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Abstract. Cryptanalysis with SAT/SMT, MILP and CP has increased
in popularity among symmetric-key cryptanalysts and designers due to
its high degree of automation. So far, this approach covers differential,
linear, impossible differential, zero-correlation, and integral cryptanaly-
sis. However, the Demirci-Selçuk meet-in-the-middle (DS-MITM) attack
is one of the most sophisticated techniques that has not been automated
with this approach. By an in-depth study of Derbez and Fouque’s work
on DS-MITM analysis with dedicated search algorithms, we identify the
crux of the problem and present a method for automatic DS-MITM at-
tack based on general constraint programming, which allows the crypt-
analysts to state the problem at a high level without having to say how
it should be solved. Our method is not only able to enumerate distin-
guishers but can also partly automate the key-recovery process. This
approach makes the DS-MITM cryptanalysis more straightforward and
easier to follow, since the resolution of the problem is delegated to off-
the-shelf constraint solvers and therefore decoupled from its formulation.
We apply the method to SKINNY, TWINE, and LBlock, and we get the
currently known best DS-MITM attacks on these ciphers. Moreover, to
demonstrate the usefulness of our tool for the block cipher designers, we
exhaustively evaluate the security of 8! = 40320 versions of LBlock in-
stantiated with different words permutations in the F functions. It turns
out that the permutation used in the original LBlock is one of the 64
permutations showing the strongest resistance against the DS-MITM at-
tack. The whole process is accomplished on a PC in less than 2 hours.
The same process is applied to TWINE, and similar results are obtained.

Keywords: Demirci-Selçuk meet-in-the-middle attack, Automated crypt-
analysis, Constraint programming, MILP
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1 Introduction

Cryptanalysis of block ciphers is a highly technical, time consuming and error-
prone process. On the one hand, the attackers have to perform a variety of
cryptanalytic techniques, including differential attack [1], linear attack [2], inte-
gral attack [3–5], etc., to see which technique leads to the best attack. On the
other hand, the designers need to repeat all these different attacks again and
again to identify the optimal choices of parameters and building blocks which
meet the security and implementation requirements. Therefore, automatic tools
are indispensable to the community, which significantly reduce the manual work
and make a thorough exploration of the design/analysis space possible.

One paradigm for automatic symmetric-key cryptanalysis getting increasing
popularity in recent years is to model the problem by means of constraints, which
includes the methods based on SAT/SMT (satisfiability modulo theory) [6–8],
MILP (mixed-integer linear programming) [9–13], and classical constraint pro-
gramming [14, 15]. In this paper, these methods are collectively referred to as
the general constraint programming (CP) based approach, or just CP based ap-
proach for short. So far, the CP based approach covers a wide range of symmetric-
key cryptanalysis techniques. For instance, we can determine the minimum num-
ber of differentially or linearly active S-boxes of a block cipher with MILP [9]; we
can search for actual differential characteristics, linear characteristics, and inte-
gral distinguishers with SAT/SMT, MILP or classical constraint programming
[8, 10, 11, 14]; and we can search for impossible differentials and zero-correlation
linear approximations [12, 16] in a similar way.

Compared with search algorithms implemented from scratch in general pur-
pose programming languages [17–24], the CP based approach allows the crypt-
analysts to state the problem very naturally, and at a high level without having
to say how it should be solved. The resolution of the problem is delegated to
generic solvers, and therefore decoupled from the formulation of the problem.
As Eugene C. Freuder stated [25]: Constraint programming represents one of the
closest approaches computer science has yet made to the Holy Grail of program-
ming : the user states the problem, the computer solves it.

However, the Demirci-Selçuk meet-in-the-middle attack (DS-MITM) attack
[26], introduced by Demirci and Selçuk at FSE 2008 to attack the famous Ad-
vanced Encryption Standard (AES) [27], is one of the cryptanalytic techniques
which has not been automated with general constraint programming due to
its extraordinary sophistication. After a series of improvements of the attack
with various creative techniques [28–32], the DS-MITM attack reaches the best
known attack on 7-round AES-128, 9-round AES-256 and 10-round AES-256
in the single-key model. The attack has been applied to several specific block
ciphers [33–36] as well as on generic balanced Feistel constructions [37]. Most
recently, Guo et al. show generic attacks on unbalanced Feistel ciphers based on
the DS-MITM technique which penetrate a large number of rounds of some spe-
cific class of unbalanced Feistels [38]. Note that despite sharing the same name
with the traditional MITM attacks in some literature (the attacks on some block



ciphers [39, 40] and on a number of hash functions, e.g. [41, 42]), the DS-MITM
attack concerned in this paper follows a different and a more complex strategy.

Related work and our contribution. In [30, 31], Derbez and Fouque presented
a tool implemented in C/C++ for finding the DS-MITM attack with dedicated
search algorithm. In this paper, we present the first CP-based tool for finding
the DS-MITM attack automatically. Our approach is based on a novel modelling
technique in which we introduce several different types of variables for every
input/output word of all operations, and impose constraints on these variables
such that from a solution of these variables satisfying all the constraints we can
deduce a DS-MITM distinguisher or DS-MITM attack.

Compared with Derbez and Fouque’s tool [30, 31] which was implemented
in the general purpose programming language C/C++, the CP based method
allows the cryptanalysts to state the problem at a high level very naturally,
without considering how to maintain the relationships between the variables
explicitly with dedicated algorithms. Therefore, our tool should be very useful
in fast prototyping in the process of block cipher design.

In [43], Lin et al. modeled the problem of searching for DS-MITM distin-
guishers as an integer programming model. However, their integer programming
model is incomplete and is solved by a dedicated search algorithm. Secondly,
Lin et al. ’s work only focuses on the distinguisher part. Our CP based approach
can not only enumerate distinguishers but also partly automate the key-recovery
process of the attack. Moreover, by applying our CP based approach to LBlock,
the same cipher targeted in [43], we show it finds better distinguishers as well
as better attacks. To demonstrate the effectiveness of our approach, we apply
it to SKINNY [44], TWINE [45], and LBlock [46]. We produce so far the best
DS-MITM attacks on these well-known ciphers automatically.

For LBlock, we can not only find an 11-round DS-MITM distinguisher which
is 2 rounds longer than the one(s) presented in [43], but also construct the
first DS-MITM attack on 21-round LBlock. We also rediscover the same attack
on TWINE-128 given in [34], and identify the first DS-MITM attack on 20-
round TWINE-80. In addition, we report the first concrete DS-MITM analysis
of SKINNY. A remarkable fact is that our tool identify an 10.5-round DS-MITM
distinguisher in a few seconds, while its designers expect an upper-bound of 10
rounds against such distinguishers in [44]. A summary of these results are given
in Table 1.

We also show how helpful our tool can be in the block cipher design process
by searching for the best choices of block shuffles in LBlock and TWINE. We
scan over 40320 variants of LBlock, and 887040 variants of TWINE. We iden-
tify permutations which are potentially stronger than the permutations in the
original designs. We make the source code of this work publicly available at

https://github.com/siweisun/MITM.

In addition, all supplementary materials referred later on are provided in an
extended version of this paper at https://eprint.iacr.org/2018/813.



Table 1: A summary of the results. Though the focus of this paper is the DS-
MITM attack, we also list other types of attacks which achieve currently known
best results against the ciphers targeted. For theDS-MITM attack, the number of
rounds attacked is presented in the form of a+b, where a shows how many rounds
are covered by the underlying DS-MITM distinguisher, while b is the number or
outer rounds added when performing a key-recovery attack. Therefore, b = 0
indicates a distinguishing attack.

Target Rounds Time Data Memory Method Ref

LBlock

11 + 10 270.20 248 CP 261.91 DS-MITM Sect. 7.2

9 + 0 274.5 − − DS-MITM Dist. [43]

23 274.5 259.5CP 274.3 ID [47]

23 275.36 259CP 274 ID [48]

23 272 262.1 Kp 260 MultiD ZC [47]

23 276 262.1 Kp 260 MultiD ZC [49]

TWINE80

11 + 9 277.44 232 CP 282.91 DS-MITM Sect. 7.3

23 279.09 257.85 CP 284.06 ID [50]

23 273 262.1 KP 260 MultiD ZC [47]

TWINE128

11 + 14 2124.7 248 CP 2109 DS-MITM? [34]

25 2124.5 259.1 CP 278.1 ID [34]

25 2119 262.1 KP 260 MultiD ZC [47]

25 2122.12 262.1 KP 260 MultiD ZC [49]

SKINNY-128-384
10.5 + 11.5 2382.46 296 CP 2330.99 DS-MITM Sect. 7.1

11 + 11 2373.48 292.22 CP 2147.22 ID [51]

? We find the attacks with the same complexity.

Organization. In Sect. 2, we give the notations used in this paper. An intro-
duction of the DS-MITM attack is presented in Sect. 3. We show the general
principle of how to model the DS-MITM attack in Sect. 4, and subsequently in
Sect. 5 the technical detail of the modelling method is given. Sect. 6 discusses
how to use our method in practice. In Sect. 7, we apply our approach to SKINNY,
TWINE, LBlock, AES, ARIA, and SIMON. In Sect. 8, we discuss how to use our
tool to find high-quality building blocks (with respect to the DS-MITM attack)
in the process of block cipher design. Sect. 9 is the conclusion.

2 Notations

An n-bit state state with n = cnc is alternatively regarded as a sequence
(state[0], state[1], · · · , state[nc − 1]) of nc c-bit words. Let A = [j0, j1, · · · , js−1]
be an ordered set of integers such that 0 ≤ j0 < · · · < js−1 < nc. Then state[A]
is used to represent state[j0]|| · · · ||state[js−1], where state[j] is the j-th c-bit word
of state and || is the operation of bit string concatenation.



Definition 1. A set {P 0, · · · , PN−1} ⊆ Fcnc
2 = Fn2 of N = 2sc n-bit values for

state is a δ(A)-set for state with A = [k0, k1, · · · , ks−1] if P 0[A] ⊕ P j [A] = j
(1 ≤ j < N), and P i[k] = P j [k] for all i, j ∈ {0, · · · , N−1} and k /∈ A. That is,
{P 0, · · · , PN−1} traverse the s c-bit words specified by A while share the same
value in other word positions.

An r-round iterative block cipher E with r = r0 + r1 + r2, depicted in Fig. 1,
is a keyed permutation which transforms an n-bit state state0 into state2r step by
step with nonlinear and linear operations. In our indexing scheme, as illustrated
in Fig. 1, state2k is the input state of round k, state2k+1 is the output state of the
nonlinear operation of round k, and state2(k+1) is the output of round k or the
input of round k+1 for k ∈ {0, · · · , r0+r1+r2−1}. For the sake of simplicity and
concreteness, we will conduct the discussion based on Fig. 1, which visualizes
the structure of a common SP cipher. Without loss of generality, we assume that
the key addition is performed after the linear layer L as illustrated in Fig. 1. The
basic rule is that we should always introduce a new state for the direct input
to the nonlinear layer. For example, if the key addition is performed in between
state2i and the NL operation, then a new state (representing the direct input to
NL) should be introduced in between the key addition and the NL operation,
and the original state may be omitted (regarding the new state as an output
obtained by masking the output of the previous round with the subkey).

Note that though our discussion are based on a SP cipher illustrated in Fig. 1,
the ideas and techniques presented in this paper are general enough to be applied
to other structures, such as Feistel and Generalized Feistel structures.

For convenience, a δ(A)-set {P 0, · · · , PN−1} is denoted by Pδ(A), and let
∆E(Pδ(A),B) be the sequence [C0[B]⊕C1[B], · · · , C0[B]⊕CN−1[B]], where Ci =
E(P i) and B = [j0, · · · , jt−1] such that 0 ≤ j0 < · · · < jt−1 < nc.

Let P , P
′ ∈ Fn2 be two values of state0 shown in Fig. 1, which are often

regarded as plaintexts since state0 is the input of the encryption algorithm. The
value P creates a series of intermediate values during the encryption process. We
define P (statei) as the intermediate value at statei created by the partial encryp-
tion of P . Sometimes we only care about the value of P (statei) at some specified
word positions indexed by an ordered set I, which is denoted by P (statei[I]).
We define P ⊕P ′

(statei) and P ⊕P ′
(statei[I]) to be the intermediate differences

P (statei) ⊕ P
′
(statei) and P (statei[I]) ⊕ P ′

(statei[I]) respectively. Let C and
C

′
be the ciphertexts of P and P

′
. An intermediate value can also be regarded

as the result of a partial decryption of the ciphertext C. Therefore, we define
C(statei), C(statei[I]), C⊕C ′

(statei), and C⊕C ′
(statei[I]) similarly. Note that

in the above notations, the intermediate values or differences of intermediate val-
ues are specified with respect to some plaintexts or ciphertexts. We may as well
specify them with respect to some intermediate values, say Q = P (statej) and

Q
′

= P
′
(statej). Hence, we may have notations such as Q(statei), Q(statei[I]),

Q⊕Q′
(statei), and Q⊕Q′

(statei[I]), whose meanings should be clear from the
context.

To make the notation succinct, if not stated explicitly, we always assume
that A = [k0, · · · , ks−1], B = [j0, · · · , jt−1], and a state state is viewed as a



Plaintext

Ā
state0
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state1

L
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(0 → · · · → r0 − 1)

Involved Key: kE0
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L
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L
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state2(r0+r1−1)

NL
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L

kr0+r1−1

B
state2(r0+r1)

NL

state2(r0+r1)+1

L

kr0+r1

state2(r0+r1+1)
E2

(r0 + r1 → · · · → r0 + r1 + r2 − 1)

Involved Key: kE2

...
state2(r0+r1+r2−1)

NL

state2(r0+r1+r2−1)+1

L

kr0+r1+r2−1

state2(r0+r1+r2)

Ciphertext

Fig. 1: An r-round SP block cipher E = E2 ◦E1 ◦E0 with r = r0 +r1 +r2, whose
round function consists of a layer of nonlinear operation and a layer of linear
operation. A DS-MITM key-recovery attack is performed based on a DS-MITM
distinguisher placed at E1. A more detailed explanation of this figure will be
given in Sect. 3.2.

a sequence of n bits or a sequence of nc c-bit words. Moreover, we make the
following assumption which is very natural for a block cipher.

Assumption 1 Let the nonlinear layer in Fig. 1 be a parallel application of
nc c × c invertible S-boxes, and I = [j : Q ⊕ Q

′
(state2k[j]) 6= 0, 0 ≤ j <

nc] be an ordered set, where Q and Q
′

are two values for state2k. If we know
the value of Q(state2k[I]), then we can derive the value of Q ⊕ Q

′
(state2k+1)



with the knowledge of Q ⊕ Q′
(state2k[I]). Similarly, we can derive the value of

Q⊕Q′
(state2k) with the knowledge of Q(state2k+1[I]) and Q⊕Q′

(state2k+1[I]).
In other words, we can derive the value of the output/input differences if we
know the value of input/output values and differences at the active positions.

3 The Demirci-Selçuk Meet-in-the-Middle Attack

3.1 The DS-MITM Distinguisher

The DS-MITM attack relies on a special differential-type distinguisher. Com-
pared with ordinary differential distinguishers, the DS-MITM distinguishers gen-
erally lead to much stronger filters.

Let F be a keyed permutation, and Qδ(A) = {Q0, · · · , QN−1} be a δ(A)-set
for the input state of F . If F is a random permutation, then it can be shown
that there are (2ct)2cs−1 possibilities for ∆F (Qδ(A),B). But for a block cipher
F , it is possible that the sequence ∆F (Qδ(A),B) can be fully determined with
the knowledge of d c-bit words. For instance, from the values of one internal
state and the master key one can derive the values for all the internal states.
Therefore, given Qδ(A), we can get at most 2cd possible cases of ∆F (Qδ(A),B) by
traversing the d c-bit words. We call d the (A,B)-degree of F , which is denoted
by DegF (A,B), or simply Deg(A,B) if F can be inferred from the context. If
DegF (A,B) = d is small enough such that λ = 2cd/(2ct)2cs−1 = 2c(d−t·(2

cs−1)) <
1, or d < t · (2cs − 1), then we can use this property as a distinguisher and
construct a key-recovery attack on F . Therefore, a DS-MITM distinguisher of a
keyed permutation F can be regarded as a tuple (A,B,DegF (A,B)).

3.2 Key Recovery Attack based on DS-MITM Distinguisher

We now describe how a key-recovery attack can be performed with a DS-MITM
distinguisher. This part should be read while referring to Fig. 1.

As shown in Fig. 1, we divide the target cipher E into 3 parts: E0, E1, and
E2, where Ei is a keyed permutation with ri rounds. As depicted in Fig. 1, E0

covers rounds (0→ · · · → r0−1), E1 covers rounds (r0 → · · · → r0 +r1−1), and
E2 covers rounds (r0 + r1 → · · · → r0 + r1 + r2 − 1). According to our indexing
scheme, as illustrated in Fig. 1, state0 is the input state of E0; state2r0 is the
output state of E0 which is also the input state of E1; state2(r0+r1) is the output
of E1 or the input of E2; finally, state2(r0+r1+r2) is the output of E2.

In the attack, we place a DS-MITM distinguisher (A,B,DegE1
(A,B)) at E1,

and prepare a δ(Ā)-set Pδ(Ā) of chosen plaintexts for state0, where Ā is the

ordered set of integers k (0 ≤ k < nc) such that V 0⊕V j(state0[k]) 6= 0 for some
δ(A)-set Vδ(A) = {V 0, · · · , V N−1} for state2r0 (the input state of E1) and some
j ∈ {0, · · · , N − 1}. Note that Ā can be obtained by propagating the differences
created by Vδ(A) for state2r0 (the input of E1) reversely against E0.

Then we select an arbitrary plaintext P 0 from Pδ(Ā), and guess the secret

key information kE0 ∈ Fe02 with which we can find P 1, · · · , PN−1 in Pδ(Ā) such



that Qδ(A) = {Q0, · · · , QN−1} where Qj = E0(P j) forms a δ(A)-set for state2r0 .
Finally, we guess the secret key information kE2

∈ Fe22 involved in E2 with which
we can determine the sequence

∆E1
(Qδ(A),B) = [C0 ⊕ C1(state2(r0+r1)[B]), · · · , C0 ⊕ CN−1(state2(r0+r1)[B])]

by partial decryption with E2, where Cj = E(P j).
If the resulting sequence is not one of the possible ∆E1

(Qδ(A),B) sequences
which can be determined with the DegE1

(A,B) = d c-bit parameters, the guesses
of kE0 and kE2 are certainly incorrect and therefore rejected. Similar to [52], we
adopt the notion of |kE0 ∪kE2 | to represent the log of the entropy of the involved
secret key bits in the outer rounds from an information theoretical point of view.

3.3 Complexity Analysis

Offline phase. Store all the 2cd possibilities of the sequence ∆E1(Qδ(A),B) in a

hash table. The time complexity is 2cd ·2cs ·ρE1CE , and the memory complexity
is (2cs− 1) · ct · 2cd bits, where CE is the time complexity of one encryption with
E, and ρE1

is typically computed in literature as Deg(A,B) divided by the total
number of S-boxes in E.

Online phase. For each of the 2|kE0
∪kE2

| possible guesses, if the resulting se-
quence ∆E1

(Qδ(A),B) is not in the hash table precomputed, then the guess under
consideration is certainly not correct and is discarded. The time complexity of
this step is 2|kE0

∪kE2
| ·2sc ·ρE0∪E2CE , where ρE0∪E2 is typically computed as the

number of S-boxes involved in the outer rounds divided by the total number of
S-boxes in E. After this step, the 2|kE0

∪kE2
| key space is reduced approximately

to λ · 2|kE0
∪kE2

|, where λ = 2c(d−t·(2
cs−1)).

4 Modelling the DS-MITM Attack with Constraints: A
High Level Overview

In this section, we give a high level overview of our modelling method with the
aid of Fig. 1 and Fig. 2, which serves as a road map for the next section (Sect. 5),
where the technical details are presented. To model the attack with constraint
programming (CP) for the cipher E = E2 ◦E1 ◦E0 shown in Fig. 1, we proceed
as the following steps.

Step 1. Modelling the distinguisher part
• Introduce three types (X, Y , and Z) of 0-1 variables for each word of the

states state2r0 , · · · , state2(r0+r1) involved in E1. We denote the sets of all
type-X, type-Y and type-Z variables by Vars(X), Vars(Y ) and Vars(Z), re-
spectively.
• Introduce a set of constraints over Vars(X) to model the propagation of the

forward differential, and introduce a set of constraints over Vars(Y ) to model
the backward determination relationship.
• Impose a set of constraints on Vars(Z) such that a type-Z variable for statei[j]

is 1 if and only if the type-X and type-Y variables for statei[j] are 1 simul-
taneously.



Remark 1. Under the above configuration, every instantiation of the variables
in Vars(X), Vars(Y ), and Vars(Z) corresponds to a potential DS-MITM distin-
guisher. Therefore, all distinguishers can be enumerated with the above model.
Also note that the key addition can be omitted while searching for distinguishers
if it does not affect the propagation of the forward differential and backward de-
termination relationship. This is the case for all the examples presented in this
paper, where key additions are only involved in computing the actual complex-
ities.

Step 2. Modelling the outer rounds
• Introduce a type-M variable for each word of the states state0, · · · , state2r0

involved in E0, and impose a set of constraints over Vars(M) to model the
backward differential. Note that there are both type-X and type-M variables
for state2r0 . We require that the corresponding type-X and type-M variables
for each of the nc words of state2r0 are equal.
• Introduce a type-W variable for each word of the states state2(r0+r1), · · · ,
state2(r0+r1+r2) involved in E2, and impose a set of constraints over Vars(W )
to model the forward determination relationship. Note that there are both
type-Y and type-W variables for state2(r0+r1). We require that the corre-
sponding type-Y and type-W variables for each of the nc words of state2(r0+r1)

are equal.

Remark 2. Every solution of Vars(M) and Vars(W ) helps us to identify the
information that needs to be guessed in the outer rounds, which will be clearer
in the following.

E0

M

E1

X, Y, Z

E2

W

Fig. 2: A high level overview of the modelling method for DS-MITM attack

The overall modelling strategy is depicted in Fig. 2. In summary, given a full
solution of the variables such that all constraints are fulfilled, we can extract the
following information
• A : The variables in Vars(X) for state2r0 whose values are 1 indicate A;
• B : The variables in Vars(Y ) for state2(r0+r1) whose values are 1 indicate B;
• DegE1

(A,B) : The variables in Vars(Z) for state2j , r0 ≤ j < r0 + r1 whose
values are 1 indicate DegE1

(A,B);
• Ā and guessed materials in E0 : The variables in Vars(M) whose values are

1 indicate Ā and guessed materials in E0 which tells us how to prepare the
plaintexts leading a δ(A) set at state2r0 ;



• Guessed materials in E2 : The variables in Vars(W ) whose values are 1
indicate the Guessed materials in E2 with which we can derive the sequence
of differences at state2(r0+r1) from the ciphertexts.

Together this information forms a DS-MITM attack on E. Note that the guessed
materials in E0 and E2 still need to be converted to guessed key materials, which
can be done manually or automatically fairly straightforwardly.

According to the semantics of Vars(Z), if we draw the propagation patterns of
Vars(X) and Vars(Y ) in two figures, then the propagation pattern of Vars(Z) can
be obtained by superposition of the two figures. Therefore, the key to understand
the details of the modelling of DS-MITM attack is the so-called forward/back-
ward differential and forward/backward determination relationship. To make the
description succinct and without loss of generality, we introduce the concepts
based on a 5-round keyed permutation shown in Fig. 4 and Fig. 6. We will also
give two concrete examples of the forward differential and backward determina-
tion of a 3-round toy SPN block cipher with 32-bit (4-byte) block size. The round
function shown in Fig. 3 of the toy cipher consists of an S-box layer (a parallel ap-
plication of four 8×8 Sboxes), and a linear layer L with yi =

⊕
j∈{0,1,2,3}−{i} xj

for i ∈ {0, 1, 2, 3}.
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Fig. 3: The round function of the toy cipher

4.1 Forward Differential and Backward Differential

As shown in Fig. 4, given a set Qδ(A) of N values {Q0, · · · , QN−1} for state4

which forms a δ(A) set for the input state of round 2. For every word statei[j] (4 ≤
i ≤ 10, 0 ≤ j < nc), we introduce a 0-1 variable Xi[j]. We say that the set of
0-1 variables {Xi[j] : 4 ≤ i ≤ 10, 0 ≤ j < nc} models the forward differential of
Qδ(A) in rounds (2→ 3→ 4) if the following conditions are satisfied.

- Conditions for state4 (the starting point of the forward differential, which is
also the input of round 2) : ∀j ∈ A, X4[j] = 1 and ∀j /∈ A, X4[j] = 0

- Conditions for rounds (2 → 3 → 4): Xi[j] = 0 (5 ≤ i ≤ 10, 0 ≤ j < nc) if
and only if ∀Qk ∈ Qδ(A), Q

0 ⊕Qk(statei[j]) = 0

Similarly, as depicted in Fig. 4, we say that the set of variables {Xi[j] : 0 ≤
i ≤ 4, 0 ≤ j < nc} models the backward differential of Qδ(A) in rounds (1 → 0)
if the following conditions are satisfied.



- Conditions for state4 (the starting point of the backward differential, which
is also the output of round 1): ∀j ∈ A, X4[j] = 1 and ∀j /∈ A, X4[j] = 0

- Conditions for rounds (1→ 0): Xi[j] = 0 (0 ≤ i < 4, 0 ≤ j < nc) if and only
if ∀Qk ∈ Qδ(A), Q

0 ⊕Qk(statei[j]) = 0

NL

L

state0

state1 Round 0

NL

L

state2

state3 Round 1

NL
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Fig. 4: Forward/backward differential illustrated on a 5-round keyed permutation

Let us give a concrete example. Let A = [3] and Qδ(A) = {(0, 0, 0, x) ∈ (F8
2)4 :

x ∈ F8
2}. Then the set of variables Xi[j] with 0 ≤ i ≤ 6 and 0 ≤ j < 4 shown in

Fig. 5 models forward differential of Qδ(A) in rounds (0→ 1→ 2) if we impose
the following constraints on Xi[j]. Since the values in Qδ(A) are active at the
third byte, we have X0[0] = X0[1] = X0[2] = 0, X0[3] = 1. For the S-layers in the
toy cipher, we have X2i[j] = X2i+1[j], 0 ≤ i ≤ 2, 0 ≤ j < 4. For the linear layers,
we enforce 3X2(i+1)[j]−X2i+1[j+ 1]−X2i+1[j+ 2]−X2i+1[j+ 3] ≥ 0 to ensure
that X2(i+1)[j] will be equal to 1 when any one of X2i+1[j + 1], X2i+1[j + 2],
X2i+1[j + 3] is 1. We also add the constraint

X2i+1[j + 1] +X2i+1[j + 2] +X2i+1[j + 3]−X2(i+1)[j] ≥ 0

to dictate that X2(i+1)[j] must be 0 when all of X2i+1[j + 1], X2i+1[j + 2],
X2i+1[j + 3] are 0, where 0 ≤ i ≤ 2, 0 ≤ j < 4 and the indexes are computed
modulo 4. With these constraints, the Xi[j] variables propagate in a pattern
depicted in Fig. 5.
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Fig. 5: The forward differential of a 3-round toy cipher

4.2 Forward Determination and Backward Determination

As shown in Fig. 6, given a set Q = {Q0, · · · , QN−1} of N values for state6 and an
ordered set B of indices, we say that the set of variables {Yi[j] : 6 ≤ i ≤ 10, 0 ≤
j < nc} models the forward determination relationship of {Q0(state6[B]), · · · ,
QN−1(state6[B])} in rounds (3→ 4) if the following conditions hold.

- Conditions for state6 (the starting point of the forward determination rela-
tionship, which is also the input of round 3) : ∀j ∈ B, Y6[j] = 1 and ∀j /∈ B,
Y6[j] = 0

- Conditions for rounds (3 → 4): For 6 ≤ i < 10, ∀k ∈ {0, · · · , N − 1},
with the knowledge of Q0 ⊕ Qk(statei+1[Bi+1]) (and Q0(statei+1[Bi+1]) if
statei+1 is an output state of a nonlinear layer) one can deduce the value
Q0⊕Qk(statei[Bi]), where Bi+1 = [j : Yi+1[j] = 1, 0 ≤ j < nc] for 6 ≤ i < 10
and B6 = B.

Similarly, as shown in Fig. 6, we say that the set of 0-1 variables {Yi[j] :
0 ≤ i ≤ 6, 0 ≤ j < nc} models the backward determination relationship of
{Q0(state6[B]), · · · , QN−1(state6[B])} in rounds (2 → 1 → 0) if the following
conditions hold.

- Conditions for the state6 (the starting point of the backward determination
relationship, which is also the output of round 2): ∀j ∈ B, Y6[j] = 1 and
∀j /∈ B, Y6[j] = 0

- Conditions for rounds (2→ 1→ 0): For 0 < i ≤ 6, ∀k ∈ {0, · · · , N −1} from
the knowledge of the values Q0⊕Qk(statei−1[Bi−1]), (and Q0(statei−1[Bi−1])
if statei−1 is an input state of a nonlinear layer), one can determine the value
Q0⊕Qk(statei[Bi]), where Bi−1 = [j : Yi−1[j] = 1, 0 ≤ j < nc] for 0 < i ≤ 6,
and B6 = B.

Now we show a concrete example. Assume that we have a set {Q0, · · · , Q255} =
{(0, 0, 0, x) ∈ (F8

2)4 : x ∈ F8
2} of 28 values for state0, as depicted in Fig. 7. Af-

ter the 3-round encryption of the toy cipher, we get a set {C0, · · ·C255} of 28

values for state6. Let B = [3]. The set of variables Yi[j] with 0 ≤ i ≤ 6 and
0 ≤ j < 4 shown in Fig. 7 models backward determination of {C0, · · ·C255} in
rounds (2→ 1→ 0) if we impose the following constraints on Yi[j].



NL

L

state0

state1 Round 0

NL

L

state2

state3 Round 1

NL

L

state4

state5 Round 2

NL

L

state6

state7 Round 3

NL

L

state8

state9 Round 4

state10

B

Fig. 6: The forward/backward determination relationship illustrated on a 5-
round keyed permutation

Since B = [3], we have Y6[0] = Y6[1] = Y6[2] = 0, Y6[3] = 1. For the S layers
in the toy cipher, we have Y2i[j] = Y2i+1[j], 0 ≤ i ≤ 2, 0 ≤ j < 4. For the linear
layers, we add 3Y2i+1[j]−Y2(i+1)[j+1]−Y2(i+1)[j+2]−Y2(i+1)[j+3] ≥ 0 to ensure
that Y2i+1[j] must be 1 when any one of Y2(i+1)[j+1], Y2(i+1)[j+2], Y2(i+1)[j+3]
is 1, and Y2(i+1)[j + 1] + Y2(i+1)[j + 2] + Y2(i+1)[j + 3]− Y2i+1[j] ≥ 0 to dictate
that Y2i+1[j] must be 0 when all of Y2(i+1)[j+ 1], Y2(i+1)[j+ 2], Y2(i+1)[j+ 3] are
0, where the indexes are computed modulo 4. With these constraints, the Yi[j]
variables propagate in a pattern depicted in Fig. 7.
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Fig. 7: The backward determination of a 3-round toy cipher



Note that the concepts introduced in this section are generic and not limited
to SP ciphers. For instance, we depicted the propagation patterns of the forward
differential and backward determination of a Feistel cipher with 8-bit block size
and 4× 4 S-box in Fig. 8a and Fig. 8b respectively.

S S S

(a) Forward differential

S S S

(b) Backward determination

Fig. 8: The forward differential and backward determination of a 3-round toy
cipher with Feistel structure

5 Modelling the DS-MITM Attack with Constraints: The
Technical Details

Given a cipher E = E2 ◦ E1 ◦ E0, we show how to model the distinguisher part
(E1), and subsequently the key-recovery part (E0 and E2). These models for E1,
E0 and E2 jointly lead to a model for DS-MITM attack on E. Note that this
part of the paper should be read while referring to Fig. 1.

5.1 CP Model for E1: The Distinguisher Part.

We introduce 2 sets of variables Vars(X) = {Xi[j] : 2r0 ≤ i ≤ 2(r0 + r1), 0 ≤
j < nc} and Vars(Y ) = {Yi[j] : 2r0 ≤ i ≤ 2(r0 + r1), 0 ≤ j < nc} for all the
words of the states {statei[j] : 2r0 ≤ i ≤ 2(r0 + r1), 0 ≤ j < nc} involved in the
r1 rounds of E1 as shown in Fig. 1.

We then impose a set of constraints on Vars(X) such that Vars(X) models
the forward differential of a δ(A)-set Qδ(A) = {Q0, · · · , QN−1} for state2r0 with
A = [j : X2r0 [j] = 1, 0 ≤ j < nc] in rounds (r0 → r0 + 1 → · · · → r0 + r1 − 1).
Also, another set of constraints is imposed on Vars(Y ) such that Vars(Y ) models
the backward determination relationship of

{Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])}

with B = [j : Y2(r0+r1)[j] = 1, 0 ≤ j < nc] in rounds (r0 + r1 − 1 → · · · → r0).
Finally, we introduce a new set of variables Vars(Z) = {Zi[j] : 2r0 ≤ i ≤
2(r0 + r1), 0 ≤ j < nc} and impose a set of constraints on Vars(Z) such that
Zi[j] = 1 if and only if Xi[j] = Yi[j] = 1. The variables in Vars(X), Vars(Y ), and
Vars(Z) together with the constraints imposed on them form a CP model.

Then we have the following observations which can be easily derived from the
Assumption 1 made at the end of Sect. 2 and the definition of forward/backward
differential and forward/backward determination relationship.



Observation 1 If Vars(X) models the forward differential of a δ(A)-set

Qδ(A) = {Q0, · · · , QN−1}

for state2r0 (Fig. 1) with A = [j : X2r0 [j] = 1, 0 ≤ j < nc] in rounds (r0 →
r0 + 1 → · · · → r0 + r1 − 1), then for an arbitrary ordered set B of indices, we
can determine the sequence of differences

∆E1(Qδ(A),B) = [Q0 ⊕Q1(state2(r0+r1)[B]), · · · , Q0 ⊕QN−1(state2(r0+r1)[B])]

from the knowledge of the following set of intermediate values of Q0.

{Q0(state2i[j]) : X2i[j] = 1, r0 ≤ i < r0 + r1, 0 ≤ j < nc}.

Observation 2 Let Qδ(A) = {Q0, · · · , QN−1} be a δ(A) set for state2r0 for an
arbitrary A. If Vars(Y ) models the backward determination relationship of

{Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])}

with B = [j : Y2(r0+r1)[j] = 1, 0 ≤ j < nc] in rounds (r0 + r1 − 1 → · · · → r0),
then we can determine the sequence of differences

∆E1
(Qδ(A),B) = [Q0 ⊕Q1(state2(r0+r1)[B]), · · · , Q0 ⊕QN−1(state2(r0+r1)[B])]

from the knowledge of the following set of intermediate values of Q0

{Q0(state2i[j]) : Y2i[j] = 1, r0 ≤ i < r0 + r1, 0 ≤ j < nc}.

Note that Observation 1 and Observation 2 are stated with an arbitrary
ordered set A and B respectively. Therefore, if we know the intermediate values
of Q0(state[j]) such that X2i[j] and Y2i[j] are equal to 1 simultaneously, we can
determine the sequence ∆E1

(Qδ(A),B) with the specific A and B corresponding
to the underlying values of Vars(X) and Vars(Y ).

Observation 3 Let A = [j : X2r0 [j] = 1, 0 ≤ j < nc], B = [j : Y2(r0+r1)[j] =
1, 0 ≤ j < nc], and Qδ(A) = {Q0, · · · , QN−1} be a δ(A) set for state2r0 . Then

from the knowledge of the following
∑r0+r1−1
i=r0

∑nc−1
j=0 Z2i[j] c-bit words

{Q0(state2i[j]) : Z2i[j] = 1, r0 ≤ i < r0 + r1, 0 ≤ j < nc},

we can determine the value of the sequence of differences

∆E1
(Qδ(A),B) = [Q0 ⊕Q1(state2(r0+r1)[B]), · · · , Q0 ⊕QN−1(state2(r0+r1)[B])].

From the above observations, it is easy to see that any solution of Vars(X),
Vars(Y ), and Vars(Z) corresponds to aDS-MITM distinguisher (A,B,DegE1

(A,B))
with A = [j : X2r0 [j] = 1, 0 ≤ j < nc], B = [j : Y2(r0+r1)[j] = 1, 0 ≤ j < nc],

and DegE1
(A,B) =

∑r0+r1−1
i=r0

∑nc−1
j=0 Z2i[j].



5.2 CP model for the outer rounds E0 and E2

The CP model for E0. As discussed in Sect. 3, the attacker needs to prepare
a set Pδ(Ā) of chosen plaintexts based on the distingusher (A,B,DegE1

(A,B))

placed at E1. According to the definition of Ā, there must be P 1, · · · , PN−1 in
Pδ(Ā) such that Qδ(A) = {Q0, · · · , Qn−1} forms a δ(A)-set for state2r0 , where

Qj = E0(P j).
For E0 we introduce a set of 0-1 variables Vars(M) = {Mi[j] : 0 ≤ i ≤

2r0, 0 ≤ j < nc} and impose a set of constraints on Vars(M) such that Vars(M)
models the backward differential of the δ(A)-set Qδ(A) with A = {j : X2r0 [j] =
1, 0 ≤ j < nc} in rounds (r0 − 1 → · · · → 0). Then according to the definition
of backward differential and assumption 1, we have the following observation.

Observation 4 Given P 0 ∈ Pδ(Ā), the set

Guess(E0) = {P 0(state2i[j]) : M2i[j] = 1, 0 < i < r0, 0 ≤ j < nc}

of
r0−1∑
i=1

nc−1∑
j=0

M2i[j] c-bit words needs to be guessed to find P 1, · · · , PN−1 in Pδ(Ā).

The CP model for E2. After the guess of Guess(E0), we obtain a set {P 0, · · · ,
PN−1} ⊆ Pδ(Ā) such that Qδ(A) = {Q0, · · · , QN−1} with Qj = E0(P j) forms a

δ(A) set for state2r0 (under the guess). Let Cj = E(P j), 0 ≤ j < N . Then we
want to get the sequence

∆E1
(Qδ(A),B) = {Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])}

by decrypting {C0, · · · , CN−1} with E2.
For E2 we introduce a set of 0-1 variables Vars(W ) = {Wi[j] : 2(r0 +

r1) ≤ i ≤ 2(r0 + r1 + r2), 0 ≤ j < nc} and impose a set of constraints
on Vars(W ) such that Vars(W ) models the forward determination of the set
{Q0(state2(r0+r1)[B]), · · · , QN−1(state2(r0+r1)[B])} with B = {j : Y2(r0+r1)[j] =
1, 0 ≤ j < nc} in rounds (r0 + r1 → · · · → r0 + r1 + r2 − 1).

Observation 5 Given {C0, · · · , CN−1}, the set

Guess(E2) = {Q0(state2i[j]) : W2i[j] = 1, r0 + r1 ≤ i < r0 + r1 + r2, 0 ≤ j < nc}

of
r0+r1+r2−1∑
i=r0+r1

nc−1∑
j=0

W2i[j] c-bit words needs to be guessed to determine the se-

quence

∆E1(Qδ(A),B) = [C0 ⊕ C1(state2(r0+r1)[B]), · · · , C0 ⊕ CN−1(state2(r0+r1)[B])].

Remark. There is still a gap between Guess(Ei) and kEi for i ∈ {0, 2}. To
perform the attack (see Sect. 3), we need to identify kEi rather than Guess(Ei).
As we will show in Sect. 7.1, Sect. 7.2 and Sect. 7.3, it is fairly straightforward
to convert Guess(Ei) to kEi

.



6 How to Use the Modelling Technique in Practice?

The modelling technique for DS-MITM attack can be applied in several scenar-
ios. In the following, we identify two of them and give a discussion of possible
extensions.

6.1 Enumeration of DS-MITM Distinguishers

In Sect. 5, the descriptions of the modelling of E1 (the distinguisher part) and
the outer rounds (E0 and E2) are intentionally separated to have a method
whose only purpose is to search for DS-MITM distinguishers.

When we target a cipher with DS-MITM attack, probably the first that come
into mind is to identify a DS-MITM distinguisher covering as many rounds as
possible. To this end, we can build a model with the method presented in Sect. 5
for k rounds of the target cipher, and add one more constraint dictating that

Deg(A,B) =

r0+r1−1∑
i=r0

nc−1∑
j=0

Z2i[j] < |K|c

to prevent the complexity of the offline phase from being too high, where |K|c is
the number of c-bit words in the master key of the target cipher. Then we can
enumerate all solutions using a constraint solver. If the solutions of the model
lead to valid distinguishers, we can increase k and try to find distinguishers
covering more rounds.

6.2 Fast Prototyping for DS-MITM Attacks

Given a keyed permutation E = E2◦E1◦E0, it is difficult to determine whichDS-
MITM distinguisher covering E1 will lead to the best attack, though intuitively
a distinguisher (A,B,Deg(A,B)) with smaller Deg(A,B) is preferred. In this
situation, we can set up a model for the whole E2 ◦E1 ◦E0 with the constraints

Deg(A,B) =
∑r0+r1−1
i=r0

∑nc−1
j=0 Z2i[j] < |K|c

r0−1∑
i=1

nc−1∑
j=0

M2i[j] +
r0+r1+r2−1∑
i=r0+r1

nc−1∑
j=0

W2i[j] < |K|c

The resolution of the model leads to both a distinguisher covering E1 and an
attack based on the distinguisher simultaneously, which should be very useful
in fast prototyping of DS-MITM attack in the analysis and design of block ci-
phers. Note that the output of the tool is a distinguisher (A,B,Deg(A,B)) and
the secret information Guess(E0) and Guess(E2), which needs to be converted to
kE0 and kE2 automatically or manually. Then the so-called key-bridging tech-
nique [29, 47] can be applied to give an estimation of |kE0

∪ kE2
|.

Another strategy is to find all k-round distinguishers (A,B,Deg(A,B)) with
Deg(A,B) < d for some integer d. Then various generic or dedicated optimization
techniques [29] (some of which may be unknown at present) can be applied based
on these distinguishers to see which one leads to the best attack.



7 Applications

7.1 Application to SKINNY

In this section, we apply our method to SKINNY-128-384 (the TK3 version
with 128-bit block size, 384-bit key, and 0-bit tweak) to have a concrete example
demonstrating the method presented in Sect. 4. The specification of SKINNY
can be found in [44], and we omit it from this paper due to space restrictions.

The indexing scheme we used for analyzing SKINNY is illustrated in Fig. 9,
which is essentially the same as Fig. 1, except that the states are drawn as 4× 4
squares and the NL layer is composed of a parallel application of 16 Sboxes and
a shift row operation.

To model an r-round DS-MITM distinguisher, we introduce 3 sets Vars(X),
Vars(Y ), and Vars(Z) of variables for all the states involved in rounds (k, k + 1,
· · · , k + r − 1), where Vars(X) = {Xi[j] : 2k ≤ i ≤ 2(k + r), 0 ≤ j < nc} models
the forward differential, Vars(Y ) = {Yi[j] : 2k ≤ i ≤ 2(k + r), 0 ≤ j < nc}
models the backward determination relationship, and Vars(Z) = {Zi[j] : 2k ≤
i ≤ 2(k + r), 0 ≤ j < nc} such that Zi[j] = 1 if and only if Xi[j] = Yi[j] = 1.
Note that the logical statement of Zi[j] can be converted into allowed tuples of
(Zi[j], Xi[j], Yi[j]), that is (Zi[j], Xi[j], Yi[j]) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)},
which can be modeled in CP or MILP trivially [14, 10]. So the only question left
is what kind of constraints should be imposed on Vars(X) and Vars(Y ) such that
they model the intended properties.
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Fig. 9: The indexing scheme used for the rounds, states, and words of SKINNY
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Fig. 10: Forward differential of a δ(A) set for state0 in rounds (0→ 1→ 2→ 3)
with A = [13]



The constraints imposed on Vars(X). Firstly, according to the definition of
forward differential and the SB, AC, AK, SR operations of SKINNY, we have
X2i+1[4a+b] = X2i[4a+(b−a) mod 4] for k ≤ i < k+r, where a, b ∈ {0, 1, 2, 3}
are used to index the rows and columns of a state respectively. Secondly, for every
column b ∈ {0, 1, 2, 3} and k ≤ i < k + r, we impose the following constraints
due to the MC operation

• X2(i+1)[b] = 0 if and only if X2i+1[b] = X2i+1[b+ 8] = X2i+1[b+ 12] = 0;
• X2(i+1)[b+ 4] = X2i+1[b];
• X2(i+1)[b+ 8] = 0 if and only if X2i+1[b+ 4] = X2i+1[b+ 8] = 0;
• X2(i+1)[b+ 12] = 0 if and only if X2i+1[b] = X2i+1[b+ 8] = 0.

Note that all constraints given in the above can be converted to allowed tu-
ples of some variables and therefore can be easily modeled by the CP approach.
An example solution of a set of variables modelling the forward differential of
4-round SKINNY is visualized in Fig. 10.
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Fig. 11: The backward determination relationship of {Q0(state8[B]), · · · ,
QN−1(state8[B])} for state8 in rounds (3→ 2→ 1→ 0) with B = [11]

The constraints imposed on Vars(Y ). Similarly, according to the definition
of backward determination relationship and the SB, AC, AK, SR operations of
SKINNY, we have Y2i+1[4a+ b] = Y2i[4a+ (b− a) mod 4] for k ≤ i < k+ r and
a, b ∈ {0, 1, 2, 3}. In addition, for every column b ∈ {0, 1, 2, 3} and k ≤ i < k+ r,
we impose the following constraints

• Y2i+1[b] = 0 if and only if Y2(i+1)[b] = Y2(i+1)[b+ 4] = Y2(i+1)[b+ 12] = 0;
• Y2i+1[b+ 4] = Y2(i+1)[b+ 8];
• Y2i+1[b+ 8] = 0 if and only if Y2(i+1)[b] = Y2(i+1)[b+ 8] = Y2(i+1)[b+ 12] = 0;
• Y2i+1[b+ 12] = Y2(i+1)[b].

An example solution of a set of variables modelling the backward determination
relationship of 4-round SKINNY is visualized in Fig. 11. According to the con-
straints imposed on Vars(Z), if Vars(X) and Vars(Y ) are assigned to values as
illustrated in Fig. 10 and Fig. 11 respectively, then we can derive the values of
Vars(Z) by superposition of Fig. 10 and Fig. 11, as depicted in Fig. 12.
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Fig. 12: A visualization of an instantiation of Vars(Z) according to the values
assigned to Vars(X) and Vars(Y ), which can be regarded as a superposition of
Fig. 10 and Fig. 11

Additional constraints. We require
∑
Xi[j] 6= 0,

∑
Yi[j] 6= 0, and

∑
Zi[j] 6= 0

to exclude the trivial solution where all variables are assigned to 0. Also, to
make the time complexity of the offline phase not exceeding the complexity of
the exhaustive search attack, we require

∑
Z2i[j] ≤ |K|c = 384/8 = 48 .

Objective functions. The objective function is to minimize
∑k+r−1
i=k

∑15
j=0 Z2i[j]

to make Deg(A,B) as small as possible.

Cipher-specific constraints. For SKINNY, we can reduce the number of
guessed parameters by exploiting the properties of its linear transformation.
According to the MC operation of SKINNY, for an intermediate value Q and
b ∈ {0, 1, 2, 3}, we have
Q(state2(i+1)[b]) = Q(state2i+1[b]) +Q(state2i+1[b+ 8]) +Q(state2i+1[b+ 12])
Q(state2(i+1)[b+ 4]) = Q(state2i+1[b])
Q(state2(i+1)[b+ 8]) = Q(state2i+1[b+ 4]) +Q(state2i+1[b+ 8])
Q(state2(i+1)[b+ 12]) = Q(state2i+1[b]) +Q(state2i+1[b+ 8])

Hence, the tuple (Q(state2i+1[b + 8]), Q(state2(i+1)[b + 4]), Q(state2(i+1)[b +
12])) can be fully determined when any two of the three entries are known.
Similarly, the tuple (Q(state2i+1[b+ 12]), Q(state2(i+1)[b]), Q(state2(i+1)[b+ 12]))
can be fully determined when any two of the three entries are known. To take
these facts into account, we introduce two new sets {φi : k ≤ i < k + r} and
{ϕi : k ≤ i < k + r} of 0-1 variables , and include the following constraints for
b ∈ {0, 1, 2, 3}

• φi = 1 if and only if Z2i+1[b+ 8] + Z2(i+1)[b+ 4] + Z2(i+1)[b+ 12] = 3;
• ψi = 1 if and only if Z2i+1[b+ 12] + Z2(i+1)[b] + Z2(i+1)[b+ 12] = 3;

We also need to set the objective function to minimize

k+r−1∑
i=k

15∑
j=0

Z2i[j]−
k+r−1∑
i=k

(φi + ψi).



Using the above model, we can find a DS-MITM distinguisher for 10.5-round
SKINNY-128-384 in 2 seconds. In [44], the designers of SKINNY expected that
there should be no DS-MITM distinguisher covering more than 10 rounds of
SKINNY since partial-matching can work at most (6− 1) + (6− 1) = 10 rounds.
Hence, our result concretize the 10-round distinguisher, and actually our tool
found DS-MITM distinguishers of SKINNY covering more than 10 rounds. An
enumeration of all DS-MITM distinguishers covering 10.5-round SKINNY with
40 ≤ Deg(A,B) ≤ 48 is performed and the results are listed in Table. 2. Note
that distinguishers with Deg(A,B) > 48 are ineffective for an attack. We then try
to get an attack on SKINNY by modelling E1 (the distinguisher part), E0 and
E2 (the outer rounds) as a whole with the method presented in Sect. 4. We omit
the detailed description of the constraints for Vars(M) and Vars(W ) introduced
for E0 and E2 since they are similar to the constraints imposed on Vars(X)
and Vars(Y ) given previously. As a result, we identify a DS-MITM attack on
22-round SKINNY-128-384 based on a distinguisher (A,B,Deg(A,B)) with A =
[14], B = [7], and deg(A,B) = 40, which is shown in Fig. 17 in [supplementary
material]. The secret intermediate values Guess(E0) and Guess(E2) created by
P 0 in the outer rounds are presented in Fig. 18 in [supplementary material A].
To perform the attack, we still need to convert Guess(E0) and Guess(E2) into
the secret information of subkeys manually, which is visualized in Fig. 19 in
[supplementary material A]. Then we perform the key-bridging technique [29, 47]
on kin and kout, and find that |kin ∪ kout| ≤ 376.

Complexity analysis. According to the discussion of Sect. 3.3, in the offline
phase, the time complexity is 28×40 × 28×1 × 40

16×22CE ≈ 2324.86CE , and the

memory complexity is (28 − 1) × 8 × 1 × 28×40 ≈ 2330.99 bits. In the online
phase, the time complexity is 247×8 × 28×1 × 57+64

22×16CE ≈ 2382.46CE . The data

complexity of the attack is 28×12 = 296, which can be obtained from the input
state of Fig. 18 in [supplementary material A].

7.2 Application to LBlock

The indexing scheme we used for analyzing LBlock is shown in Fig. 13, where the
AK is the subkey xor operation, SB is a parallel application of 8 4× 4 S-boxes,
and LN is a permutation permuting j to LN[j].

To model an r-round DS-MITM distinguisher of LBlock, we introduce 3 sets
Vars(X), Vars(Y ), and Vars(Z) of variables for all the states involved in rounds
(k, k+ 1, · · · , k+ r−1), where Vars(X) = {XL

i [j], XR
i [j] : k ≤ i ≤ k+ r, 0 ≤ j <

nc}∪{XS
i [j], XM

i [j] : k ≤ i < k+ r, 0 ≤ j < nc} models the forward differential,
Vars(Y ) = {Y Li [j], Y Ri [j] : k ≤ i ≤ k + r, 0 ≤ j < nc} ∪ {Y Si [j], YMi [j] : k ≤
i < k + r, 0 ≤ j < nc} models the backward determination relationship, and
Vars(Z) = {ZLi [j], ZRi [j] : k ≤ i ≤ k + r, 0 ≤ j < nc} ∪ {ZSi [j], ZMi [j] : k ≤ i <
k + r, 0 ≤ j < nc} such that

• ZLi [j] = 1 if and only if XL
i [j] = Y Li [j] = 1

• ZRi [j] = 1 if and only if XR
i [j] = Y Ri [j] = 1



Table 2: An enumeration of allDS-MITM distinguishers for 10.5-round SKINNY-
128-384 with 40 ≤ Deg(A,B) ≤ 48.

No. A B Deg(A,B) No. A B Deg(A,B) No. A B Deg(A,B)
1 [15] [4] 40 21 [13] [6, 4] 45 41 [13] [5] 46
2 [12] [5] 40 22 [14] [7, 5] 45 42 [12] [4] 46
3 [13] [6] 40 23 [13] [6, 4] 45 43 [14] [6] 46
4 [14] [7] 40 24 [15] [4, 6] 45 44 [15] [7] 46
5 [15] [5] 42 25 [13] [5] 45 51 [13] [4, 6] 47
6 [12] [6] 42 26 [15] [6] 45 52 [12] [7, 5] 47
7 [13] [7] 42 27 [14] [4] 45 53 [14] [5, 7] 47
8 [14] [4] 42 28 [13] [4] 45 54 [15] [6, 4] 47
9 [13] [5] 43 29 [14] [5] 45 49 [13] [6] 47
10 [14] [6] 43 30 [14] [6] 45 50 [13] [6] 47
11 [12] [4] 43 31 [12] [4] 45 51 [14] [7] 47
12 [15] [7] 43 32 [15] [5] 45 52 [12] [5] 47
13 [12] [7] 44 33 [13] [7] 45 53 [12] [5] 47
14 [13] [4] 44 34 [12] [6] 45 54 [14] [7] 47
15 [12] [7] 44 35 [15] [7] 45 55 [15] [4] 47
16 [13] [4] 44 36 [12] [7] 45 56 [15] [4] 47
17 [13] [4] 44 37 [14] [4, 6] 46 57 [15] [7, 5] 48
18 [14] [5] 44 38 [13] [7, 5] 46 58 [14] [6, 4] 48
19 [14] [5] 44 39 [15] [5, 7] 46 59 [12] [4, 6] 48
20 [13] [4] 44 40 [12] [6, 4] 46 60 [13] [5, 7] 48
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Fig. 13: The indexing scheme used for LBlock

• ZSi [j] = 1 if and only if XS
i [j] = Y Si [j] = 1

• ZMi [j] = 1 if and only if XM
i [j] = YMi [j] = 1

Note that the logical statement of Vars(Z) can be converted into allowed tu-
ples, e.g. (ZLi [j], XL

i [j], Y Li [j]) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}, which can
be modeled in CP or MILP trivially [10, 14]. So the only question left is what
kind of constraints should be imposed on Vars(X) and Vars(Y ) such that they
model the intended properties.

The constraints imposed on Vars(X). According to the definition of forward
differential and the AK, SB, LN, ≪ 8, XOR operations of LBlock, we have the
following constraints

• XL
i [j] = XS

i [j] = XR
i+1[j], for k ≤ i < k + r and 0 ≤ j ≤ 7;

• XM
i [LN [j]] = XS

i [j], for k ≤ i < k + r and 0 ≤ j ≤ 7;



• XL
i+1[j] = 0 if and only if XR

i [(j+2) mod 8] = XM
i [j] = 0, for k ≤ i < k+r

and 0 ≤ j ≤ 7.

The constraints imposed on Vars(Y ). Similarly, according to the definition
of the backward determination relationship and the AK, SB, LN, ≪ 8, XOR
operations of LBlock, we have the following constraints

• For k ≤ i < k+r and 0 ≤ j ≤ 7, Y Li [j] = 0 if and only if Y Ri+1[j] = Y Si [j] = 0;
• YMi [LN [j]] = Y Si [j], for k ≤ i < k + r and 0 ≤ j ≤ 7;
• For XOR and SR operations: YMi [j] = Y Ri [(j + 2) mod 8] = Y Li+1[j]

According to the constraints imposed on Vars(Z), if Vars(X) and Vars(Y ) are
assigned to values as illustrated in Fig. 14a and Fig. 14b, then we can derive the
values of Vars(Z) by superposition of Fig. 14a and Fig. 14b, which is depicted
in Fig. 14c.
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Fig. 14: An instantiation of the Vars(X), Vars(Y ) and Vars(Z)

Additional constraints. We require
∑
XL
k [j] +

∑
XR
k [j] 6= 0,

∑
Y Lk+r[j] +∑

Y Rk+r[j] 6= 0, to exclude the trivial solution where all variables are assigned
to 0. Also, to make the time complexity of the offline phase not exceeding the
complexity of the exhaustive search, we require

∑
ZSi [j] < |K|c = 80/4 = 20 .

Objective functions. The objective function is to minimize
∑k+r−1
i=k

∑7
j=0 Z

S
i [j]

to make Deg(A,B) as small as possible.

By integrating the above model with the models of E0 and E2 with some
simple tweak, we identify a DS-MITM attack on 21-round LBLOCK. The distin-
guisher used in the attack is an 11-roundDS-MITM distinguisher (A,B,Deg(A,B))



with A = [12], B = [12], and deg(A,B) = 14, which is shown in Fig. 20 in
[supplementary material]. The secret intermediate values Guess(E0) and Guess(E2)
created by P 0 in the outer rounds are presented in Fig. 21 in [supplementary ma-
terial] marked with red color. To perform the attack, we convert Guess(E0) and
Guess(E2) into the secret information of subkeys manually, which is visualized in
Fig. 22 in [supplementary material], where there are 22 nibbles in kin and 12 nib-
bles in kout. Then we perform the key-bridging technique [29, 47] on kin and kout,
and find that |kin ∪ kout| ≤ 69, which is illustrated in Fig. 23 in [supplementary
material].

Complexity analysis. According to the discussion of Sect. 3.3, in the offline
phase, the time complexity is 24×14×24×1× 14

21×8CE ≈ 256.42CE , and the memory

complexity is (24− 1)× 4× 1× 24×14 ≈ 261.91 bits. In the online phase, the time
complexity is 269 × 24×1 × 12+12

21×8 CE ≈ 270.20CE . The data complexity of the

attack is 24×12 = 248, which can be obtained from input state (Round 0) of
Fig. 21 in [supplementary material].

7.3 Application to TWINE-80

With the method presented in Sect. 4, we find a DS-MITM attack on 20-round
TWINE-80 based on a distinguisher (A,B,Deg(A,B)) with A = [3], B = [9, 13],
and deg(A,B) = 19, which is shown in Fig. 24 in [supplementary material]. The
secret intermediate values Guess(E0) and Guess(E2) created by P 0 in the outer
rounds are presented in Fig. 25 in [supplementary material]. To perform the at-
tack, we convert Guess(E0) and Guess(E2) into the secret information of sub-
keys manually, which is visualized in Fig. 26 in [supplementary material]. Then
we perform the key-bridging technique [29, 47] on kin and kout, and find that
|kin ∪ kout| ≤ 76, which is illustrated in Fig. 27 in [supplementary material].

Complexity analysis. According to the discussion of Sect. 3.3, in the offline
phase, the time complexity is 24×19×24×1× 19

20×8CE ≈ 276.93CE , and the memory

complexity is (24− 1)× 4× 2× 24×19 ≈ 282.91 bits. In the online phase, the time
complexity is 276×24×1× 7+20

20×8CE ≈ 277.44CE . The data complexity of the attack

is 24×8 = 232, which can be obtained from input state (Round 0) of Fig. 25 in
[supplementary material].

7.4 Applications to AES, ARIA, and SIMON

We also apply our method to AES, ARIA, and SIMON. However, no better
result is obtained. Still, We would like to provide some information about our
analysis for the sake of completeness.

For AES, our tool can recover the base DS-MITM attacks behind all attacks
(including the best ones) presented in [28–30, 53, 54]. However, currently known
best attacks on AES exploit the differential enumeration technique [28] which
our tool cannot take into account automatically. To deal with this, we use a
2-step approach. First, we list all the distinguishers that may lead to a valid



attack using the fact that, at best, the differential enumeration technique can
decrease the memory complexity by a factor strictly less than 2n, where n is
the state size. For AES-128 we would only add the constraint dictating that two
consecutive states cannot be fully active in the distinguisher. Then in a second
step, we can obtain the concrete complexities of the attacks derived from the
distinguishers by applying known techniques. Usually, the distinguisher leading
to the best attack has the lowest number of active bytes. But some manual work
is inevitable to really optimize the attacks. Actually, during our analysis, our
code generates figures based on the distinguishers automatically, which greatly
facilitates subsequent manual analysis and the checking of correctness. Note that
the first step alone can be used to get an upper bound on the number of rounds
one may attack (independent of any tricks involving manual work): if there is
no distinghuisher then there is no attack.

For ARIA, we obtain the same result presented in [55]. Unlike the other
targets presented in the paper which are modeled using MILP, we also provide a
Choco [56] implementation for finding the DS-MITM distinguishers of the ARIA
cipher to show that we can choose from MILP/SAT/SMT/CP as the modeling
language freely. This fact is important since the solvers are being improved
constantly, and thus we can expect the resolution of more difficult instances
in the future. We also try our tool on bit-oriented ciphers like SIMON. For
SIMON32/64, only an 8-round DS-MITM distinguisher is identified, which is far
less than the rounds can be penetrated by differential attacks.

8 Applications in the Process of Block Cipher Design

In the design process, the designer typically first fixes the general structure of
the block cipher. Then she or he tries to identify the optimal local components in
terms of security, efficiency, power consumption etc. by a tweaking-and-analysis
style iterative approach. Therefore, it is important to have efficient tools at hands
such that a thorough exploration of the design space can be performed. In this
section, we show that our tool can be applied in this situation by tweaking
the block ciphers LBlock and TWINE. Note that unlike Ivica’s tool [57], where
nature-inspired meta-heuristics are employed, our method essentially performs
an DS-MITM distinguishing attack for each possible instantiation of the target
cipher, and pick the optimal ones according to the results.

For LBlock-80, we tweak the 8-nibble to 8-nibble permutation. We exhaus-
tively search for the 11-roundDS-MITM distinguishers with the lowest Deg(A,B)
for the 8! = 40320 cases. The distribution of the 40320 cases in terms of Deg(A,B)
is shown in Fig. 15. According to Fig. 15, we can make several interesting obser-
vations. Firstly, there are many very weak permutations with very low deg(A,B)
which obviously should be avoided. In extreme cases, there are 12560 permuta-
tions with Deg(A,B) = 0. Secondly, the number of permutations with high
resistance against DS-MITM attack is small. There are 64 permutations among
the 40320 ones with Deg(A,B) = 14, and actually the original permutation of
LBlock is chosen from these good permutations.



Fig. 15: The horizontal axis shows Deg(A,B) of the 11-round distinguisher (N/A
means there is no valid distinguisher found), while the vertical axis indicates the
corresponding numbers of permutations

For TWINE-80, we tweak the word shuffle of 16 nibbles. There are totally
16! ≈ 244.25 possibilities, which is out of reach of our computational power.
However, according to [58], we only need to consider the 8!×8! even-odd shuffles.
Let P = (P0, P1), be the word shuffle where P0 is the shuffle of all even positions
while P1 is the shuffle of all odd positions. Then it can be shown that (P0, P1)
is equivalent to (Q ◦ P1 ◦ Q−1, Q ◦ P2 ◦ Q−1), where Q is an arbitrary word
shuffle. Therefore, the number of cases can be further reduced since the 8! × 8!
shuffles can be divided into 22 × 8! = 887040 equivalent classes with respect
to the DS-MITM attack. We exhaustively search for the 11-round DS-MITM
distinguishers with the lowest Deg(A,B) for the 887040 cases. The distribution
of the 887040 cases in terms of Deg(A,B) is shown in Fig. 16. According to

Fig. 16: The horizontal axis shows Deg(A,B) of the 11-round distinguisher (N/A
means there is no valid distinguisher found), while the vertical axis indicates the
corresponding numbers of permutations

Fig. 16, we can make several interesting observations. Firstly, there are many
very weak permutations with very low deg(A,B) which obviously should be
avoided. In extreme cases, there are 528631 permutations with Deg(A,B) = 0.
Secondly, the number of permutations with high resistance against DS-MITM



attack is small. There are only 344 permutations among the 887040 ones with
Deg(A,B) = 14, and actually the original permutation of TWINE is chosen from
these good permutations. Finally, we identify a set of 12 permutations for which
we can not find any 11-round distinguisher, indicating that they are stronger than
the original permutation in TWINE-80 with respect to the DS-MITM attack.

Since both the DS-MITM attack in this paper and the word-oriented trun-
cated impossible differential attack are structure attacks whose effectiveness is
not affected by the details of the underlying S-boxes, we are wondering whether
there is a set of strongest word shuffles with respect to the DS-MITM attack
and impossible differential attack simultaneously. We exhaustively analysis the
887040 TWINE variants. It turns out that for any variant there is a 14-round
impossible differential, and there are 144 variants with no 15-round impossible
differential. Finally, we identify a set of 12 word shuffles with no 15-round im-
possible differential and no 11-round DS-MITM distinguisher (listed in Table. 4
in [supplementary material]). Note that the word shuffle used in TWINE is not in
this set. Therefore, it is potentially better to use one from these 12 word shuffles.

9 Conclusion and Discussion

In this paper, we present the first tool for automatic Demirci-Selçuk meet-in-
the-middle analysis based on constraint programming. In our approach, the for-
mulation and resolution of the model are decoupled. Hence, the only thing needs
to do by the cryptanalysts is to specify the problem in some modeling language,
and the remaining work can be done with any open-source or commercially avail-
able constraint solvers. This approach should be very useful in fast prototyping
block cipher designs. Finally, we would like to identify a set of limitations of our
approach, overcoming which is left for future work.

Limitations. First of all, some important techniques for improving the DS-
MITM attack have not been integrated into our framework yet, including (but
not limited to) the differential enumeration technique, and using several distin-
guishers in parallel. Secondly, we cannot guarantee the optimality of the attacks
produced by our tool, due to the heuristic natures of the key-recovery process,
and the lack of automatically considering cipher specific properties. Finally, we
do not know how to apply our method to ARX based constructions.
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helpful comments, and Gaëtan Leurent for careful reading and shepherding our
paper. The work is supported by the Chinese Major Program of National Cryp-
tography Development Foundation (Grant No. MMJJ20180102), the National
Natural Science Foundation of China (61732021, 61802400, 61772519, 61802399),
the Youth Innovation Promotion Association of Chinese Academy of Sciences,
and the Institute of Information Engineering, CAS (Grant No. Y7Z0251103).
Patrick Derbez is supported by the French Agence Nationale de la Recherche
through the CryptAudit project under Contract ANR-17-CE39-0003.



References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1) (1991) 3–72

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Advances in
Cryptology–EUROCRYPT 1993, Springer (1994) 386–397

3. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: Fast Software
Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22,
1997, Proceedings. (1997) 149–165

4. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Fast Software Encryption,
9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Re-
vised Papers. (2002) 112–127

5. Todo, Y.: Structural evaluation by generalized integral property. In: Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I. (2015) 287–314

6. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and chaskey. In: Applied Cryptography and Network Se-
curity - 14th International Conference, ACNS 2016, Guildford, UK, June 19-22,
2016. Proceedings. (2016) 485–499

7. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: Application to Salsa20. IACR Cryptology ePrint Archive, Report 2013/328
(2013) http://eprint.iacr.org/2013/328.

8. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher
family. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I.
(2015) 161–185

9. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Information Security and Cryptology
–ISC 2012, Springer (2012) 57–76

10. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I. (2014) 158–178

11. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers.
In: Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I. (2016) 648–678

12. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects - revealing structural properties of several ciphers. In: Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part III. (2017) 185–215

13. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-Based Automatic Search Algo-
rithms for Differential and Linear Trails for Speck. In: Fast Software Encryption -
23rd International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers. (2016) 268–288



14. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key
differential cryptanalysis. In: Principles and Practice of Constraint Programming
- 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016,
Proceedings. (2016) 584–601

15. Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Anal-
ysis of AES, SKINNY, and others with constraint programming. IACR Trans.
Symmetric Cryptol. 2017(1) (2017) 281–306

16. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for im-
possible differentials and zero-correlation linear approximations. IACR Cryptology
ePrint Archive 2016 (2016) 689

17. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: Advances in Cryptology–EUROCRYPT 1994, Springer (1995) 366–375

18. Dobraunig, C., Eichlseder, M., Mendel, F.: Heuristic tool for linear cryptanalysis
with applications to CAESAR candidates. In: Advances in Cryptology - ASI-
ACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II. (2015) 490–509

19. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Topics in Cryptology–CT-RSA 2014. Springer (2014) 227–250
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A Visualization of the DS-MITM Distinguishers and
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Fig. 17: A DS-MITM distinguisher (A,B,Deg(A,B)) for 10.5-round SKINNY-
128-384 with A = [14] (the nibble marked with crosshatch in the input state
of round 0), B = [7] (the nibbles marked with crosshatch in the input state of
round 11), and Deg(A,B) = 40 (the nibbles before the SB, AC, AK, and SR
operations mark with red color). The nibble marked with blue color are those
redundant bytes required to be guessed if we do not impose the cipher-specific
constraints presented in Sect. 7.1.



Table 3: The 64 permutations for which we can not find 12-round distin-
guishers and have high resistance against 11-round DS-MITM attack, where
(7, 6, 5, 4, 3, 2, 1, 0) means that 0 is permuted to 7, 1 is permuted to 6, and so on.
No. Permutation No. Permutation No. Permutation No. Permutation

1 (7,6,5,3,4,1,2,0) 17 (7,6,2,4,0,5,1,3) 33 (7,5,6,3,4,2,1,0) 49 (7,5,2,0,3,1,6,4)
2 (7,2,4,1,3,6,0,5) 18 (7,2,0,5,3,6,4,1) 34 (7,1,5,4,0,2,6,3) 50 (7,1,6,0,3,5,2,4)
3 (6,4,7,5,2,0,3,1) 19 (6,3,5,0,2,7,1,4) 35 (6,3,1,4,2,7,5,0) 51 (6,0,3,5,2,4,7,1)
4 (5,7,4,6,1,3,0,2) 20 (5,4,3,2,0,1,6,7) 36 (5,4,2,3,0,1,7,6) 52 (5,3,0,6,1,7,4,2)
5 (5,1,3,7,4,0,2,6) 21 (5,1,6,2,4,0,7,3) 37 (5,0,2,7,1,4,6,3) 53 (5,0,6,3,1,4,2,7)
6 (4,6,2,7,3,5,1,0) 22 (4,6,1,3,0,2,5,7) 38 (4,5,3,2,1,0,6,7) 54 (4,5,2,3,1,0,7,6)
7 (4,2,5,3,0,6,1,7) 23 (4,2,1,0,7,5,6,3) 39 (4,1,5,7,3,2,6,0) 55 (4,1,7,2,0,5,3,6)
8 (4,1,3,6,0,5,7,2) 24 (4,1,2,0,7,6,5,3) 40 (4,0,7,3,5,1,6,2) 56 (4,0,2,6,5,1,3,7)
9 (3,6,4,1,7,2,0,5) 25 (3,6,0,5,7,2,4,1) 41 (3,5,2,4,7,1,6,0) 57 (3,5,1,0,4,6,2,7)
10 (3,2,6,0,4,1,5,7) 26 (3,2,1,7,0,5,6,4) 42 (3,1,2,7,0,6,5,4) 58 (3,1,6,4,7,5,2,0)
11 (2,4,7,1,6,0,3,5) 27 (2,7,5,0,6,3,1,4) 43 (2,7,1,4,6,3,5,0) 59 (2,0,3,1,6,4,7,5)
12 (1,5,2,6,0,4,3,7) 28 (1,5,7,3,0,4,6,2) 44 (1,4,6,3,5,0,2,7) 60 (1,4,2,7,5,0,6,3)
13 (1,3,0,2,5,7,4,6) 29 (1,7,4,2,5,3,0,6) 45 (1,0,7,6,4,5,2,3) 61 (1,0,6,7,4,5,3,2)
14 (0,6,5,4,3,1,2,7) 30 (0,6,1,7,4,2,5,3) 46 (0,5,6,4,3,2,1,7) 62 (0,5,3,6,4,1,7,2)
15 (0,5,1,3,7,6,2,4) 31 (0,5,7,2,4,1,3,6) 47 (0,4,6,2,1,5,7,3) 63 (0,4,3,7,1,5,2,6)
16 (0,2,5,7,4,6,1,3) 32 (0,2,6,3,7,1,5,4) 48 (0,1,6,7,5,4,3,2) 64 (0,1,7,6,5,4,2,3)

Table 4: The 12 strongest word shuffles with respect to both DS-MITM attack
and impossible differential attack.
No. Permutation No. Permutation

1 (15,2,13,4,11,6,3,8,1,10,5,0,7,12,9,14) 7 (7,2,13,4,15,6,1,8,5,10,3,0,11,12,9,14)

2 (15,2,9,4,1,6,11,8,3,10,13,0,7,12,5,14) 8 (7,2,11,4,9,6,1,8,15,10,13,0,3,12,5,14)

3 (13,2,15,4,11,6,3,8,1,10,5,0,9,12,7,14) 9 (7,2,11,4,9,6,1,8,13,10,15,0,5,12,3,14)

4 (13,2,9,4,1,6,11,8,3,10,15,0,5,12,7,14) 10 (7,2,15,4,13,6,1,8,5,10,3,0,9,12,11,14)

5 (9,2,7,4,11,6,15,8,13,10,5,0,1,12,3,14) 11 (5,2,9,4,13,6,15,8,3,10,7,0,1,12,11,14)

6 (9,2,7,4,11,6,13,8,15,10,5,0,3,12,1,14) 12 (5,2,9,4,15,6,13,8,3,10,7,0,11,12,1,14)



SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Round 0 Round 1

SB,AC

AK,SR

MC

Round 2 Round3

· · · 11-round Distinguisher · · · MC

Round 14 Round 15

Round 16 Round 17

Round 18 Round 19

Round 20 Round 21

Round 22

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

SB,AC

AK,SR

MC SB,AC

AK,SR

MC

Fig. 18: An illustration of the backward differential and forward determination
relationship in the outer rounds of SKINNY with the DS-MITM distinguisher
presented in Fig. 17 placed at E1. The bytes in Guess(E0) and Guess(E2) are
marked with red color. From the input state of round 0, we know that Ā =
[0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14]. Hence, the data complexity is 28×12 = 296.
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Fig. 19: Derive kE0 and kE2 from Fig. 18. The subkey nibbles marked with orange
color are the secret-key information we need to guess. With the knowledge of
these bytes, we can derive the values of all the bytes of P 0 marked with orange
color in this figure, from which we can determine all the bytes in Guess(E0) and
Guess(E2) shown in Fig. 18.
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Fig. 20: A DS-MITM distinguisher (A,B,Deg(A,B)) for 11-round LBlock with
A = [12] (the nibble marked with crosshatch in round 0), B = [12] (the nibbles
marked with crosshatch in round 11), and Deg(A,B) = 14 (the nibbles before
the S-box operations mark with red).
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Fig. 21: An illustration of the backward differential and forward determination
relationship in the outer rounds of LBlock with the DS-MITM distinguisher
presented in Fig. 20 placed at E1. Nibbles in Guess(E0) and Guess(E2) are marked
with red.
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Fig. 23: An illustration that if we know the nibbles marked with red in round
2 of the key schedule algorithm of LBlock, we can derive the values of all the
nibbles marked with green in the other rounds. The reader can verify that all
the nibbles marked with orange in Fig. 22 are included in the colored nibbles of
this figure.
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Fig. 24: A DS-MITM distinguisher (A,B,Deg(A,B)) for 11-round TWINE with
A = [3] (the nibble marked with crosshatch in round 0), B = [9, 13] (the nibbles
marked with crosshatch in round 11), and Deg(A,B) = 19 (the nibbles before
the S-box operations mark with red).
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Fig. 25: An illustration of the backward differential and forward determination
relationship in the outer rounds of TWINE with the DS-MITM distinguisher
presented in Fig. 24 placed at E1. Nibbles in Guess(E0) and Guess(E2) are marked
with blue.
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Fig. 26: Derive kE0
and kE2

from Fig. 25. The subkey nibbles marked with orange
are the secret-key information we need to guess.
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Fig. 27: A illustration that if we know the nibbles marked with red in round 18
of the key schedule algorithm of TWINE, we can derive the values of all the
nibbles marked with green in the other rounds. The reader can verify that all
the nibbles marked with orange in Fig. 26 are included in the colored nibbles of
this figure.


