier is based on decision trees.
Each tree takes as input a feature vector (or a part of it) and
outputs a binary value that corresponds to its classification.
The result of each tree is then sent to a majority voter that
establishes the final result. The feature vectors given as input
to the random forest classifier are extracted by the executed
JTAG instructions. The features are derived from static
elements taken by the instruction, plus one transition bit. The
transition bit indicates if the transition from the previous
instruction to the present one is typical or not.

The SVM is a classifier that defines a decision boundary
during the training phase. The decision boundary separates
the two classes of samples such that the smallest distance
between the decision boundary and any of the samples is
maximized. The input of the SVM is a sequence of JTAG
instructions. The optimal length of the sequences, which is
four instructions, has been determined empirically by the
authors.

While the detector based on the random forest classifier
is able to provide a classification based on static features of
the instruction under execution, the SVM relies on sequences
of more instructions. This makes the classification based on
the SVM more efficient against attacks that are unknown at
the training phase. A common drawback of these two
solutions is that each time a new attack is conceived, could
be necessary to perform the whole training process again.
Moreover, machine-learning techniques show more
efficiency if coupled with other protections. This is due to the
fact that in some situations the detection can fail because the
attack is not recognized. Once the classifier has detected that
the user is performing an attack, the system must activate a
locking feature or going into a secure mode.

IV. DISCUSSION

In this section we discuss about three aspects that derive
from what has been presented so far. The first one is an
evaluation of how state-of-the-art countermeasures are able
to protect against the known threats. The second aspect is a
brief description of the vulnerabilities that have emerged so
far on some of the presented countermeasure. Finally, we are
going to discuss about the formalization of the security in the
test infrastructures, which we believe being an emerging
topic in this field.

A. What do we need to reach complete protection?

In Table 1, an analysis of the protection capability of each
countermeasure is reported. The content of the present table
is derived by what the authors of each countermeasure stated
with respect to its security capabilities. The first conclusion
that can be drawn is that there is no countermeasure able to
cover all the existent threats. On the other hand, it is possible
to conclude that integrating together no more than two
different countermeasures is enough to provide a complete
protection. For instance, providing both confidentiality and

integrity of the communication is enough to protect the test
infrastructure from all the know threats.

It is possible to state that when the TAP controller is
protected by an authentication mechanism, also the IJTAG
reconfigurable network is protected as a consequence. The
authentication mechanisms for the IJTAG networks are
strictly necessary only when the TAP controller cannot be
protected.

The encryption and the integrity of the communication
are the only countermeasures that are able to protect from
both internal and external threats at the same time. All the
other countermeasures have their efficacy limited to only one
of these categories.

Table 1 reports a binary criterion for defining the
protection of the countermeasures. As we discussed in
Section III, many of these countermeasures are declared to be
effective against some threats. Nevertheless, the specific
implementation leaves space to perform attacks on them,
making their security ineffective. In the present analysis we
provide an evaluation of the theoretical protection granted by
each countermeasure based on the kind of cryptographic
primitive that is used. As a matter of fact, the specific way in
which the cryptography is implemented leaves space to many
possible attacks. We will deal with this aspect in the next
subsection.

B. Attacks on the countermeasures

Many of the presented countermeasures can be threatened
by known attacks. For many countermeasures we have
largely discussed their weak points in Section III. However,
some attacks targeting the countermeasures have been
presented in the literature.

In [47] the authors showed that the LSIB key logic is
subject to simple power analysis. This is a side-channel attack

Table 1 Analysis of the protection granted from each countermeasure against the known threats

 External Threats, exploiting: Internal Threats

 Scan Chains Debug Interface IJTAG Sniffing Tampering

Access
Authentication

Password
based

Yes Yes Yes No No

Challenge-
Response
Protocol

Yes Yes Yes No No

IJTAG Access
Authentication

Locking SIB No No Yes No No

Challenge-
Response
Protocol

No No Yes No No

Obfuscation No No Yes No No

Privilege based authentication Yes Yes Yes No No

Data
Confidentiality

Encryption Yes Yes Yes Yes No

Secure
Configuration

No No No Yes Yes

Device Authentication No No No Yes Yes

Data Integrity Yes Yes Yes No Yes

On-line
Detection

Static Yes Yes Yes No Only when
JTAG

instructions are
tampered

Machine
Learning

Yes Yes Yes No

based on the observation of the power traces produced along
the computation time of the IC. They solve this problem
proposing to share some key bits in the RSN between
multiple LSIBs.

In [48] the authors showed a vulnerability present on all
the encryption methods based on stream cipher. The
weakness relies on the bad management of the secret key and
the IV of the stream cipher. The problem is that the chosen
management of these parameters allows a malicious user to
perform the two times pad attack. In this attack, the user can
lead the stream cipher to perform two consecutive
encryptions using the same secret key and IV values. This
leads to the easy retrieval of information on the plaintext,
performing a simple XOR operation between the two
resulting ciphertexts.

C. Towards a formalization of security

The reconfigurable scan networks of the IJTAG standard
are modeled resorting to a description language called
Instrument Connectivity Language (ICL). This
representation is well suited to the development of formal
models that facilitate the efficient generation of access
patterns. In [49] the authors introduced the CSU-accurate
RSN model (CAM) that permits the complete formal
verification of the RSN. In [50] the same authors enhanced
this approach resorting to a model checking technique to
verify some security properties of the RSN. More recently, in
[51] the authors proposed a new method that detects security
violations in the RSN and structurally transforms it into a
secure RSN. The security specification for applying this
model is based on the definition of a trust category for each
instrument, together with the definition of a sensitivity level
of the data that are shifted through the RSN.

The ongoing research on the security aspects of the RSNs
was one of the reasons that inspired the introduction of a suite
of IEEE 1687 benchmark networks [52]. It is composed of a
series of IJTAG networks, described in the ICL language, of
different complexities. These benchmarks have recently
found their first application as experimental platform for
RSN security purpose in [51].

V. EMERGING CHALLENGES

The classification proposed in this survey highlights some
trends in this research field. It is evident that the majority of
the proposed countermeasures consists in authentication
mechanisms for the test infrastructure. Security
countermeasures based on user authentication can protect the
system only against external threats. The classification of the
attacks shows that external attacks are the only ones that have
found large implementation in the reality. External attacks
can be easily performed, even by not specialized entities. For
this reason, the primary effort of the IC vendors is the
protection of the TAP controller, in order to try to avoid the
plethora of external threats.

As it was largely discussed, the authentication
mechanisms are based on symmetric or asymmetric
cryptography. Asymmetric cryptography offers superior
capabilities in terms of security and key management;
however, the implementation cost is very high. In general,

authentication mechanisms require the hardware
implementation of crypto-circuits. This overhead can be
tolerated in high-end products, where budget restrictions are
loosened. However, the need for security is starting to affect
market sectors where the aggressive cost reduction is not an
option. For instance, in the IoT domain, many vendors
participate in selling out very low-cost microcontroller-based
devices. Microcontrollers are programmed to perform very
simple operations (e.g. acquiring data from sensors,
performing a simple computation and sending the results over
the network). Since the final price of these devices must be
kept extremely low, the employment of SoCs, equipped with
crypto-hardware dedicated to the authentication of the test
infrastructure, is definitely out of the question. This leaves
the whole network, where unprotected devices are connected
to, vulnerable to attacks. For these reasons, we strongly
believe that there is a significant interest for researchers in
lightweight authentication mechanisms for testing
infrastructures.

As far as lightweight security is concerned, we believe
that this concept is not only limited to low hardware overhead
of the secure infrastructure. Another important aspect to face
is keeping the design effort low. The lack of secure standards
in the test infrastructures make the security design a
prerogative of big companies, which can allow themselves to
invest money in order to build a domestic know-how on
security matters. The availability of standardized guidelines
and implementations for secure test infrastructures can allow
smaller companies to provide protection to their devices,
keeping their investments contained.

Analyzing the state-of-the-art, it is also clear that a deeper
study on the feasibility of internal threats is required. Even
though real-world attacks of this kind have not been
witnessed yet, they must not be neglected. We believe that
internal threats must be addressed by researchers with the
same emphasis that is given to the research on hardware
Trojan horses. Due to the importance of these kind of threats,
it is also important to develop more extensive protection
mechanisms that also include confidentiality and integrity of
test data.

VI. CONCLUSION

The development of IEEE test standards gave a big
benefit to the development of complex SoCs. Users can rely
on the simple interface provided by the TAP port and easily
access the hundreds of resources and functionalities present
inside the system. Granting the access to the test
infrastructure while the system is in the field is necessary in
order to provide on-line testing and maintenance. On the
other hand, several attacks can be performed exploiting the
test infrastructure. In this paper, we have provided a proposal
of taxonomy for organizing the different kind of threats and
countermeasures that have been published so far. The
evaluation of the kind of protection provided by each
countermeasure shows that a major effort has been performed
by the scientific community on the development of complex
authentication mechanisms. While these techniques provide
a strong protection against unauthorized access to the
infrastructure, they lack of protection against internal threats.

Nevertheless, we have also shown how the countermeasures
based on encryption and integrity can provide together a more
complete protection. Hence, we believe that it could even be
possible to integrate encryption and integrity into the test
standards themselves, in order to provide a smooth design-
for-test flow, equipped with strong security primitives.

ACKNOWLEDGMENT

This work has been funded by the French Government
(BPI-OSEO) under grant FUI#20 TEEVA (Trusted
Execution EVAluation) and under the framework of the
PENTA HADES (“Hierarchy-Aware and secure embedded
test infrastructure for Dependability and performance
Enhancement of integrated Systems”) European project.

REFERENCES

[1] "IEEE Standard for Test Access Port and Boundary-Scan
Architecture," in IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-
2001), pp.1-444, May 2013.

[2] "IEEE Standard Testability Method for Embedded Core-based
Integrated Circuits," in IEEE Std 1500-2005, pp. 1-136, Aug. 2005.

[3] "IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device," in IEEE Std 1687-2014 , pp.1-283,
Dec. 2014.

[4] Bo Yang, Kaijie Wu and Ramesh Karri, "Scan based side channel
attack on dedicated hardware implementations of Data Encryption
Standard," 2004 International Conference on Test, 2004, pp. 339-344.

[5] Bo Yang, Kaijie Wu and Ramesh Karri. (2006). "Secure Scan: A
design-for-test architecture for crypto chips". IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 25(10),
2271–2276.

[6] Liu Y., Wu K. & Karri R. (2011). "Scan-based attacks on linear
feedback shift register based stream ciphers". ACM Transactions on
Design Automation of Electronic Systems, 16(2), 1–15.

[7] Da Rolt J., Das A., Di Natale G., Flottes M. L., Rouzeyre B. &
Verbauwhede I. (2012). "A scan-based attack on elliptic curve
cryptosystems in presence of industrial design-for-testability
structures". IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 43–48.

[8] J. Da Rolt, G. Di Natale, M. Flottes and B. Rouzeyre, "New security
threats against chips containing scan chain structures," 2011 IEEE
International Symposium on Hardware-Oriented Security and Trust,
San Diego CA, 2011, pp. 110-110.

[9] J. Da Rolt, G. Di Natale, M. Flottes and B. Rouzeyre, "Are advanced
DfT structures sufficient for preventing scan-attacks?" 2012 IEEE 30th
VLSI Test Symposium (VTS), Hyatt Maui, HI, 2012, pp. 246-251.

[10] A. Das, B. Ege, S. Ghosh, L. Batina and I. Verbauwhede, "Security
Analysis of Industrial Test Compression Schemes," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 12, pp. 1966-1977, Dec. 2013.

[11] S. S. Ali, S. M. Saeed, O. Sinanoglu and R. Karri, "Novel Test-Mode-
Only Scan Attack and Countermeasure for Compression-Based Scan
Architectures," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 5, pp. 808-821, May 2015.

[12] Leonid Azriel, Ran Ginosar, and Avi Mendelson, "Exploiting the Scan
Side Channel for Reverse Engineering of a VLSI Device," in CCIT
Report #897, May 2016.

[13] Willassen S. (2006). "Forensic Analysis of Mobile Phone Internal
Memory." IFIP — The International Federation for Information
Processing, vol. 194. Springer, Boston, MA.

[14] Ing. M. F. Breeuwsma, "Forensic imaging of embedded systems using
JTAG (boundary-scan)," Digital Investigation, Volume 3, Issue 1,
2006, Pages 32-42.

[15] Domke, Felix. "Blackbox JTAG Reverse Engineering." (2009).

[16] Skorobogatov S., Woods C. (2012) "Breakthrough Silicon Scanning
Discovers Backdoor in Military Chip." Cryptographic Hardware and

Embedded Systems – CHES 2012. Lecture Notes in Computer Science,
vol 7428. Springer, Berlin, Heidelberg.

[17] Senrio. “JTAG Explained (finally!): Why "IoT", Software Security
Engineers, and Manufacturers Should Care.”
https://blog.senr.io/blog/jtag-explained. 2016.

[18] F. Majeric, B. Gonzalvo and L. Bossuet, "JTAG Combined Attack -
Another Approach for Fault Injection," 2016 8th IFIP International
Conference on New Technologies, Mobility and Security (NTMS),
Larnaca, 2016, pp. 1-5.

[19] Y. Zorian, "A distributed BIST control scheme for complex VLSI
devices," Digest of Papers Eleventh Annual 1993 IEEE VLSI Test
Symposium, Atlantic City, NJ, USA, 1993, pp. 4-9.

[20] J. Dworak, A. Crouch, J. Potter, A. Zygmontowicz and M. Thornton,
"Don't forget to lock your SIB: hiding instruments using P1687," 2013
IEEE International Test Conference (ITC), Anaheim, CA, 2013, pp. 1-
10.

[21] K. Rosenfeld and R. Karri, "Attacks and Defenses for JTAG," in IEEE
Design & Test of Computers, vol. 27, no. 1, pp. 36-47, Jan.-Feb. 2010.

[22] Altera. (2009). "White Paper Protecting the FPGA Design From
Common Threats. Memory," (June), 1–5.

[23] S. Kan, J. Dworak and J. G. Dunham, "Echeloned IJTAG data
protection," 2016 IEEE Asian Hardware-Oriented Security and Trust
(AsianHOST), Yilan, 2016, pp. 1-6.

[24] R. Elnaggar, R. Karri and K. Chakrabarty, "Securing IJTAG against
data-integrity attacks," 2018 IEEE 36th VLSI Test Symposium (VTS),
San Francisco, CA, 2018, pp. 1-6.

[25] F. Novak and A. Biasizzo (2006). Security extension for IEEE Std
1149.1. Journal of Electronic Testing: Theory and Applications
(JETTA). 22(3). 301–303.

[26] G. M. Chiu and J. C. M. Li, "A Secure Test Wrapper Design Against
Internal and Boundary Scan Attacks for Embedded Cores," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,
no. 1, pp. 126-134, Jan. 2012.

[27] K. Park, S. G. Yoo, T. Kim and J. Kim (2010). "JTAG security system
based on credentials." Journal of Electronic Testing: Theory and
Applications (JETTA), 26(5), 549–557.

[28] C. Clark, "Anti-tamper JTAG TAP design enables DRM to JTAG
registers and P1687 on-chip instruments," 2010 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST),
Anaheim, CA, 2010, pp. 19-24.

[29] A. Das, Ü. Kocabaş, A. R. Sadeghi and I. Verbauwhede, "PUF-based
secure test wrapper design for cryptographic SoC testing," 2012
Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, 2012, pp. 866-869.

[30] R. F. Buskey and B. B. Frosik, "Protected JTAG," 2006 International
Conference on Parallel Processing Workshops (ICPPW'06),
Columbus, OH, 2006, pp. 8 pp.-414.

[31] A. Das, J. Da Rolt, S. Ghosh, S. Seys, S. Dupuis, G. Di Natale, et al.
(2013). "Secure JTAG implementation using Schnorr protocol."
Journal of Electronic Testing: Theory and Applications (JETTA),
29(2), 193–209.

[32] S. Gupta, A. Crouch, J. Dworak and D. Engels, "Increasing IJTAG
bandwidth and managing security through parallel locking-
SIBs," 2017 IEEE International Test Conference (ITC), Fort Worth,
TX, 2017, pp. 1-10.

[33] H. Liu and V. D. Agrawal, "Securing IEEE 1687-2014 Standard
Instrumentation Access by LFSR Key," 2015 IEEE 24th Asian Test
Symposium (ATS), Mumbai, 2015, pp. 91-96.

[34] S. K. K, N. Satheesh, A. Mahapatra, S. Sahoo and K. K. Mahapatra,
"Securing IEEE 1687 Standard On-chip Instrumentation Access Using
PUF," 2016 IEEE International Symposium on Nanoelectronic and
Information Systems (iNIS), Gwalior, 2016, pp. 56-61.

[35] R. Baranowski, M. A. Kochte and H. J. Wunderlich, "Fine-Grained
Access Management in Reconfigurable Scan Networks," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 6, pp. 937-946, June 2015.

[36] A. Zygmontowicz, J. Dworak, A. Crouch and J. Potter, "Making it
harder to unlock an LSIB: Honeytraps and misdirection in a P1687

https://blog.senr.io/blog/jtag-explained

network," 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, 2014, pp. 1-6.

[37] J. Backer, D. Hély and R. Karri, "Secure design-for-debug for Systems-
on-Chip," 2015 IEEE International Test Conference (ITC), Anaheim,
CA, 2015, pp. 1-8.

[38] L. Pierce and S. Tragoudas (2013). "Enhanced secure architecture for
joint action test group systems." IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 21(7), 1342–1345.

[39] K. Rosenfeld and R. Karri, "Security-aware SoC test access
mechanisms," 29th VLSI Test Symposium (VTS), Dana Point, CA,
2011, pp. 100-104.

[40] M. Da Silva, M. L. Flottes, G. Di Natale and B. Rouzeyre, "Preventing
Scan Attacks on Secure Circuits Through Scan Chain Encryption," in
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. doi: 10.1109/TCAD.2018.2818722.

[41] M. Da Silva, M. l. Flottes, G. Di Natale, B. Rouzeyre, P. Prinetto and
M. Restifo, "Scan chain encryption for the test, diagnosis and debug of
secure circuits," 2017 22nd IEEE European Test Symposium (ETS),
Limassol, 2017, pp. 1-6.

[42] M. Da Silva, M. L. Flottes, G. Di Natale and B. Rouzeyre,
"Experimentations on scan chain encryption with PRESENT," 2017
IEEE 2nd International Verification and Security Workshop (IVSW),
Thessaloniki, 2017, pp. 45-50.

[43] M. A. Kochte, R. Baranowski and H. J. Wunderlich, "Trustworthy
reconfigurable access to on-chip infrastructure," 2017 International
Test Conference in Asia (ITC-Asia), Taipei, Taiwan, 2017, pp. 119-
124.

[44] J. Dworak, Z. Conroy, A. Crouch and J. Potter, "Board security
enhancement using new locking SIB-based architectures," 2014
International Test Conference, Seattle, WA, 2014, pp. 1-10.

[45] R. Baranowski, M. Kochte, H. J. Wunderlich (2014). "Access Port
Protection for Reconfigurable Scan Networks." Journal of Electronic
Testing: Theory and Applications (JETTA), 30(6), 711–723.

[46] X. Ren, F. P. Torres, R. D. Blanton and V. G. Tavares, "IC Protection
Against JTAG-based Attacks," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. doi:
10.1109/TCAD.2018.2802866.

[47] S. Gupta, J. Dworak, D. Engels and A. Crouch, "Mitigating simple
power analysis attacks on LSIB key logic," 2017 IEEE North Atlantic
Test Workshop (NATW), Providence, RI, 2017, pp. 1-6.

[48] M. Da Silva, E. Valea, M. L. Flottes, S. Dupuis, G. Di Natale and B.
Rouzeyre, "A new secure stream cipher for scan chain encryption,"
2018 IEEE 3nd International Verification and Security Workshop
(IVSW), Platja d’Aro, 2018.

[49] R. Baranowski, M. A. Kochte, H. J. Wunderlich, "Reconfigurable Scan
Networks: Modeling Verification and Optimal Pattern Generation,"
ACM Trans. Design Automation of Electronic Systems (TODAES), vol.
20, no. 2, pp. 30-30, 2015.

[50] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker and H. J.
Wunderlich, "Formal verification of secure reconfigurable scan
network infrastructure," 2016 21th IEEE European Test Symposium
(ETS), Amsterdam, 2016, pp. 1-6.

[51] P. Raiola, M. Kochte, A. Atteya, L. Rodriguez Gomez, H. J.
Wunderlich, B. Becker and M. Sauer, "Detecting and Resolving
Security Violations in Reconfigurable Scan Networks," 2018 24th
IEEE International Symposium on On-Line Testing and Robust Design
(IOLTS), Platja d’Aro, 2018.

[52] A. Tšertov et al., "A suite of IEEE 1687 benchmark networks," 2016
IEEE International Test Conference (ITC), Fort Worth, TX, 2016, pp.
1-10.

Emanuele Valea received his Master’s degree in
Electronic Engineering from the Politecnico di Torino – Italy
– in 2016. He is currently a PhD student at LIRMM
laboratory in Montpellier, France. His research interests
include hardware security and trust, test of secure circuits and
VLSI testing.

Mathieu Da Silva received the PhD in Microelectronics
from the University of Montpellier – France – in 2018. He is
currently employed as IoT Research Engineer at ITK in
Montpellier. His technical interests include electronic testing,
security and IoT devices.

Giorgio Di Natale received the PhD in Computer
Engineering in 2003. He is CNRS Director of Research at
TIMA laboratory in Grenoble, France. His research interests
include hardware security and trust, fault tolerance and VLSI
testing. He is Golden Core member of the Computer Society
and Senior Member of the IEEE.

Marie-Lise Flottes is researcher at the French National
Scientific Research Center. She has been conducting her
research at LIRMM laboratory in Montpellier – France –
since 1990. Her research interests include Design-for-
Testability, Design-for hardware security and trust, with a
focus since early 2000 on testability and fault tolerance on
systems dedicated to secure applications.

Bruno Rouzeyre is Professor at the University of
Montpellier, France. He conducts his research with LIRMM
laboratory in Montpellier. His research interests include
several aspects of CAD for digital circuits and are particularly
oriented toward optimization, verification, test and test
synthesis of digital and secure circuits.

