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S U M M A R Y
Full-waveform inversion (FWI) is a waveform matching procedure, which can provide a
subsurface model with a wavelength-scale resolution. However, this high resolution makes
FWI prone to cycle skipping, which drives the inversion to a local minimum when the initial
model is not accurate enough. Other sources of non-linearities and ill-posedness are noise,
uneven illumination, approximate wave physics and parameter cross-talks. All these sources of
error require robust and versatile regularized optimization approaches to mitigate their imprint
on FWI while preserving its intrinsic resolution power. To achieve this goal, we implement
bound constraints and total-variation (TV) regularization in the so-called frequency-domain
wavefield reconstruction inversion (WRI) with the alternating direction method of multipliers
(ADMM). In the ADMM framework, WRI relies on an augmented Lagrangian function, a
combination of penalty and Lagrangian functions, to extend the FWI search space by relaxing
the wave-equation constraint during early iterations. Moreover, ADMM breaks down the joint
wavefield reconstruction plus parameter-estimation problem into a sequence of two linear
subproblems, whose solutions are coordinated to provide the solution of the global problem.
The decomposability of ADMM is further exploited to interface in a straightforward way bound
constraints and TV regularization with WRI via variable splitting and proximal operators. The
resilience of our regularized WRI formulation to cycle skipping and noise as well as its
resolution power are illustrated with two targets of the large-contrast BP salt model. Starting
from a 3Hz frequency and a crude initial model, the extended search space allows for the
reconstruction of the salt and subsalt structures with a high fidelity. The TV regularization
filters out the imprint of ambient noise and artefacts associated with multiscattering and Gibbs
effects, while fostering large-contrast reconstruction. Compared to other TV-regularized WRI
implementations, the proposed method is easy to tune due to its moderate sensitivity to penalty
parameters and does not require a prior guess of the TV-norm ball.

Key words: Inverse theory; Numerical modelling; Waveform inversion; Controlled source
seismology.

1 I N T RO D U C T I O N

During the last decade, full-waveform inversion (FWI) has been
used to estimate subsurface parameters (P and S wave speeds, den-
sity, attenuation, anisotropic parameters) with a resolution close
to the seismic wavelength by matching recorded and synthetic
seismograms (Tarantola 1984; Pratt et al. 1998; Virieux & Op-
erto 2009). From the numerical optimization viewpoint, the data-
fitting/parameter-estimation problem underlying FWI is a non-
linear partial differential equation (PDE)-constrained optimization
problem, where the equality constraint is the wave equation and

the optimization parameters are embedded in the coefficients of the
PDE. Due to the computational burden of multiple source modelling
and the size of the data and parameter spaces, this PDE-constrained
optimization problem is solved with iterative local (linearized) op-
timization techniques, namely gradient-based methods (Nocedal &
Wright 2006). Moreover, it is often solved with a reduced-space for-
mulation, which means that the full search space that encompasses
the unknown wavefield and the subsurface parameters is first pro-
jected onto the parameter space by computing exactly the incident
wavefields in the current subsurface model before updating this later
(Haber et al. 2000; Askan et al. 2007; Epanomeritakis et al. 2008).
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It is well acknowledged that the oscillating nature of seismic sig-
nals makes the reduced-space formulation highly non-linear as the
modelled seismograms computed in the current subsurface model
may be too far away from the recorded ones to satisfy the cycle-
skipping criterion, that is the modelled seismograms should predict
the recorded traveltimes with an error lower than half a period (e.g.
Virieux & Operto 2009).

Beyond cycle skipping, other sources of non-linearity and ill-
posedness such as noise, uneven subsurface illumination, approx-
imate wave physics and parameter cross-talks in multiparameter
reconstruction require the use of stabilizing or regularization tech-
niques that drive the inversion towards subsurface models that sat-
isfy some a priori assumptions. Among the penalization techniques,
Tikhonov regularization is probably the most popular one and seeks
to penalize the roughness of the subsurface model to force smooth
reconstruction (see Benning & Burger 2018, for a review). As the
subsurface may be better represented by piecewise smooth me-
dia with potentially sharp contrasts as in presence of salt, edge-
preserving techniques such as total-variation (TV) regularization
have been proposed to steer the inversion to the space of blocky
structured models. TV regularization has been applied on several
geophysical applications such as FWI (Askan et al. 2007; Anagaw
& Sacchi 2011; Guitton 2012; Maharramov & Biondi 2015; Peters
& Herrmann 2017; Brandsberg-Dahl et al. 2017; Esser et al. 2018),
seismic tomography (Gholami & Siahkoohi 2010; Loris & Verho-
even 2012), impedance inversion (Gholami 2015, 2016), amplitude
versus offset (AVO) inversion (Gholami et al. 2018) and seismic
deconvolution (Gholami & Sacchi 2013). For FWI applications,
TV regularization can be implemented as a penalty function (Askan
et al. 2007; Anagaw & Sacchi 2011; Brandsberg-Dahl et al. 2017)
or as a constraint (Peters & Herrmann 2017; Esser et al. 2018).
Choosing the most suitable implementation strategy may depend
on the prior information on the TV norm of the model and on the
optimization method that is used to minimize the objective function
(Alkhalifah et al. 2018). If the information about the value of TV
norm of the model is available, TV regularization can be imple-
mented as a constraint in the FWI objective function. Otherwise,
one may resort to a penalty method with the difficulty to design
an adaptive penalty parameter, which optimally balances over iter-
ations the relative weight of the data misfit and the TV of the model
in the objective.

In this context, the objective of this study is to present a novel
implementation of TV regularization and bound constraints in
frequency-domain FWI based upon wavefield-reconstruction inver-
sion (WRI). WRI has been originally proposed by van Leeuwen &
Herrmann (2013) to extend the search space and mitigate the risk of
cycle skipping accordingly. WRI recasts the PDE-constrained opti-
mization problem underlying FWI into an unconstrained quadratic
penalty method, where the penalty term is the �2 norm of the source
residuals (namely, the PDE-constraint violation) that is weighted
by a positive penalty parameter λ. The penalty method relaxes the
wave-equation constraint at the benefit of the data fitting during
early iterations, hence mitigating the risk of cycle skipping. To
make WRI computationally tractable, van Leeuwen & Herrmann
(2013) perform the wavefield reconstruction and the subsurface pa-
rameter estimation in an alternating way: first, keeping the current
subsurface model fixed, the wavefields, which best jointly fit the
observations and satisfy the wave equation in a least-squares sense,
are reconstructed for each source; Second, keeping the previously
reconstructed wavefields fixed, the subsurface parameters are es-
timated by least-squares minimization of the source residuals the
wave-equation relaxation generated. This cycle being iterated until

convergence. A nice property of the alternating-direction strategy is
to linearize the parameter-estimation subproblem around the recon-
structed wavefield because the wave-equation constraint is bilinear.
However, a significant pitfall of WRI resides in the tuning of the
penalty parameter λ. Ideally, increasing values should be used dur-
ing iterations to progressively enforce the wave-equation constraint
and, hence satisfy the first-order optimality conditions of the origi-
nal constrained problem with acceptable precision at the minimizer.
A significant issue is that this continuation approach is tedious to
implement and the Hessian is ill conditioned for large λ. Therefore,
van Leeuwen & Herrmann (2013) implement WRI with a small
preset value of λ, which leads to slow convergence and a subsurface
model of limited accuracy.

Later, van Leeuwen & Herrmann (2016) reformulated WRI as
a reduced penalty method implemented with a variable projection
approach: the closed-form expression of the extended-domain re-
constructed wavefield is injected as a function of the subsurface
parameters in the penalty function instead of using this wavefield
as a passive variable (i.e. independent to the subsurface parame-
ters). Unlike the alternating-direction approach, this variable pro-
jection leaves the parameter-estimation subproblem non-linear. van
Leeuwen & Herrmann (2016) assess their method with a Gauss–
Newton method (by opposition to the full Newton counterpart) to
mitigate the computational burden. Moreover, using a sparse ap-
proximation of the Gauss–Newton Hessian makes the descent di-
rection of the reduced approach identical to that of the alternating-
direction WRI of van Leeuwen & Herrmann (2013). Also, Aravkin
et al. (2017) analysed the convergence properties of the reduced
penalty method when the full Hessian is taken into account and
concluded that the variable projection penalty method is insensitive
to the penalty parameter. However, this convergence property still
needs to be verified against realistic numerical experiments.

To make the alternating-direction WRI of van Leeuwen & Her-
rmann (2013) (referred to as WRI in the following for sake of
brevity) more independent to the penalty parameter, Aghamiry et al.
(2019b, 2018b) have replaced the penalty method by an augmented
Lagrangian (AL) method (Nocedal & Wright 2006), leading to the
so-called iteratively-refined (IR)-WRI method. As in WRI, IR-WRI
performs the primal wavefield and parameter updates in an alternat-
ing mode, while the Lagrange multipliers (i.e. the dual variables)
are updated with a gradient ascent method. As above mentioned,
this alternating direction strategy makes the parameter-estimation
subproblem linear due to the bilinearity of the wave-equation con-
straint. It follows from this linearization that the alternating direction
strategy combined with the AL method is equivalent to an exten-
sion of the alternating direction method of multiplier (ADMM) to
biconvex problem (Boyd et al. 2010). Also, using a scaled form of
the AL, we recast IR-WRI as a penalty method where the right-
hand sides (the data and the sources) in the objective functions
are iteratively updated with the running sum of the data and source
residuals (the dual gradient steps). This reformulation of IR-WRI as
a penalty method with right-hand side updating clearly draws some
similarities and differences with WRI. The right-hand side updat-
ing makes IR-WRI largely insensitive to the penalty parameter for
a wide range of preset values (Aghamiry et al. 2019b, their figs 2
and 3). Using a moderate value of the penalty parameter allows
for significant wave-equation error and improved data fitting dur-
ing early iterations for search space extension, without preventing
the fulfillment of the wave-equation constraint with small error at
the minimizer (Nocedal & Wright 2006, chapter 17, theorem 17.6).
This adaptivity makes IR-WRI resilient to cycle skipping as WRI
with however a much faster convergence toward a more accurate
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minimizer. The reader is referred to Aghamiry et al. (2019b) for a
thorough comparative convergence and accuracy analysis of WRI
and IR-WRI based upon toy and complex large-contrast synthetic
examples.

The objective of this study is to show how to interface TV reg-
ularization and bound constraints (hereafter, we refer to it as BTV
regularization) with IR-WRI by taking advantage of the alternating-
direction strategy implemented in ADMM and the split-Bregman
variable splitting scheme developed by Goldstein & Osher (2009).
More precisely, we recast the BTV-regularized IR-WRI as a TV
minimization problem subject to constraints, that are the modelled
wavefield fit the observables and satisfy the wave equation with
prescribed errors, and the model parameters preset bounds. As in
WRI and IR-WRI, we solve the wavefield and subsurface param-
eter subproblems in an alternating mode. However, the later one
involves now a combination of �1 and �2 norms related to the TV
minimization and wave-equation error minimization, respectively,
with additional bound constraints. This is managed by the split-
Bregman variable splitting scheme, which decouples the �1 and �2

components and bound constraints of the functional through the in-
troduction of auxiliary variables and solves each related subproblem
in sequence (Goldstein & Osher 2009).

We first apply our method on a toy example corresponding to a
high-velocity box-shape anomaly embedded in a background model
where the velocity increases with depth. Then, we consider two
more realistic examples corresponding to the left and central parts
of the large-contrast 2004 BP salt model (Billette & Brandsberg-
Dahl 2004). We show that the BTV-regularized IR-WRI converges
to accurate minimizers when we start from a crude initial model
and a realistic 3 Hz frequency. We also compare the results of
WRI and IR-WRI without any priors, and we perform only with
bound constraints and with BTV regularization to highlight the
impact of each ingredient upon the quality of the results and the
computational burden. We also assess the resilience of the method
to noise by comparing the results that are obtained with noiseless
and noisy data.

This paper is organized as follows. In the first section, we review
the principles of WRI and IR-WRI. We first recast FWI as a feasi-
bility problem and review different approaches that are suitable to
solve PDE-constrained optimization problems such as penalty and
AL methods. Then, we review how we can easily interface some
stabilizing terms with the feasibility problem through variable split-
ting and ADMM. In the second part, we present the results of the
synthetic examples involving the inclusion model with two differ-
ent starting models and the two targets of the BP2004 model with
noiseless and noisy data. The results confirm that the combined
use of TV regularization and bound constraint in the ADMM-
based IR-WRI method defines a suitable framework to make
high-resolution FWI immune to cycle skipping in large-contrast
media.

2 M E T H O D

In the following, we first recast frequency-domain FWI as a bi-
convex feasibility problem, which can be formulated as a con-
strained optimization problem with identically zero objective func-
tion (Aghamiry et al. 2019b, their appendix A). Then, we review
the penalty and AL methods as optimization techniques to solve
this constrained optimization problem with an extended search-
space, leading to WRI and IR-WRI, respectively. Finally, we in-
terface bound constraints and the isotropic TV regularization with

IR-WRI by replacing the identically zero objective function by the
TV norm of the subsurface model, and we show how to solve ef-
ficiently the regularized IR-WRI with ADMM and split-Bregman
iterations.

2.1 WRI and IR-WRI principles

FWI can be formulated in the frequency domain as the following
biconvex feasibility problem (Aghamiry et al. 2019b):

Find m and u subject to F(m)u = s, (1)

with

s =
[

d
b

]
and F(m) =

[
P

A(m)

]
, (2)

where m ∈ R
N×1 denotes the vector of discrete model parameters

(here, the squared slowness), u ∈ C
N×1 the wavefield, b ∈ C

N×1 the
source term, d ∈ C

M×1 the recorded wavefield (data) at receiver
locations and P ∈ R

M×N is a linear observation operator that sam-
ples the modelled wavefield at the receiver positions. The matrix
A(m) ∈ C

N×N represents the discretized PDE Helmholtz operator
(Pratt et al. 1998; Plessix 2007; Chen et al. 2013) and is given by

A(m) = � + ω2C(m)diag(m)B, (3)

where ω is the angular frequency and � is the discretized Laplace
operator. The operator C encloses boundary conditions, which can
be a function of m (e.g. Robin paraxial conditions, Engquist &
Majda 1977) or independent from m (e.g. sponge-like absorbing
boundary conditions such as perfectly matched layers, Bérenger
1994). Also, the linear operator B can be used to spread the ‘mass’
term ω2C(m)diag(m) over all the coefficients of the stencil to im-
prove its accuracy following an antilumped mass strategy (Marfurt
1984; Jo et al. 1996; Hustedt et al. 2004). In the feasibility problem
(1), we just want to find m and u that satisfy the constraint (we
assume that the feasible set is non-empty, namely the constraint
is consistent). The feasibility problem can be formulated as the
following constrained optimization problem with identically zero
objective function (Boyd & Vandenberghe 2004, p. 128)

min
u,m

0 subject to F(m)u = s. (4)

2.1.1 WRI penalty method

WRI implements this constrained optimization problem with a
penalty method.

min
u,m

0 + ‖F(m)u − s‖2
�, (5)

where ‖x‖2
Q := xT Qx for a vector x and a square matrix Q with su-

perscript T denoting matrix transposition. In eq. (5), � is a diagonal
matrix which includes the penalty parameters λ0, λ1 > 0 on its main
diagonal,

� =

⎡
⎢⎢⎢⎢⎢⎣

λ0 0

...
0 λ0

0 M

0
λ1 0

...
0 λ1

N

⎤
⎥⎥⎥⎥⎥⎦ . (6)

The objective function in eq. (5) is a compact written version of
the penalty function of van Leeuwen & Herrmann (2013)

min
u,m

‖Pu − d‖2
2 + λ‖A(m)u − b‖2

2, (7)
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where λ = λ1/λ0. They solve this biconvex minimization problem
with an alternating-direction approach to breakdown the full prob-
lem into a sequence of two linear subproblems: A cycle of the
algorithm first reconstructs, for each source, the wavefield u that
best fits the data and satisfies the wave equation in a least-squares
sense for the current subsurface model. Then, the subsurface model
is updated by minimization of the source residuals with a Gauss–
Newton algorithm keeping the reconstructed wavefields fixed. A
difficulty with the penalty method given by eq. (7) resides in the
tuning of the penalty parameter λ during iterations. An increasing
values of λ should be used during iterations, known as the penalty
algorithm, to progressively enforce the wave-equation constraint in
iterations and hence satisfy the Karush–Kuhn–Tucker optimality
conditions (Nocedal & Wright 2006) associated with the original
constrained problem with acceptable precision. The main problem
is that this continuation strategy is tedious to implement and a large
λ makes the problem severely ill-conditioned.

2.1.2 IR-WRI augmented Lagrangian method

To bypass this difficulty, IR-WRI implements the original con-
strained problem, eq. (4), with the AL method (Hestenes 1969;
Nocedal & Wright 2006; Boyd et al. 2010; Bertsekas 2016).

min
u,m

max
v

0 + vT [F(m)u − s] + 1

2
‖F(m)u − s‖2

�, (8)

where � is defined as in eq. (6) and v ∈ C
(M+N )×1 is the Lagrangian

multiplier (known as dual variable). Comparing the penalty func-
tion, eq. (5), and the AL function, eq. (8), clearly shows that the
AL combines a penalty method with a Lagrangian method. The
first advantage of the AL method relative to the penalty method is
to prevent ill-conditioning by introducing explicit estimate of the
Lagrange multiplier in the optimization (Nocedal & Wright 2006,
chap. 17). Moreover, the Lagrange multiplier gives the AL method
one more way of improving the accuracy of the minimizer in addi-
tion to the penalty parameter, hence allows fixed value to be used
for this latter (Nocedal & Wright 2006, theorem 17.6). Applying
the alternating direction strategy of WRI on the AL method leads
to an adaptation of the ADMM to biconvex problem (Boyd et al.
2010, section 9.2). One ADMM iteration first minimizes the AL
function with respect to the primal variables u and m via a single
Gauss–Seidel-like iteration (namely, fix one variable and solve for
the other) and then update the Lagrangian multiplier via a gradient
ascent method.

In the following section, we review each step of the ADMM-
based IR-WRI algorithm when equipped with TV regularization
and bound constraints. The reader is also referred to Aghamiry et al.
(2019b) for the detailed IR-WRI algorithm when no regularization
is used.

2.2 BTV-regularized ADMM-based IR-WRI

To implement TV regularization and bound constraints in IR-WRI,
we first recast FWI as a constrained TV minimization problem given
by

min
u,m∈C

‖m‖TV subject to F(m)u = s, (9)

where F and s are defined as in eq. (2), ‖m‖TV =∑√
|∇1m|2 + |∇2m|2 is the blockiness-promoting isotropic TV

norm (Rudin et al. 1992) and ∇1 and ∇2 are first-order finite-
difference operators in the horizontal and vertical directions, re-
spectively. With notation abuse, the absolute sign, square power
and the square root operations are done componentwise, and the
sum runs over all elements (the domain of parameters). Also
C = {x ∈ R

N×1 | ml ≤ x ≤ mu} is the set of all feasible models
bounded by the lower bound ml and the upper bound mu.

Compared to the FWI definition given in the previous section,
eq. (4), we have replaced the identically zero objective function
by the TV norm of the model and restricted the space of feasible
models to C. Accordingly, the AL function for the problem defined
by eq. (9) is

LA(m, u, v) = ‖m‖TV + vT [F(m)u − s] + 1

2
‖F(m)u − s‖2

�, (10)

where the same notations as those of eq. (8) are used. Eq. (10) can
also be written in a more compact form as

LA(m, u, s̄) = ‖m‖TV + 1

2
‖F(m)u − s − s̄‖2

� − 1

2
‖s̄‖2

�, (11)

where s̄ = −�−1v is the scaled dual variable and eq. (11) is the
scaled form of the AL (Boyd et al. 2010, p. 15 and appendix A).
The scaled form recasts the AL function as a quadratic penalty
function where the right-hand sides are updated with the scaled
dual variables. This highlights similarities and differences between
WRI and IR-WRI, since this right-hand side updating is lacking in
the former.

The method of multipliers seeks to find the saddle point of the
scaled AL (11) through a primal descent–dual ascent updating re-
sulting in the following iteration:

mk+1, uk+1 = arg min
u,m∈C

‖m‖TV + 1

2
‖F(m)u − s − s̄k‖2

�, (12a)

s̄k+1 = s̄k + s − F(mk+1)uk+1, (12b)

for k = 0, 1, . . . beginning with a prior estimate s̄0 = 0. The itera-
tion (12) can be viewed as follows: we begin with a prior estimate of
the dual s̄0, and minimize the objective function with respect to the
primal variables m and u, eq. (12a). Subsequently, we maximize the
objective function with respect to the dual variable s̄ with a gradient
ascent method when m and u are kept fixed, eq. (12b). The steepest-
ascent step (eq. 12b) shows that the scaled dual variable s̄ is updated
with the residual constraint violation of the current iteration. Re-
membering that the constraint combines the observation equation
Pu = d and the wave equation A(m)u = b, eq. (2), the scaled
dual variable s̄ updates the right-hand sides of the quadratic penalty
function, eq. (12a), with the running sum of the data and source
residuals in iterations. This right-hand side updating describes the
well-known iterative solution refinement procedure for ill-posed lin-
ear inverse problems as reviewed by Aghamiry et al. (2019b, their
appendix B). This process is iterated until convergence, i.e. when
F(mk + 1)uk + 1 = s. In the following, we remove the bar of s̄k for the
sake of simplicity.

Solving the subproblem (12a) jointly for the primal variables (m,
u) is computationally too intensive. A splitting method is useful
here to breakdown the joint optimization over m and u into two
subproblems (the readers can refer to Glowinski et al. 2017 for
an overview of splitting methods). The ADMM (Boyd et al. 2010)
provides a simple framework to achieve this goal via a single Gauss–
Seidel-like iteration leading to the following iteration:

uk+1 = arg min
u

1

2
‖F(mk)u − s − sk‖2

�, (13a)
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mk+1 = arg min
m∈C

‖m‖TV + 1

2
‖F(m)uk+1 − s − sk‖2

�, (13b)

sk+1 = sk + s − F(mk+1)uk+1. (13c)

The ADMM iteration has decomposed the full problem into two
subproblems associated with primal variables u and m by passing
the primal update of one subproblem as a passive variable for the
next subproblem. We show below that, taking advantage of the
biconvexity of the problem, this alternating-direction approach has
linearized the primal subproblem for m around the reconstructed
wavefield u. The fact that the primal update of one subproblem
is passed to the next subproblem implies obviously that the two
subproblems are solved in sequence rather than in parallel as in
ADMM for linear separable problems.

A second modification related to ADMM resides in the updating
of the dual variable. In ADMM, the dual variables are updated only
once per iteration after the primal-variable updates, eq. (13c). A
variant of ADMM, referred to as the Peaceman–Rachford splitting
method (PRSM, Peaceman & Rachford 1955), consists of updating
the Lagrange multipliers several times, once after the update of each
primal variable (see He et al. 2014, compare eqs 1.3 and 1.4). One
issue with PRSM relative to ADMM is that PRSM requires more
restrictive assumptions to ensure its convergence, while it is always
faster than ADMM whenever it is convergent (He et al. 2014) . This
issue prompted He et al. (2014) to implement a relaxation factor
(or, step length) α ∈ (0, 1) to guarantee the strict contraction of the
PRSM iterative sequence. Applying the strictly contractive PRSM
algorithm to our minimization problem gives

uk+1 = arg min
u

1

2
‖F(mk)u − s − sk‖2

�, (14a)

sk+ 1
2 = sk + α[s − F(mk)uk+1], (14b)

mk+1 = arg min
m∈C

‖m‖TV + 1

2
‖F(m)uk+1 − s − sk+ 1

2 ‖2
�, (14c)

sk+1 = sk+ 1
2 + α[s − F(mk+1)uk+1]. (14d)

The reader is referred to Aghamiry et al. (2019b, their fig. 4)
for a comparative numerical analysis of the convergence speed of
ADMM and PRSM in IR-WRI. In our numerical tests, we found that
α = 0.5 can serve as a suitable value. We now provide the closed-
form solution of the two primal subproblems associated with u and
m.

2.2.1 Solving for u

The primal subproblem associated with u (eq. 14a) is a linear opti-
mization problem whose solution satisfies in a least-squares sense
the following system of linear eqs:[

λ
1
2
0 P

λ
1
2
1 A(mk)

]
uk+1 =

[
λ

1
2
0 [d + dk]

λ
1
2
1 [b + bk]

]
, (15)

where dk and bk are the components of the dual variable sk associated
with the observation- and wave-equation constraints, and are formed
by the running sum of the data and source residuals in iteration (see

eq. 12). The closed-form expression of the reconstructed wavefield
is given by

uk+1 = [
λ0PT P + λ1A(mk)T A(mk)

]−1[
λ0PT [d + dk] (16)

+λ1A(mk)T [b + bk]
]
.

The reconstructed wavefield can be computed numerically with
linear algebra methods (direct or iterative methods) suitable for
sparse matrices as reviewed by van Leeuwen & Herrmann (2016).

2.2.2 Solving for m

In order to solve the bound-constrained TV-regularized non-linear
problem described by eq. (14c), we first tackle the non-linearity
issue by considering the special structure of the Helmholtz operator
A given in eq. . Using the following approximation

A(m)uk+1 = �uk+1 + ω2C(m)diag(m)Buk+1

≈ �uk+1 + ω2C(mk)diag(Buk+1)︸ ︷︷ ︸
L(uk+1)

m, (17)

we linearize the operator A with respect to m by building the matrix
C from mk to manage potential non-linear boundary conditions.
Note that this linearization step is not necessary when the PML
absorbing conditions are used. We also exploit the bilinearity of the
wave equation to permute Bu and m in the operator L(uk + 1). With
these manipulations, the subproblem associated with m is recast as

mk+1 = arg min
m∈C

‖m‖TV + λ1

2
‖L(uk+1)m − yk‖2

2, (18)

where

yk = b + bk − �uk+1. (19)

We solve the constrained optimization problem described by eq.
(18) with the split-Bregman method (Goldstein & Osher 2009) to
decouple the TV minimization subproblem (first term in eq. 18)
from the �2 subproblem (second term in eq. 18) and force the box
constraint. We introduce the auxiliary variables p0, p1 and p2 to
perform this splitting, in which these variables being related to m
by means of a simple equality constraint. The auxiliary variable
p0 is used to enforce the box constraint, while p1 and p2 are the
variables of the TV minimization problem. Let us define (p1 p2)

as a two-column matrix, ‖(p1 p2)‖ =
√

p2
1 + p2

2 be a vector which

contains the �2 norm of each row of (p1 p2), and
∑‖(p1 p2)‖ be the

mixed �2, 1 norm (�1 norm of ‖(p1 p2)‖), which promotes sparsity.
Then by defining the objective function J as

J (m, p) =
∑

‖(p1 p2)‖ + λ1

2
‖L(uk+1)m − yk‖2

2, (20)

the unconstrained optimization problem described by eq. (18) can
be written in a split and constrained form as

arg min
m,p,p0∈C

J (m, p) subject to p = ∇m, (21)

where

∇ =
⎡
⎣ I

∇1

∇2

⎤
⎦ ∈ R

3N×N and p =
⎡
⎣p0

p1

p2

⎤
⎦ ∈ R

3N×1,

with I denoting the identity matrix.
The scaled AL function (Appendix A) for the problem defined

by eq. (21) is

LA(m, p, q̄) = J (m, p) + 1

2
‖∇m − p − q̄k‖2

� − 1

2
‖q̄k‖2

�, (22)
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Figure 1. The true velocity of the box-shaped anomaly example. The yellow
stars show the source positions.

where q̄ is the scaled Lagrangian multiplier and

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0 0

...
0 γ0

0 0 N

0
γ1 0

...
0 γ1

0 N ,

0 0
γ2 0

...
0 γ2

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

with the penalty parameters γ 0, γ 1, γ 2 > 0. Again, applying the
method of multipliers to find the saddle point of the problem (22)
gives

mk+1, pk+1 = arg min
m,p,p0∈C

J (m, p) + 1

2
‖∇m − p − qk‖2

�, (24a)

qk+1 = qk + pk+1 − ∇mk+1, (24b)

where the bar of q̄k is removed for simplicity.
Substituting the explicit expression of J, eq. (20), into eq. (24a)

leads to the following PRSM iteration:

mk+1 = arg min
m

λ1

2
‖L(uk+1)m − yk‖2

2 + 1

2
‖∇m − pk − qk‖2

�, (25a)

qk+ 1
2 = qk + 1

2
[pk − ∇mk+1], (25b)

pk+1 = arg min
p0∈C,(p1,p2)

∑
‖(p1 p2)‖ + 1

2
‖∇mk+1 − p − qk+ 1

2 ‖2
�, (25c)

qk+1 = qk+ 1
2 + 1

2
[pk+1 − ∇mk+1]. (25d)

Note that the weight 1
2 in eqs (25b) and (25d) has a similar

role as α in eqs (14b) and (14d). Now we come up with a linear
inverse subproblem for m, eq. (25a). Accordingly, the update mk + 1

is obtained by solving the following system of linear equations in a
least-squares sense:[
λ

1
2
1 L(uk+1)

�
1
2 ∇

]
mk+1 =

[
λ

1
2
1 [b + bk − �uk+1]

�
1
2 [pk + qk]

]
, (26)

where we have substituted yk by its explicit expression, eq. (19). In
eq. (26), the first line describes the information carried out by the re-
constructed wavefield to update m via the wave-equation rewriting,
while the second line describes the action of the TV regularization
and bound constraints on m via its linear relation with the auxiliary
variable p.

The closed-form expression of m is given by

mk+1 = [
λ1L(uk+1)T L(uk+1) + ∇T �∇]−1

(27)[
λ1L(uk+1)T [b + bk − �uk+1] + ∇T �[pk + qk]

]
.

As for the linear system (16), m can be computed numerically with
any suitable sparse linear algebra method.

The subproblem for p (eq. 25c) is straightforward to solve. The
objective function is separable with respect to the variable p0 and
the variables p1 and p2 (i.e. the optimization can be performed for p0

and p1, p2 separately). The variable p0 is solution of the following
linear inverse problem

pk+1
0 = arg min

p0∈C

γ0

2
‖mk+1 − p0 − qk

0‖2
2. (28)

The ith element of the solution, pk+1
0 (i), is the closest element of

mk+1(i) − qk
0(i) to the desired set [ml(i), mu(i)]. Therefore,

pk+1
0 = projC(mk+1 − qk

0), (29)

where the projection operator is projC(•) = min(max(•, ml ), mu).
The variables p1 and p2 are updated via the following proximity

operator:

pk+1
1 , pk+1

2 = arg min
(p1 p2)

∑
‖(p1 p2)‖ + γ

2
‖(p1 p2) − (z1 z2)‖2

2, (30)

where γ = γ 1 = γ 2, and zi = ∇i mk+1 − qk
i for i = 1, 2. Proximity

operators are generalization of projection operators (Combettes &
Pesquet 2011). Eq. (30) describes a separable optimization problem
with respect to p1 and p2. Furthermore, p1 and p2 have closed-form
expressions (Goldstein & Osher 2009)

pk+1
i = proxγ (zi ) for i = 1 and 2, (31)

where

proxγ (zi ) = zi

‖(z1 z2)‖ max(‖(z1 z2)‖ − γ, 0). (32)

It can be seen that, for a single vector, the proximity operator defined
in eq. (32) reduces to soft thresholding.

Considering all the above-mentioned processes, a pseudo-code
for the BTV-regularized IR-WRI algorithm is summarized in Al-
gorithm 1. Note that the lines 6–11 of the algorithm correspond
to one ADMM iteration of the model-parameter updating. These
operations could be iterated in an inner loop to update the BTV-
regularized model several times after the wavefield reconstruction
at each outer iteration. However, we observed numerically that only
a single iteration of the inner loop guarantees the most efficient con-
vergence of the full algorithm. This property has been noticed by
Goldstein & Osher (2009) and is discussed more extensively in the
framework of IR-WRI by Aghamiry et al. (2019b). The inefficiency
of the inner iterations can be understood by the fact that the original
non-linear problem is solved with an alternating-direction strategy
(managed by the outer loop). This implies that each subproblem is
solved from potentially inaccurate passive variables, this inaccuracy
preventing an efficient minimization of the objective during inner
iterations. Furthermore, in order to drive the algorithm, we assumed
that the constraint is feasible. However, it has been shown that in the
case of infeasible linear constraints the ADMM iteration can still
produce approximate solutions that are stable (Frick et al. 2011;
Jiao et al. 2016).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/218/2/855/5475650 by guest on 31 August 2021



BTV-regularized IR-WRI 861

Figure 2. A box-shaped anomaly example with the true background velocity gradient as the initial model. Velocity models reconstructed by (a) WRI. (b)
IR-WRI. (c and d) Bound-constrained WRI (c) and IR-WRI (d). (e and f) BTV-regularized WRI (e) and IR-WRI (f). Horizontal and vertical profiles across the
centre of the inclusion from the true (black), initial (dash blue) and reconstructed (red) models are shown below and on the left-hand side of the models.

3 N U M E R I C A L E X A M P L E S

3.1 Experimental setup and parameter tuning

We assess the performance of our BTV-regularized IR-WRI against
2-D monoparameter synthetic examples. We start with a toy ex-
ample built with a high-velocity inclusion model that is embedded

in a background medium where velocity linearly increases with
depth. To tackle more realistic applications, we proceed with two
scaled targets of the challenging 2004 BP salt model (Billette &
Brandsberg-Dahl 2004). With the BP salt case study, we seek to
illustrate the potential of IR-WRI equipped with our BTV regu-
larization to image salt bodies and subsalt structures starting from
crude initial models and realistic frequencies.
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Figure 3. The box-shaped anomaly example. Same as Fig. 2 for a homogeneous initial velocity model (V = 2.2 km s−1).

For all the numerical examples, forward modelling is performed
with a nine-point stencil implemented with antilumped mass and
PML absorbing boundary conditions (Chen et al. 2013). In this set-
ting, the diagonal matrix C contains the damping PML coefficients
and does not depend on m. With this setting, eq. (17) does not
require any approximation for linearization.

We will compare the results of WRI and IR-WRI to highlight
the improved convergence history of IR-WRI resulting from the

iterative updating of the right-hand sides in the penalty function
associated with the scaled-form AL (eqs 11–14). We assume that
our IR-WRI algorithm, when this right-hand side updating is not
activated, is representative of the WRI penalty method (van Leeuwen
& Herrmann 2013). For a fair comparison, we will use the same
experimental setup (penalty parameters and stopping criterion of
iteration) for the two methods. We also compare the WRI and IR-
WRI results when they are obtained without any priors (γ 0 = γ =
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Figure 4. The box-shaped anomaly example. Convergence history in the (‖Puk − d‖2 − ‖A(mk)uk − b‖2) plane of WRI and IR-WRI without priors, with
bound constraints and with BTV regularizations. (a) and (c) WRI. (b) and (d) IR-WRI. Initial model is (a) and (b) the true velocity-gradient background model,
and (c) and (d) the homogeneous velocity model. All the panels are plotted with the same horizontal and vertical logarithmic scale. The black arrow points the
starting point.

Algorithm 1 BTV regularized IR-WRI algorithm based on the PRS
algorithm.

1: Initialize: set the RHS errors k = 0, s0 = 0, q0 = 0
2: Input: m0 (initial model parameters)
3: while convergence criteria not satisfied do
4: uk+1 ← update according to 2.16

5: sk+ 1
2 ← sk + 0.5[s − F(mk )uk+1]

6: mk+1 ← update according to 2.26

7: qk+ 1
2 ← qk + 0.5[pk − ∇mk+1]

8: pk+1
0 ← projC (mk+1 − q

k+ 1
2

0 )

9: pk+1
1 ← proxγ (∇1mk+1 − q

k+ 1
2

1 )

10: pk+1
2 ← proxγ (∇2mk+1 − q

k+ 1
2

2 )

11: qk+1 ← qk+ 1
2 + 0.5[pk+1 − ∇mk+1]

12: sk+1 ← sk+ 1
2 + 0.5[s − F(mk+1)uk+1]

13: k ← k + 1
14: end while

0), with only bound constraints (γ = 0) and with BTV regularization
(γ 0 	= 0 and γ 	= 0), where it is reminded that γ 0 and γ are the
penalty parameters that control the weight of the bound constraints
and TV regularization, respectively, in the objective function (see
eq. 23).

We tune the different penalty parameters according to the fol-
lowing guideline. We start from the last subproblem of the splitting

procedure and set the parameter γ , which controls the soft thresh-
olding performed by the TV regularization (eqs 31 and 32). In this
study, we find that γ = 0.02 max ‖(z1 z2)‖ was a good pragmatical
value. This tuning can be refined according to prior knowledge of
the geological structure, coming from well logs for example. In this
study, we use the same weight for the bound constraints and the TV
regularization: γ 0 = γ . Once we set γ , we define λ1 such that γ /λ1

is a percentage of the mean absolute value of the diagonal coeffi-
cients of LTL during the parameter-estimation subproblem (eq. 27).
This percentage is set according to the weight that we want to as-
sign to the TV regularization and the bound constraints relative to
the wave-equation constraint during the parameter estimation. Pa-
rameter λ1 may be increased during iterations to reduce the weight
of TV regularization and bound constraints near the convergence
point. We found this adaptation useful when we start from very
crude initial models. Finally, we set λ0 such that λ = λ1/λ0 is a
small fraction of the highest eigenvalue ξ of the normal operator
A(m)−TPTPA(m)−1 during the wavefield reconstruction subprob-
lem, eq. (16), according to the criterion proposed by van Leeuwen
& Herrmann (2016). In all the numerical tests, we use λ = 1e−5ξ

and 1e−3ξ for noiseless and noisy data, respectively. This tuning of
λ is indeed important because it controls the extension of the search
space. A too high value of λ reduces the weight of ‖Pu − d‖2

2 dur-
ing the wavefield reconstruction and makes IR-WRI behave like
a reduced approach. Conversely, using a small value for λ fosters
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data fitting and expends the search space accordingly. However, a
too small value can lead to a prohibitively high number of iterations
of the AL method before the wave-equation constraint is fulfilled
with sufficient accuracy. Moreover, when data are contaminated by
noise, a too small value for λ will make the wavefield reconstruction
overfit the data and drive WRI to be a poor minimizer. We always
use λ as a fixed percentage of ξ in iterations for both WRI and IR-
WRI. This does not prevent IR-WRI to converge towards accurate
minimizers thanks to the iterative error correction performed by the
Lagrange multiplier updating. The reader is referred to Aghamiry
et al. (2019b) for a more thorough sensitivity analysis of IR-WRI
to the penalty parameter λ.

3.2 Inclusion model

The subsurface model contains a sharp box-shape anomaly of sides
0.2 × 0.3 km with a velocity (V) of 5 km s−1. It is embedded in a
smooth background model where V increases linearly with depth
from 1.5 to 3.5 km s−1 (Fig. 1). The model is 1.5 km long and 1 km
deep, and is discretized with a 10 m grid interval. The regular surface
acquisition consists of five sources (as depicted with yellow stars in
Fig. 1) and 65 receivers deployed on the surface. The source signa-
ture is a Ricker wavelet with a 5 Hz dominant frequency. We start
the inversion from the true background model and invert simultane-
ously three frequency components (2.5, 5 and 7 Hz) with noiseless
data. This frequency bandwidth has been selected to cover a sig-
nificant band of vertical wavenumbers in the waveform-inversion
sensitivity kernels, considering the limited aperture illumination
provided by the surface acquisition. Moreover, a realistic starting
frequency of 2.5 Hz allows us to assess the resilience to cycle skip-
ping of IR-WRI. A maximum number of iterations set to 70 is used
as a stopping criterion for all of the tests shown in Fig. 2. When
bound constraints are used, the bounds ml and mu, eq. (29), are set
to the true minimum and maximum square slownesses, respectively.

We first compare WRI and IR-WRI results when bound con-
straints and TV regularization are not activated, i.e. γ 0 = γ =
0 (Figs 2a and b). WRI and IR-WRI reconstruct only the top of
the anomaly with strongly overestimated velocities. Then, we add
bound constraints in WRI and IR-WRI, using γ 0/λ1 = 0.01ζ , where
ζ is the mean absolute value of the diagonal coefficients of LTL.
The bound-constrained WRI and IR-WRI only reconstruct the top
of the anomaly as in Figs 2(a) and (b). However, the inclusion veloc-
ities are now well controlled by the bound constraints (Figs 2c and
d). These first two tests show that IR-WRI reconstructs better the
shape of the anomaly than WRI with however more significant arte-
facts on both sides of the anomaly. These artefacts may have resulted
from the deficit in horizontal-wavenumber illumination provided by
the sparse limited-offset surface acquisition and by multiscattering
pollutions.

Then, we apply BTV regularization with γ /λ1 = γ 0/λ1 = 0.01ζ

(Figs 2e and f). Since the initial model matches the true velocity-
gradient background model, we use a small value of γ /λ1 (i.e. a
high value of λ1) and keep it constant in iterations to preserve
the smooth components of the subsurface model. We show that
the BTV-regularized WRI still fails to reconstruct the full anomaly
(Fig. 2e). In contrast, BTV-regularized IR-WRI keeps on improv-
ing the reconstruction of the anomaly in depth, while efficiently
mitigating the oscillating artefacts (Fig. 2f).

A vertical profile across the reconstructed anomaly also high-
lights some limitations of the BTV regularization (Fig. 2f): below

the anomaly, the BTV regularization superimposes staircase arte-
facts on the velocity gradient, consistently with the piecewise con-
stant assumption underlying TV regularization.

To emphasize the resilience to cycle skipping of the BTV-
regularized WRI and IR-WRI, we repeat this toy example using
a 2.2 km s−1 homogeneous velocity model as initial model (Fig. 3).
We perform a first test without any prior. Compared to the previ-
ous test, we just stabilize the inversion by adding a small damping
term (=0.01ζ ) to LTL. Compared to Figs 2(a) and (b), the artefacts
have a much stronger imprint due to the inaccuracy of the starting
model (Figs 3a and b). Then, we move to bound-constrained and
TV-regularized tests (Figs 3c–f). To decrease the above-mentioned
artefacts, we assign a high initial weight to the BTV regularization
(γ /λ1 = γ 0/λ1 = ζ ) and decrease it by a factor 2 every 10 iterations
until it reaches a minimal value set to 0.01ζ (i.e. the constant value
previously used). In accordance with the former test, bound con-
straints alone are not sufficient to reconstruct the bottom part of the
anomaly and cancel out the oscillating artefacts (Figs 3c and d). In
contrast, BTV IR-WRI achieves these two goals, although it leaves
a significant staircase footprint below the anomaly (Fig. 3f). Com-
pared to Fig. 2(f), the edges of the anomaly are better reconstructed
at the expense of the background velocity-gradient model. This re-
sults, because of the more aggressive TV regularization used during
the early iterations of this test, allowing for a better reconstruction
of the blocky components of the medium, while injecting undesired
staircase footprint on its smooth components. As for the former
test, IR-WRI clearly outperforms WRI due to the more efficient
solution refinement procedure resulting from the right-hand side
updating.

We also show the joint evolution in iterations of the observation-
and wave-equation errors (Fig. 4) and the wavefield and subsurface
model errors (Fig. 5), when the initial model is the true velocity-
gradient background model and the homogeneous model. IR-WRI
fits the data and wave equation better than WRI after 70 itera-
tions with both initial models because the right-hand side updating
embedded in IR-WRI cancels out more efficiently the data and
source residuals in iterations and, hence better refines the solu-
tion accordingly. Moreover, BTV regularization in IR-WRI further
improves the data and wave-equation fit for both initial models
because it reduces more efficiently the oscillating artefacts in the
reconstructed velocity model and better reconstructs the edges of
the anomaly (Fig. 2f). As above mentioned, the oscillating arte-
facts may result from the deficit of horizontal wavenumber il-
lumination generated by the limited-offset surface acquisition. In
this framework, the prior contained in the BTV regularization effi-
ciently narrows the null space of the inversion. The more complex
zigzag path followed by IR-WRI relative to WRI in the (‖Puk −
d‖2 − ‖A(mk)uk − b‖2) plane highlights how the joint updating
of the data and source by their associated residuals dynamically
balances the weight of the two objective functions in iterations.
This more complex convergence history of IR-WRI, which has
been already noticed in Aghamiry et al. (2019b), suggests that
the right-hand side updating perform a self-adaptive weighting of
the two competing objective functions driven by the relative re-
duction of the data and source residuals in iterations. This zigzag
convergence trend translates also into more complex path in the
(‖uk − u∗‖2/‖u∗‖2 − ‖mk − m∗‖2/‖m∗‖2) plane (m∗ and u∗ de-
note the true model and wavefields, respectively), which illustrates
how the solution refinement is pushed toward the wavefield recon-
struction or the velocity model estimation according to the self-
adaptive weighting of the observation- and wave-equation objective
functions (Fig. 5). Note that the relative model errors increase in the
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Figure 5. The box-shaped anomaly example. Convergence history in the (‖uk − u∗‖2/‖u∗‖2 − ‖mk − m∗‖2/‖m∗‖2) plane of WRI and IR-WRI without
priors, with bound constraints and with BTV regularization and for the two initial models. The wavefield misfit function ‖uk − u∗‖2/‖u∗‖2 is computed by
summation over all the shots. (a) and (c) WRI. (b) and (d) IR-WRI. The initial model is (a) and (b) the true velocity-gradient background model, and (c) and
(d) the homogeneous velocity model. Note the increase of ‖mk − m∗‖2/‖m∗‖2 over iterations in (a) and (b) (see the text for explanations). All the panels are
plotted with the same horizontal and vertical logarithmic scales. The black arrow indicates the starting point.

case of the initial velocity-gradient model (Figs 5a and b). This re-
sults from the fact that the smooth background model is degraded by
the oscillating artefacts and the staircase footprint during the sharp
inclusion reconstruction. Indeed, this degradation of the smooth
components has a much higher weight in the �2 misfit function than
the more accurate reconstruction of the blocky components. How-
ever, this increase is much more moderate in IR-WRI (Fig. 5b) than
in WRI (Fig. 5a). Finally, we plot the TV norm of the reconstructed
models in iterations for the different tests (Fig. 6). As expected, the
models reconstructed with bound constraints and TV regularization
match better the TV of the true model. 20 When the homogeneous
initial model is used, BTV IR-WRI smoothly converges to the TV
of the true model after around iteration 15, while the weight of the
TV regularization is progressively decreased (Fig. 6b, blue curve).
The BTV WRI model matches slightly better the TV of the true
model than the BTV IR-WRI one when the initial model is the true
background model. Indeed, this does not reflect that WRI better re-
constructs the anomaly than IR-WRI. Instead, it reflects the slower
convergence of WRI relative to IR-WRI which contributes to keep
the background model smooth (namely, which a TV close to that of
the true background model).

3.3 2004 BP salt model—central target

We now consider a more realistic application with a first target of
the challenging 2004 BP salt model. The 2004 BP salt model is
representative of the geology of the deep water offshore Gulf of
Mexico and mainly consists of a simple background with a com-
plex rugose multivalued salt body, subsalt slow velocity anomalies
related to overpressure zones and a fast velocity anomaly to the
right of the salt body (Billette & Brandsberg-Dahl 2004). The first
selected target corresponds to the central part of the 2004 BP salt
model characterized by a deeply rooted salt body (Fig. 7a). Note that
we rescale the spatial dimensions and the sampling of the original
target for sake of computational efficiency.

Accordingly, our subsurface model is 8.8 km wide and 2.9 km
deep, and is discretized with a 25 m grid interval. We used 50
sources spaced 175 m apart on the top side of the model. The source
signature is a Ricker wavelet with a 10 Hz dominant frequency. A
line of receivers with a 50 m spacing are deployed at the surface
leading to a stationary-receiver acquisition.

We start the inversion from a smoothed version of true velocity
model where the imprint of the salt body and other structures were
cancelled out (Fig. 7b) and invert the 3-Hz frequency with noiseless
data.

We compare the results of WRI and IR-WRI with bound con-
straints and BTV regularization. To highlight the specific role of
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Figure 6. The box-shaped anomaly example. TV norm history over iterations of bound-constrained, BTV-regularized and ordinary WRI and IR-WRI for (a)
velocity-gradient and (b) homogeneous initial model. The TV norm of true model is plotted with dashed-black line.

Figure 7. 2004 BP salt model—central target. 3-Hz frequency. (a) True model. (b) Starting model. (c) and (d) Bound-constrained WRI (c) and IR-WRI (d)
models. (e) and (f) BTV-regularized WRI (e) and IR-WRI (f) models. Horizontal and vertical profiles at 4.15 km distance and 1.65 km depth from the true
(black), initial (dash blue) and reconstructed (red) models are shown below and on the left-hand side of the models.

bound constraints, we activate them after 21 iterations. Since we
start from a rough initial model, we set γ 0/λ1 = γ /λ1 = ζ and
decrease them during iterations in a manner similar to the box-
shape anomaly test with a homogeneous starting model. Also, we
add a damping term to LTL with a weight equal to 0.01ζ to fur-
ther stabilize the inversion. We stop inversion after 70 iterations.
The estimated models are shown in Fig. 7 together with horizon-
tal profiles at 1.65 km depth and vertical profiles at 4.15 km dis-
tance extracted from the true, initial and reconstructed models.

As for the inclusion test, WRI fails to reconstruct the salt body
and the subsalt structure because the data and source residuals are
not re-injected in the right-hand sides of the penalty function at
each iteration as in eq. (13), leading to a stagnant convergence
of the inversion (Figs 7c and e). When IR-WRI is applied with
bound constraints alone, the reconstructed model is affected by
noise with a periodic horizontal pattern. This noise likely results
from the monochromatic nature of the inversion, multiscattering
within the salt body and limited illumination of the horizontal
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wavenumbers of the salt body leading to wraparound (Fig. 7d). The
BTV-regularized IR-WRI mitigates efficiently this noise without
degrading the resolution of the salt body and the subsalt structures
(Fig. 7f).

Fig. 8(a) shows the joint evolution in iterations of the data mis-
fit and the wave-equation error. As for the inclusion test, note the
zigzag path followed by the IR-WRI objective functions over itera-
tions. Also, the joint evolution of wavefield and subsurface model
errors and the evolution of TV norm over iteration are shown in
Figs 8(b) and (c). The TV norm evolution emphasizes how the bound
constraints fasten the convergence of TV-regularized IR-WRI after
iteration 20.

We continue the inversion at higher frequencies using the final
models of the 3 Hz inversion as initial models (Figs 7c–f). We used
small batches of two frequencies with one frequency overlapping
between two consecutive batches, moving from the low frequencies
to the higher ones according to a classical frequency continuation
strategy. We set γ 0/λ1 = γ /λ1 = 0.01ζ and remove the damping of
LTL. The starting and final frequencies are 3.5 and 12 Hz and the
sampling interval in one batch is 0.5 Hz. The algorithm performs at
most 15 iterations per frequency batch and the number of iterations
that have been performed is 170. The inversion results are shown
in Fig. 9. WRI with bound constraints and BTV (Figs 9a and c)
fails to converge toward satisfactory results, while BTV-regularized
IR-WRI converges to accurate velocity model, although a signif-
icant imprint of the TV regularization is shown (Fig. 9d). When
IR-WRI is performed with only bound constraints, the oscillating
artefacts are not cancelled out (Fig. 9b). This highlights the role of
TV regularization in reconstructing blocky structures and removing
wraparound artefacts.

3.4 2004 BP salt model—left target

We now consider a second target of the 2004 BP salt model lo-
cated on the left-hand side of the model (Fig. 10a). This target was
previously used by among others Métivier et al. (2016), Brandsberg-
Dahl et al. (2017) and Esser et al. (2018) for FWI applications. After
rescaling of the original model with the ratio used by Métivier et al.
(2016), our subsurface target is 16.25 km wide and 5.825 km deep,
and is discretized with a 25 m grid interval. We used 108 sources
spaced 150 m apart on the top side of the model. The source signa-
ture is a Ricker wavelet with a 10 Hz dominant frequency. A line of
receivers with a 25 m spacing are deployed at the surface leading to
a stationary-receiver acquisition. We perform IR-WRI with bound
constraints alone and with BTV regularization, for noiseless and
noisy data.

We used a crude laterally homogeneous velocity-gradient model
as initial model (Fig. 10b). We used small batches of two frequen-
cies with one frequency overlap between two consecutive batches,
moving from the low frequencies to the higher ones according to
a classical frequency continuation strategy. The starting and final
frequencies are 3 and 13 Hz and the sampling interval in one batch
is 0.5 Hz. The stopping criterion of iteration for each batch is given
by kmax = 15 or

‖A(mk+1)uk+1 − b‖2 ≤ εb and ‖Puk+1 − d‖2 ≤ εd , (33)

where kmax denotes the maximum iteration count, εb = 1e−3, and
εd = 1e−5 for noiseless data and εb = 1e−3 , εd = noise level of
batch for noisy data. We perform three paths through the frequency
batches to improve the IR-WRI results, using the final model of
one path as the initial model of the next one (these cycles can be

viewed as outer iterations of IR-WRI). The starting frequency of
the second and third paths is 6 and 8.5 Hz, respectively. The IR-
WRI models inferred from noiseless data with bound constraints
and with BTV regularization are shown in Figs 10(c) and (d). The
number of iterations that have been performed with bound con-
straints and with BTV regularization are 441 and 340, respectively.
Direct comparison between the true model, the starting model and
the IR-WRI models along three vertical logs cross-cutting the salt
body at 5, 7.5 and 10 km distance (vertical dashed lines in Fig. 10a)
are shown in Fig. 11(a). The results show the resilience of IR-WRI
to cycle skipping with a pretty accurate reconstruction of the salt
body and subsalt structures (Figs 10c and d). However, the model
obtained with bound constraints alone shows high-frequency noise
in the salt body and below (Fig. 10c). This noise can result from
Gibbs phenomenon caused by the frequency decimation and arte-
facts resulting from multiscattering (Alkhalifah et al. 2018). The
BTV regularization efficiently removes these artefacts except those
resulting from truncation of the acquisition near the left end of the
model at 5-km depth (Fig. 10d). The inversion captures reasonably
well the subsalt structures, including the low-velocity overpressure
zone at (x,z) = (7.5 km,4 km) as well as the smooth velocity varia-
tions.

When noisy data are used (Figs 10e and f, and 11b), the number
of iterations that have been performed with bound constraints alone
and with BTV regularization is 263 and 254, respectively. As for
the noiseless case, a direct comparison between the true model, the
starting model and the two IR-WRI models along three vertical logs
cross-cutting the salt body at 5, 7.5 and 10 km distance is shown
in Fig. 11(b). The artefacts have now a more significant imprint
when only bound constraints are used (Fig. 10e). Accordingly, we
apply a more aggressive TV regularization to obtain the results
shown in Fig. 10(f). The artefacts have been efficiently removed
with however a more obvious imprint of the piecewise-constant
approximation underlying BTV regularization. This blocky pattern
is clearly visible in deep part of the vertical profiles of Fig. 11(b)
where velocity gradients have been replaced by stack of constant-
velocity layers.

4 D I S C U S S I O N

We have implemented bound constraints and TV regularization in
the WRI method (van Leeuwen & Herrmann 2013) which has been
recently improved by Aghamiry et al. (2019b) in the framework of
the ADMM, leading to the IR-WRI.

There are some key differences between our implementation of
BTV-regularized WRI and previous ones based upon projected-
gradient method (Peters & Herrmann 2017) and primal dual hybrid
gradient (PDHG) methods (Esser et al. 2018; Yong et al. 2018)
that we review below. In the projected-gradient method, Peters &
Herrmann (2017) first update model parameters with FWI or WRI
and then project the updated model into the intersection of the TV
and bound constraint with Dykstra projection algorithm (Boyle &
Dykstra 1986), an alternating projection onto some constraints un-
til satisfying all of them. Therefore, their workflow is subdivided
in two different parts, that are the model update followed by the
projection onto intersection of all constraints (Peters & Herrmann
2017, their eq. 7). Unlike Peters & Herrmann (2017) method, which
relies on independent update and projection steps, all the ingre-
dients of BTV-regularized IR-WRI (i.e. wavefield reconstruction,
parameter estimation, TV regularization and bound constraints) are

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/218/2/855/5475650 by guest on 31 August 2021



868 H. S. Aghamiry, A. Gholami and S. Operto

Figure 8. 2004 BP salt model—central target. 3-Hz frequency. Convergence history (a) in the (‖Puk − d‖2 − ‖A(mk)uk − b‖2) plane (b) in the (‖uk −
u∗‖2/‖u∗‖2 − ‖mk − m∗‖2/‖m∗‖2) plane. (c) Evaluation of TV norm ‖mTV‖ over iterations. Note again the more complex convergence history of IR-WRI
compared to WRI due to the self-adaptive weighting of the data-fitting and wave-equation objective functions performed by right-hand side updating. The
iteration 22 are located with cyan stars in (a) and (b).

Figure 9. 2004 BP salt case study. Central target. (a) Final bound-constrained WRI with Fig. 7(c) as initial model. (b) Final bound-constrained IR-WRI with
Fig. 7(d) as initial model. (c) Final BTV-regularized WRI with Fig. 7(e) as initial model. (d) Final BTV-regularized IR-WRI with Fig. 7(f) as initial model.

consistently integrated in the theoretical framework of ADMM opti-
mization (the readers can also refer to Maharramov & Levin 2015).

Esser et al. (2018) and Yong et al. (2018) implemented TV regu-
larization and bound constraints in the reduced variable projection
WRI of van Leeuwen & Herrmann (2016) with PDHG. PDHG
is a method to solve constrained optimization problems by alter-
nating gradient descent (for primal variable) and gradient ascent
(for dual variable), which can be interpreted as linearized ADMM
(Goldstein et al. 2015). PDHG can be helpful if the least-squares
minimizations embedded in ADMM are difficult to solve efficiently
(Goldstein et al. 2015). This is not really the case in WRI, which
mainly requires to solve two sparse linear systems for u and m.
Meanwhile, the selection of step size in PDHG that guarantees fast
convergence, or even convergence at all, is not intuitive at all and
can make PDHG impractical. This issue prompted Goldstein et al.
(2015) to develop step size tuning rules which contribute to make

PDHG self-adaptive as illustrated recently by Yong et al. (2018) in
the frame of WRI. Beyond PDHG method, Esser et al. (2018) and
Yong et al. (2018) minimize data and source residuals with a penalty
method, which lacks the convergence property of the AL method
promoted in IR-WRI. Moreover, they implement TV regularization
as a hard constraint in the parameter-estimation subproblem through
a Lagrangian function, whose saddle point is estimated with PDHG.
In contrast, we implement the TV regularization as a soft constraint
after introducing the auxiliary variable p and solve the regularized
subproblem for m with the split-Bregman method (or equivalently
ADMM), eq. (22). This gives us the necessary flexibility to imple-
ment aggressive regularization during early iterations and relax it
progressively, when very crude initial models are used. With more
accurate initial models, the AL embedded in the split-Bregman
method (eq. 22), allows for constant penalty parameter to be used.
These penalty parameters are used as step lengths in the AL method,
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Figure 10. The 2004 BP salt case study. Left target. (a) True BP model. The vertical dashed lines indicate the location of vertical logs of Fig. 11. (b) Initial
velocity model. (c) and (d) Final IR-WRI velocity models obtained with bound constraints (c) and with BTV regularization (d) for noiseless data. (e) and (f)
Same as (c) and (d) for noisy data for an S/N of 10 db.

hence leading to a self-adaptive TV regularization implementation
rid of tedious TV-norm ball continuation strategies and/or adaptive
step lengths (Esser et al. 2018; Yong et al. 2018). Third, while Esser
et al. (2018, eq. 18) and Yong et al. (2018, eq. 41) implement bound
constraints as hard constraints by projection at each iteration of
the TV-regularized perturbation model onto the feasible set defined
by the bound constraints, we implement bound constraints consis-
tently with TV regularization in the framework of the method of
multiplier (eqs 26–30). Finally, our approach does not require prior
guess of TV-norm ball because we implement TV regularization
as a minimization problem rather than as a constraint. That being
said, Esser et al. (2018) show promising results with the τ contin-
uation approach and asymmetric TV norm on the BP salt model
starting from a very crude initial model. It will be interesting in

future work to assess the benefit of asymmetric TV norm in BTV
IR-WRI.

Indeed, implementation of BTV-regularized IR-WRI requires to
setup different parameters, which have been discussed at the be-
ginning of the section Experimental setup and parameter tuning.
The penalty parameter which controls the relative weight between
the wave-equation objective and the data fitting objective during the
wavefield-reconstruction subproblem has been discussed in length
in Aghamiry et al. (2019b). They have concluded that a fixed penalty
parameter can be used during iterations because the accuracy of the
minimizer in the method of multiplier is controlled both by the
penalty parameter and the accuracy of the updated multiplier (No-
cedal & Wright 2006, theorem 17.6). In this study, we suggest good
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Figure 11. 2004 BP salt case study—left target. Direct comparison between the true velocity model (black), the initial model (dashed line) and the IR-WRI
models obtained with bound constraints (red) and with BTV regularization (blue) along three logs at x = 4.5, 7 and 10 km (vertical dashed lines in Fig. 10a)
from left to right. (a) Noiseless data. (b) Noisy data.

pragmatical values of this penalty parameter as a percentage of the
maximum eigenvalue of the augmented wave-equation normal op-
erator for noiseless and noisy data. Optimal values may be refined
by trial and error to prevent noisy data overfitting and keep the iter-
ation count within reasonable limits. The TV and bound parameters
should be easily determined from well logs or a priori geological
knowledge. Finally, the relative weight between the TV regulariza-
tion and the wave-equation constraint, which is controlled by λ1,
needs also to be estimated during the parameter-estimation subprob-
lem. As above mentioned, this penalty parameter is kept fixed during

iterations or is progressively decreased to relax the TV regulariza-
tion and bound constraints near the convergence point, depending
of the accuracy of the initial model. The reader is also referred to
Goldstein & Osher (2009, section 2.2) who discuss the sensitivity
of the split-Bregman method (an optimization method similar to
ADMM, Esser 2009) to the penalty parameter for �1-regularized
problems.

One drawback of the BTV regularization is related to the piece-
wise constant approximation underlying TV regularization, which
tends to superimpose some blocky patterns on the smooth part of the
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subsurface. To overcome this issue, ongoing work seeks to optimally
combine Tikhonov and TV regularization in IR-WRI (Gholami &
Hosseini 2013; Aghamiry et al. 2018a, 2019a).

Other perspective developments involve extension to multipa-
rameter reconstruction, 3-D geometries and application to real data
to further assess the potential and limits of IR-WRI. For 3-D applica-
tions, the wavefield reconstruction in the frequency domain requires
to solve a large-scale linear algebra problem (eq. 16). Operto et al.
(2015), Amestoy et al. (2016) and Operto & Miniussi (2018) have
shown the computational efficiency of 3-D frequency-domain FWI
based on sparse direct solvers in the 3.5–10 Hz frequency band for
dense stationary-recording ocean-bottom cable acquisitions. Mary
(2017) showed that block low-rank multifrontal solver allows one to
tackle numerical problems involving up to 100 million unknowns.
The symmetry of the normal operator, eq. (16), should balance the
computational overhead resulting from the higher number of non-
zero coefficients relative to the impedance matrix A. Note that A
was processed as an unsymmetric matrix in the above-mentioned
references due to discretization issues, although more suitable

discretizations which preserve the symmetry of the impedance
matrix may be considered in the future (Pratt & Smithyman
2018). Alternatively, domain decomposition methods suitable for
Helmholtz problems can be interfaced with hybrid direct-iterative
solvers to perform wavefield reconstruction in bigger computa-
tional domains (Dolean et al. 2015). These approaches may be
suitable for stationary-receiver acquisition involving a more limited
number of reciprocal sources such as ocean-bottom seismometer
acquisitions.

5 C O N C LU S I O N

We have presented a new method to implement TV regularization
and bound constraints in frequency-domain FWI based on WRI. In
a previous study, we have reformulated WRI in the framework of
the ADMM, leading to the IR-WRI method. We have shown how
the AL embedded in ADMM makes IR-WRI weakly sensitive to a
wide range of penalty parameter thanks to the Lagrange multiplier
updating. Using a small value of this penalty parameter efficiently
extends the search space during early iterations to foster data fitting
without preventing the wave-equation constraint to be fulfilled at
the convergence point with a preset prescribed error. IR-WRI per-
forms a first ADMM step to alternate wavefield reconstruction and
subsurface parameter estimation as in the original WRI method.
When BTV regularization is used, we perform a second ADMM
step to decompose the BTV-regularized parameter-estimation sub-
problem into a sequence of two simpler subproblems through the
introduction of auxiliary variables. This variable splitting allows for
the decoupling between the �1 and the �2 components of the penalty
function according to the so-called split-Bregman method. An inter-
esting property exploited by WRI methods is the bilinearity of the
wave-equation constraint with respect to the wavefield and the pa-
rameter, which makes the �2 wave-equation objective of the second
subproblem quadratic. Our implementation of BTV regularization
in IR-WRI with ADMM (or, equivalently split-Bregman) provides
a versatile framework to cascade constraints and regularization of
different nature and is reasonably easy-to-tune due to the limited
sensitivity of the AL method to the choice of the penalty parame-
ters. For challenging subsurface targets with contrasted structures
such as salt bodies, we have shown that our BTV-regularized WRI
shows a high resilience to cycle skipping and noise and efficiently
mitigates high-frequency artefacts associated with incomplete illu-
mination and multiscattering without detriment to the resolution of
the imaging.
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ifah and one anonymous reviewer for their comments. This
study was partially funded by the SEISCOPE consortium (http:
//seiscope2.osug.fr), sponsored by AKERBP, CGG, CHEVRON,
EQUINOR, EXXON-MOBIL, JGI, PETROBRAS, SCHLUM-
BERGER, SHELL, SINOPEC and TOTAL. This study was granted
access to the HPC resources of SIGAMM infrastructure (http:
//crimson.oca.eu), hosted by Observatoire de la Côte d’Azur and
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A P P E N D I X A : S c a l e d f o r m o f a u g m e n t e d
L a g r a n g i a n

Let us start with the following constrained problem

min
x

‖P(x)‖2
2 subject to Q(x) = 0. (A1a)

The AL function for the problem is (Nocedal & Wright 2006)

LA(x, v) = ‖P(x)‖2
2 + vT Q(x) + λ

2
‖Q(x)‖2

2. (A2)

The problem (A2) can be written in a more compact form by intro-
ducing the scaled dual variable q̄ = − v

λ
and adding and subtracting

the term λ

2 ‖q̄‖2
2 to the AL (A2). In this case, we arrive at the fol-

lowing scaled form of the method of multipliers:

LA(x, q̄) = ‖P(x)‖2
2 − λq̄T Q(x) + λ

2
‖Q(x)‖2

2 + λ

2
‖q̄‖2

2 − λ

2
‖q̄‖2

2 (A3)

= ‖P(x)‖2
2 + λ

2
‖Q(x) − q̄‖2

2 − λ

2
‖q̄‖2

2.
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