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Cryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanalysis. However, the Demirci-Selçuk meet-in-the-middle (DS-MITM) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque's work on DS-MITM analysis with dedicated search algorithms, we identify the crux of the problem and present a method for automatic DS-MITM attack based on general constraint programming, which allows the cryptanalysts to state the problem at a high level without having to say how it should be solved. Our method is not only able to enumerate distinguishers but can also partly automate the key-recovery process. This approach makes the DS-MITM cryptanalysis more straightforward and easier to follow, since the resolution of the problem is delegated to offthe-shelf constraint solvers and therefore decoupled from its formulation. We apply the method to SKINNY, TWINE, and LBlock, and we get the currently known best DS-MITM attacks on these ciphers. Moreover, to demonstrate the usefulness of our tool for the block cipher designers, we exhaustively evaluate the security of 8! = 40320 versions of LBlock instantiated with different words permutations in the F functions. It turns out that the permutation used in the original LBlock is one of the 64 permutations showing the strongest resistance against the DS-MITM attack. The whole process is accomplished on a PC in less than 2 hours. The same process is applied to TWINE, and similar results are obtained.

Introduction

Cryptanalysis of block ciphers is a highly technical, time consuming and errorprone process. On the one hand, the attackers have to perform a variety of cryptanalytic techniques, including differential attack [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF], linear attack [START_REF] Matsui | Linear cryptanalysis method for DES cipher[END_REF], integral attack [START_REF] Daemen | The block cipher square[END_REF][START_REF] Knudsen | Integral cryptanalysis[END_REF][START_REF] Todo | Structural evaluation by generalized integral property[END_REF], etc., to see which technique leads to the best attack. On the other hand, the designers need to repeat all these different attacks again and again to identify the optimal choices of parameters and building blocks which meet the security and implementation requirements. Therefore, automatic tools are indispensable to the community, which significantly reduce the manual work and make a thorough exploration of the design/analysis space possible.

One paradigm for automatic symmetric-key cryptanalysis getting increasing popularity in recent years is to model the problem by means of constraints, which includes the methods based on SAT/SMT (satisfiability modulo theory) [START_REF] Liu | Automatic search of linear trails in ARX with applications to SPECK and chaskey[END_REF][START_REF] Mouha | Towards finding optimal differential characteristics for ARX: Application to Salsa20[END_REF][START_REF] Kölbl | Observations on the SIMON block cipher family[END_REF], MILP (mixed-integer linear programming) [START_REF] Mouha | Differential and linear cryptanalysis using mixed-integer linear programming[END_REF][START_REF] Sun | Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[END_REF][START_REF] Xiang | Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers[END_REF][START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects -revealing structural properties of several ciphers[END_REF][START_REF] Fu | MILP-Based Automatic Search Algorithms for Differential and Linear Trails for Speck[END_REF], and classical constraint programming [START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF][START_REF] Sun | Analysis of AES, SKINNY, and others with constraint programming[END_REF]. In this paper, these methods are collectively referred to as the general constraint programming (CP) based approach, or just CP based approach for short. So far, the CP based approach covers a wide range of symmetrickey cryptanalysis techniques. For instance, we can determine the minimum number of differentially or linearly active S-boxes of a block cipher with MILP [START_REF] Mouha | Differential and linear cryptanalysis using mixed-integer linear programming[END_REF]; we can search for actual differential characteristics, linear characteristics, and integral distinguishers with SAT/SMT, MILP or classical constraint programming [START_REF] Kölbl | Observations on the SIMON block cipher family[END_REF][START_REF] Sun | Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[END_REF][START_REF] Xiang | Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers[END_REF][START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF]; and we can search for impossible differentials and zero-correlation linear approximations [START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects -revealing structural properties of several ciphers[END_REF][START_REF] Cui | New automatic search tool for impossible differentials and zero-correlation linear approximations[END_REF] in a similar way.

Compared with search algorithms implemented from scratch in general purpose programming languages [START_REF] Matsui | On correlation between the order of S-boxes and the strength of DES[END_REF][START_REF] Dobraunig | Heuristic tool for linear cryptanalysis with applications to CAESAR candidates[END_REF][START_REF] Biryukov | Automatic search for differential trails in ARX ciphers[END_REF][START_REF] Biryukov | Search for related-key differential characteristics in DESlike ciphers[END_REF][START_REF] Fouque | Structural Evaluation of AES and Chosen-Key Distinguisher of 9-Round AES-128[END_REF][START_REF] Bouillaguet | Automatic search of attacks on roundreduced AES and applications[END_REF][START_REF] Dobraunig | Analysis of[END_REF][START_REF] Mella | New techniques for trail bounds and application to differential trails in Keccak[END_REF], the CP based approach allows the cryptanalysts to state the problem very naturally, and at a high level without having to say how it should be solved. The resolution of the problem is delegated to generic solvers, and therefore decoupled from the formulation of the problem. As Eugene C. Freuder stated [START_REF] Freuder | In pursuit of the holy grail[END_REF]: Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming : the user states the problem, the computer solves it.

However, the Demirci-Selçuk meet-in-the-middle attack (DS-MITM) attack [START_REF] Demirci | A meet-in-the-middle attack on 8-round AES[END_REF], introduced by Demirci and Selçuk at FSE 2008 to attack the famous Advanced Encryption Standard (AES) [START_REF] Daemen | The Design of Rijndael: AES -The Advanced Encryption Standard[END_REF], is one of the cryptanalytic techniques which has not been automated with general constraint programming due to its extraordinary sophistication. After a series of improvements of the attack with various creative techniques [START_REF] Dunkelman | Improved single-key attacks on 8-round AES-192 and AES-256[END_REF][START_REF] Derbez | Improved key recovery attacks on reduced-round AES in the single-key setting[END_REF][START_REF] Derbez | Exhausting demirci-selçuk meet-in-the-middle attacks against reduced-round AES[END_REF][START_REF] Derbez | Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks[END_REF][START_REF] Li | Meet-in-the-middle attacks on 10-round AES-256[END_REF], the DS-MITM attack reaches the best known attack on 7-round AES-128, 9-round AES-256 and 10-round AES-256 in the single-key model. The attack has been applied to several specific block ciphers [START_REF] Derbez | Meet-in-the-middle attacks and structural analysis of roundreduced PRINCE[END_REF][START_REF] Biryukov | Differential analysis and meet-in-the-middle attack against round-reduced TWINE[END_REF][START_REF] Li | Meet-in-the-middle technique for truncated differential and its applications to CLEFIA and camellia[END_REF][START_REF] Dong | Improved attacks on reduced-round camellia-128/192/256[END_REF] as well as on generic balanced Feistel constructions [START_REF] Guo | Meet-in-the-middle attacks on generic Feistel constructions[END_REF]. Most recently, Guo et al. show generic attacks on unbalanced Feistel ciphers based on the DS-MITM technique which penetrate a large number of rounds of some specific class of unbalanced Feistels [START_REF] Guo | Meet-in-the-Middle Attacks on Classes of Contracting and Expanding Feistel Constructions[END_REF]. Note that despite sharing the same name with the traditional MITM attacks in some literature (the attacks on some block ciphers [START_REF] Diffie | Special feature exhaustive cryptanalysis of the NBS data encryption standard[END_REF][START_REF] Bogdanov | A 3-subset meet-in-the-middle attack: Cryptanalysis of the lightweight block cipher KTANTAN[END_REF] and on a number of hash functions, e.g. [START_REF] Aoki | Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1[END_REF][START_REF] Guo | Advanced meet-in-the-middle preimage attacks: First results on full Tiger, and improved results on MD4 and SHA-2[END_REF]), the DS-MITM attack concerned in this paper follows a different and a more complex strategy.

Related work and our contribution. In [START_REF] Derbez | Exhausting demirci-selçuk meet-in-the-middle attacks against reduced-round AES[END_REF][START_REF] Derbez | Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks[END_REF], Derbez and Fouque presented a tool implemented in C/C++ for finding the DS-MITM attack with dedicated search algorithm. In this paper, we present the first CP-based tool for finding the DS-MITM attack automatically. Our approach is based on a novel modelling technique in which we introduce several different types of variables for every input/output word of all operations, and impose constraints on these variables such that from a solution of these variables satisfying all the constraints we can deduce a DS-MITM distinguisher or DS-MITM attack.

Compared with Derbez and Fouque's tool [START_REF] Derbez | Exhausting demirci-selçuk meet-in-the-middle attacks against reduced-round AES[END_REF][START_REF] Derbez | Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks[END_REF] which was implemented in the general purpose programming language C/C++, the CP based method allows the cryptanalysts to state the problem at a high level very naturally, without considering how to maintain the relationships between the variables explicitly with dedicated algorithms. Therefore, our tool should be very useful in fast prototyping in the process of block cipher design.

In [START_REF] Lin | General model of the single-key meetin-the-middle distinguisher on the word-oriented block cipher[END_REF], Lin et al. modeled the problem of searching for DS-MITM distinguishers as an integer programming model. However, their integer programming model is incomplete and is solved by a dedicated search algorithm. Secondly, Lin et al. 's work only focuses on the distinguisher part. Our CP based approach can not only enumerate distinguishers but also partly automate the key-recovery process of the attack. Moreover, by applying our CP based approach to LBlock, the same cipher targeted in [START_REF] Lin | General model of the single-key meetin-the-middle distinguisher on the word-oriented block cipher[END_REF], we show it finds better distinguishers as well as better attacks. To demonstrate the effectiveness of our approach, we apply it to SKINNY [START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF], TWINE [START_REF] Suzaki | TWINE : A lightweight block cipher for multiple platforms[END_REF], and LBlock [START_REF] Wu | LBlock: A lightweight block cipher[END_REF]. We produce so far the best DS-MITM attacks on these well-known ciphers automatically.

For LBlock, we can not only find an 11-round DS-MITM distinguisher which is 2 rounds longer than the one(s) presented in [START_REF] Lin | General model of the single-key meetin-the-middle distinguisher on the word-oriented block cipher[END_REF], but also construct the first DS-MITM attack on 21-round LBlock. We also rediscover the same attack on TWINE-128 given in [START_REF] Biryukov | Differential analysis and meet-in-the-middle attack against round-reduced TWINE[END_REF], and identify the first DS-MITM attack on 20round TWINE-80. In addition, we report the first concrete DS-MITM analysis of SKINNY. A remarkable fact is that our tool identify an 10.5-round DS-MITM distinguisher in a few seconds, while its designers expect an upper-bound of 10 rounds against such distinguishers in [START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF]. A summary of these results are given in Table 1.

We also show how helpful our tool can be in the block cipher design process by searching for the best choices of block shuffles in LBlock and TWINE. We scan over 40320 variants of LBlock, and 887040 variants of TWINE. We identify permutations which are potentially stronger than the permutations in the original designs. We make the source code of this work publicly available at https://github.com/siweisun/MITM.

In addition, all supplementary materials referred later on are provided in an extended version of this paper at https://eprint.iacr.org/2018/813. Table 1: A summary of the results. Though the focus of this paper is the DS-MITM attack, we also list other types of attacks which achieve currently known best results against the ciphers targeted. For the DS-MITM attack, the number of rounds attacked is presented in the form of a+b, where a shows how many rounds are covered by the underlying DS-MITM distinguisher, while b is the number or outer rounds added when performing a key-recovery attack. Therefore, b = 0 indicates a distinguishing attack. We find the attacks with the same complexity.

Organization. In Sect. 2, we give the notations used in this paper. An introduction of the DS-MITM attack is presented in Sect. 3. We show the general principle of how to model the DS-MITM attack in Sect. 4, and subsequently in Sect. 5 the technical detail of the modelling method is given. Sect. 6 discusses how to use our method in practice. In Sect. 7, we apply our approach to SKINNY, TWINE, LBlock, AES, ARIA, and SIMON. In Sect. 8, we discuss how to use our tool to find high-quality building blocks (with respect to the DS-MITM attack) in the process of block cipher design. Sect. 9 is the conclusion.

Notations

An n-bit state state with n = cn c is alternatively regarded as a sequence

(state[0], state[1], • • • , state[n c -1]) of n c c-bit words. Let A = [j 0 , j 1 , • • • , j s-1 ] be an ordered set of integers such that 0 ≤ j 0 < • • • < j s-1 < n c . Then state[A] is used to represent state[j 0 ]|| • • • ||state[j s-1 ],
where state[j] is the j-th c-bit word of state and || is the operation of bit string concatenation.

Definition 1. A set {P 0 , • • • , P N -1 } ⊆ F cnc 2 = F n 2 of N = 2 sc n-bit values for state is a δ(A)-set for state with A = [k 0 , k 1 , • • • , k s-1 ] if P 0 [A] ⊕ P j [A] = j (1 ≤ j < N ), and P i [k] = P j [k] for all i, j ∈ {0, • • • , N -1} and k / ∈ A. That is, {P 0 , • • • , P N -1 }
traverse the s c-bit words specified by A while share the same value in other word positions.

An r-round iterative block cipher E with r = r 0 + r 1 + r 2 , depicted in Fig. 1, is a keyed permutation which transforms an n-bit state state 0 into state 2r step by step with nonlinear and linear operations. In our indexing scheme, as illustrated in Fig. 1, state 2k is the input state of round k, state 2k+1 is the output state of the nonlinear operation of round k, and state 2(k+1) is the output of round k or the input of round k+1 for k ∈ {0, • • • , r 0 +r 1 +r 2 -1}. For the sake of simplicity and concreteness, we will conduct the discussion based on Fig. 1, which visualizes the structure of a common SP cipher. Without loss of generality, we assume that the key addition is performed after the linear layer L as illustrated in Fig. 1. The basic rule is that we should always introduce a new state for the direct input to the nonlinear layer. For example, if the key addition is performed in between state 2i and the NL operation, then a new state (representing the direct input to NL) should be introduced in between the key addition and the NL operation, and the original state may be omitted (regarding the new state as an output obtained by masking the output of the previous round with the subkey).

Note that though our discussion are based on a SP cipher illustrated in Fig. 1, the ideas and techniques presented in this paper are general enough to be applied to other structures, such as Feistel and Generalized Feistel structures.

For convenience, a δ(A)-set {P 0 , • • • , P N -1 } is denoted by P δ(A) , and let

∆ E (P δ(A) , B) be the sequence [C 0 [B]⊕C 1 [B], • • • , C 0 [B]⊕C N -1 [B]], where C i = E(P i ) and B = [j 0 , • • • , j t-1 ] such that 0 ≤ j 0 < • • • < j t-1 < n c .
Let P , P ∈ F n 2 be two values of state 0 shown in Fig. 1, which are often regarded as plaintexts since state 0 is the input of the encryption algorithm. The value P creates a series of intermediate values during the encryption process. We define P (state i ) as the intermediate value at state i created by the partial encryption of P . Sometimes we only care about the value of P (state i ) at some specified word positions indexed by an ordered set I, which is denoted by P (state i [I]). We define P ⊕ P (state i ) and P ⊕ P (state i [I]) to be the intermediate differences P (state i ) ⊕ P (state i ) and P (state i [I]) ⊕ P (state i [I]) respectively. Let C and C be the ciphertexts of P and P . An intermediate value can also be regarded as the result of a partial decryption of the ciphertext C. Therefore, we define C(state i ), C(state i [I]), C ⊕ C (state i ), and C ⊕ C (state i [I]) similarly. Note that in the above notations, the intermediate values or differences of intermediate values are specified with respect to some plaintexts or ciphertexts. We may as well specify them with respect to some intermediate values, say Q = P (state j ) and Q = P (state j ). Hence, we may have notations such as

Q(state i ), Q(state i [I]), Q ⊕ Q (state i ), and Q ⊕ Q (state i [I]
), whose meanings should be clear from the context.

To make the notation succinct, if not stated explicitly, we always assume that 

A = [k 0 , • • • , k s-1 ], B = [j 0 , • • • , j t-1 ],
L k 0 state 2 E 0 (0 → • • • → r 0 -1) Involved Key: k E 0 . . . state 2(r 0 -1) NL state 2(r 0 -1)+1 L k r 0 -1 A state 2r 0 NL state 2r 0 +1 L kr 0 state 2(r 0 +1) E 1 (r 0 → • • • → r 0 + r 1 -1)
. . . a sequence of n bits or a sequence of n c c-bit words. Moreover, we make the following assumption which is very natural for a block cipher.

Assumption 1 Let the nonlinear layer in Fig. 1 be a parallel application of n c c × c invertible S-boxes, and In other words, we can derive the value of the output/input differences if we know the value of input/output values and differences at the active positions.

I = [j : Q ⊕ Q (state 2k [j]) = 0, 0 ≤ j < n c ]
3 The Demirci-Selçuk Meet-in-the-Middle Attack

The DS-MITM Distinguisher

The DS-MITM attack relies on a special differential-type distinguisher. Compared with ordinary differential distinguishers, the DS-MITM distinguishers generally lead to much stronger filters.

Let F be a keyed permutation, and

Q δ(A) = {Q 0 , • • • , Q N -1
} be a δ(A)-set for the input state of F . If F is a random permutation, then it can be shown that there are (2 ct ) 2 cs -1 possibilities for ∆ F (Q δ(A) , B). But for a block cipher F , it is possible that the sequence ∆ F (Q δ(A) , B) can be fully determined with the knowledge of d c-bit words. For instance, from the values of one internal state and the master key one can derive the values for all the internal states. Therefore, given Q δ(A) , we can get at most 2 cd possible cases of ∆ F (Q δ(A) , B) by traversing the d c-bit words. We call d the (A, B)-degree of F , which is denoted by Deg F (A, B), or simply Deg(A, B) if F can be inferred from the context. If

Deg F (A, B) = d is small enough such that λ = 2 cd /(2 ct ) 2 cs -1 = 2 c(d-t•(2 cs -1)) < 1, or d < t • (2 cs -1)
, then we can use this property as a distinguisher and construct a key-recovery attack on F . Therefore, a DS-MITM distinguisher of a keyed permutation F can be regarded as a tuple (A, B, Deg F (A, B)).

Key Recovery Attack based on DS-MITM Distinguisher

We now describe how a key-recovery attack can be performed with a DS-MITM distinguisher. This part should be read while referring to Fig. 1.

As shown in Fig. 1, we divide the target cipher E into 3 parts: E 0 , E 1 , and E 2 , where E i is a keyed permutation with r i rounds. As depicted in Fig. 1,E 

0 covers rounds (0 → • • • → r 0 -1), E 1 covers rounds (r 0 → • • • → r 0 + r 1 -1)
, and E 2 covers rounds (r 0 + r 1 → • • • → r 0 + r 1 + r 2 -1). According to our indexing scheme, as illustrated in Fig. 1, state 0 is the input state of E 0 ; state 2r0 is the output state of E 0 which is also the input state of E 1 ; state 2(r0+r1) is the output of E 1 or the input of E 2 ; finally, state 2(r0+r1+r2) is the output of E 2 .

In the attack, we place a DS-MITM distinguisher (A, B, Deg E1 (A, B)) at E 1 , and prepare a δ( Ā)-set P δ( Ā) of chosen plaintexts for state 0 , where Ā is the ordered set of integers k (0

≤ k < n c ) such that V 0 ⊕ V j (state 0 [k]) = 0 for some δ(A)-set V δ(A) = {V 0 , • • • , V N -1 }
for state 2r0 (the input state of E 1 ) and some j ∈ {0, • • • , N -1}. Note that Ā can be obtained by propagating the differences created by V δ(A) for state 2r0 (the input of E 1 ) reversely against E 0 .

Then we select an arbitrary plaintext P 0 from P δ( Ā) , and guess the secret key information k E0 ∈ F e0 2 with which we can find

P 1 , • • • , P N -1 in P δ( Ā) such that Q δ(A) = {Q 0 , • • • , Q N -1
} where Q j = E 0 (P j ) forms a δ(A)-set for state 2r0 . Finally, we guess the secret key information k E2 ∈ F e2 2 involved in E 2 with which we can determine the sequence

∆ E1 (Q δ(A) , B) = [C 0 ⊕ C 1 (state 2(r0+r1) [B]), • • • , C 0 ⊕ C N -1 (state 2(r0+r1) [B])]
by partial decryption with E 2 , where C j = E(P j ).

If the resulting sequence is not one of the possible ∆ E1 (Q δ(A) , B) sequences which can be determined with the Deg E1 (A, B) = d c-bit parameters, the guesses of k E0 and k E2 are certainly incorrect and therefore rejected. Similar to [START_REF] Boura | Scrutinizing and Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon[END_REF], we adopt the notion of |k E0 ∪ k E2 | to represent the log of the entropy of the involved secret key bits in the outer rounds from an information theoretical point of view.

Complexity Analysis

Offline phase. Store all the 2 cd possibilities of the sequence ∆ E1 (Q δ(A) , B) in a hash table. The time complexity is 2 cd • 2 cs • ρ E1 C E , and the memory complexity is (2 cs -1) • ct • 2 cd bits, where C E is the time complexity of one encryption with E, and ρ E1 is typically computed in literature as Deg(A, B) divided by the total number of S-boxes in E.

Online phase. For each of the 2 |k E 0 ∪k E 2 | possible guesses, if the resulting sequence ∆ E1 (Q δ(A) , B) is not in the hash table precomputed, then the guess under consideration is certainly not correct and is discarded. The time complexity of this step is

2 |k E 0 ∪k E 2 | • 2 sc • ρ E0∪E2 C E ,
where ρ E0∪E2 is typically computed as the number of S-boxes involved in the outer rounds divided by the total number of S-boxes in E. After this step, the 2 |k E 0 ∪k E 2 | key space is reduced approximately to λ • 2 |k E 0 ∪k E 2 | , where λ = 2 c(d-t•(2 cs -1)) .

Modelling the DS-MITM Attack with Constraints: A High Level Overview

In this section, we give a high level overview of our modelling method with the aid of Fig. 1 and Fig. 2, which serves as a road map for the next section (Sect. 5), where the technical details are presented. To model the attack with constraint programming (CP) for the cipher E = E 2 • E 1 • E 0 shown in Fig. 1, we proceed as the following steps.

Step Remark 1. Under the above configuration, every instantiation of the variables in Vars(X), Vars(Y ), and Vars(Z) corresponds to a potential DS-MITM distinguisher. Therefore, all distinguishers can be enumerated with the above model. Also note that the key addition can be omitted while searching for distinguishers if it does not affect the propagation of the forward differential and backward determination relationship. This is the case for all the examples presented in this paper, where key additions are only involved in computing the actual complexities.

Step 2. Modelling the outer rounds • Introduce a type-M variable for each word of the states state 0 , • • • , state 2r0 involved in E 0 , and impose a set of constraints over Vars(M ) to model the backward differential. Note that there are both type-X and type-M variables for state 2r0 . We require that the corresponding type-X and type-M variables for each of the n c words of state 2r0 are equal. • Introduce a type-W variable for each word of the states state 2(r0+r1) , • • • , state 2(r0+r1+r2) involved in E 2 , and impose a set of constraints over Vars(W ) to model the forward determination relationship. Note that there are both type-Y and type-W variables for state 2(r0+r1) . We require that the corresponding type-Y and type-W variables for each of the n c words of state 2(r0+r1) are equal.

Remark 2. Every solution of Vars(M ) and Vars(W ) helps us to identify the information that needs to be guessed in the outer rounds, which will be clearer in the following.

E 0 M E 1 X, Y, Z E 2 W
Fig. 2: A high level overview of the modelling method for DS-MITM attack

The overall modelling strategy is depicted in Fig. 2. In summary, given a full solution of the variables such that all constraints are fulfilled, we can extract the following information Together this information forms a DS-MITM attack on E. Note that the guessed materials in E 0 and E 2 still need to be converted to guessed key materials, which can be done manually or automatically fairly straightforwardly.

According to the semantics of Vars(Z), if we draw the propagation patterns of Vars(X) and Vars(Y ) in two figures, then the propagation pattern of Vars(Z) can be obtained by superposition of the two figures. Therefore, the key to understand the details of the modelling of DS-MITM attack is the so-called forward/backward differential and forward/backward determination relationship. To make the description succinct and without loss of generality, we introduce the concepts based on a 5-round keyed permutation shown in Fig. 4 and Fig. 6. We will also give two concrete examples of the forward differential and backward determination of a 3-round toy SPN block cipher with 32-bit (4-byte) block size. The round function shown in Fig. 3 of the toy cipher consists of an S-box layer (a parallel application of four 8 × 8 Sboxes), and a linear layer L with y i = j∈{0,1,2,3}-{i} x j for i ∈ {0, 1, 2, 3}. 

Q δ(A) of N values {Q 0 , • • • , Q N -1 } for state 4
which forms a δ(A) set for the input state of round 2. For every word state i

[j] (4 ≤ i ≤ 10, 0 ≤ j < n c ), we introduce a 0-1 variable X i [j]. We say that the set of 0-1 variables {X i [j] : 4 ≤ i ≤ 10, 0 ≤ j < n c } models the forward differential of Q δ(A) in rounds (2 → 3 → 4) if the following conditions are satisfied.
-Conditions for state 4 (the starting point of the forward differential, which is also the input of round 2) :

∀j ∈ A, X 4 [j] = 1 and ∀j / ∈ A, X 4 [j] = 0 -Conditions for rounds (2 → 3 → 4): X i [j] = 0 (5 ≤ i ≤ 10, 0 ≤ j < n c ) if and only if ∀Q k ∈ Q δ(A) , Q 0 ⊕ Q k (state i [j]) = 0
Similarly, as depicted in Fig. 4, we say that the set of variables

{X i [j] : 0 ≤ i ≤ 4, 0 ≤ j < n c } models the backward differential of Q δ(A) in rounds (1 → 0) if the following conditions are satisfied.
-Conditions for state 4 (the starting point of the backward differential, which is also the output of round 1): 

∀j ∈ A, X 4 [j] = 1 and ∀j / ∈ A, X 4 [j] = 0 -Conditions for rounds (1 → 0): X i [j] = 0 (0 ≤ i < 4, 0 ≤ j < n c ) if and only if ∀Q k ∈ Q δ(A) , Q 0 ⊕ Q k (state i [j]) = 0
Q δ(A) = {(0, 0, 0, x) ∈ (F 8 2 ) 4 : x ∈ F 8 2 }. Then the set of variables X i [j] with 0 ≤ i ≤ 6 and 0 ≤ j < 4 shown in Fig. 5 models forward differential of Q δ(A) in rounds (0 → 1 → 2) if we impose the following constraints on X i [j]. Since the values in Q δ(A) are active at the third byte, we have X 0 [0] = X 0 [1] = X 0 [2] = 0, X 0 [3] = 1. For the S-layers in the toy cipher, we have X 2i [j] = X 2i+1 [j], 0 ≤ i ≤ 2, 0 ≤ j < 4. For the linear layers, we enforce 3X 2(i+1) [j] -X 2i+1 [j + 1] -X 2i+1 [j + 2] -X 2i+1 [j + 3] ≥ 0 to ensure that X 2(i+1) [j] will be equal to 1 when any one of X 2i+1 [j + 1], X 2i+1 [j + 2], X 2i+1 [j + 3] is 1. We also add the constraint X 2i+1 [j + 1] + X 2i+1 [j + 2] + X 2i+1 [j + 3] -X 2(i+1) [j] ≥ 0 to dictate that X 2(i+1) [j] must be 0 when all of X 2i+1 [j + 1], X 2i+1 [j + 2],
X 2i+1 [j + 3] are 0, where 0 ≤ i ≤ 2, 0 ≤ j < 4 and the indexes are computed modulo 4. With these constraints, the X i [j] variables propagate in a pattern depicted in Fig. 5.

state 0 state 1 X0[0] X0[1] X0[2] X0[3] S S S S X1[0] X1[1] X1[2] X1[3] L AK state 2 state 3 X2[0] X2[1] X2[2] X2[3] S S S S X3[0] X3[1] X3[2] X3[3] L AK state 4 state 5 X4[0] X4[1] X4[2] X4[3] S S S S X5[0] X5[1] X5[2] X5[3] L AK state 6 X6[0] X6[1]
X6 [START_REF] Matsui | Linear cryptanalysis method for DES cipher[END_REF] X6 [START_REF] Daemen | The block cipher square[END_REF] Fig. 5: The forward differential of a 3-round toy cipher

Forward Determination and Backward Determination

As shown in Fig. 6, given a set 

Q = {Q 0 , • • • , Q N -1 } of N
[B]), • • • , Q N -1 (state 6 [B]
)} in rounds (3 → 4) if the following conditions hold.

-Conditions for state 6 (the starting point of the forward determination relationship, which is also the input of round 3) :

∀j ∈ B, Y 6 [j] = 1 and ∀j / ∈ B, Y 6 [j] = 0 -Conditions for rounds (3 → 4): For 6 ≤ i < 10, ∀k ∈ {0, • • • , N -1}, with the knowledge of Q 0 ⊕ Q k (state i+1 [B i+1 ]) (and Q 0 (state i+1 [B i+1 ]) if state i+1
is an output state of a nonlinear layer) one can deduce the value

Q 0 ⊕Q k (state i [B i ]), where B i+1 = [j : Y i+1 [j] = 1, 0 ≤ j < n c ] for 6 ≤ i < 10 and B 6 = B.
Similarly, as shown in Fig. 6, we say that the set of 0-1 variables {Y i [j] :

0 ≤ i ≤ 6, 0 ≤ j < n c } models the backward determination relationship of {Q 0 (state 6 [B]), • • • , Q N -1 (state 6 [B])} in rounds (2 → 1 → 0) if the following conditions hold.
-Conditions for the state 6 (the starting point of the backward determination relationship, which is also the output of round 2):

∀j ∈ B, Y 6 [j] = 1 and ∀j / ∈ B, Y 6 [j] = 0 -Conditions for rounds (2 → 1 → 0): For 0 < i ≤ 6, ∀k ∈ {0, • • • , N -1} from the knowledge of the values Q 0 ⊕Q k (state i-1 [B i-1 ]), (and Q 0 (state i-1 [B i-1 ]) if state i-1 is an input state of a nonlinear layer), one can determine the value Q 0 ⊕ Q k (state i [B i ]), where B i-1 = [j : Y i-1 [j] = 1, 0 ≤ j < n c ] for 0 < i ≤ 6, and B 6 = B.
Now we show a concrete example. Assume that we have a set 

{Q 0 , • • • , Q 255 } = {(0, 0, 0, x) ∈ (F 8 2 ) 4 : x ∈ F 8 2 } of
Y 2i [j] = Y 2i+1 [j], 0 ≤ i ≤ 2, 0 ≤ j < 4. For the linear layers, we add 3Y 2i+1 [j]-Y 2(i+1) [j +1]-Y 2(i+1) [j +2]-Y 2(i+1) [j +3] ≥ 0 to ensure that Y 2i+1 [j] must be 1 when any one of Y 2(i+1) [j +1], Y 2(i+1) [j +2], Y 2(i+1) [j +3] is 1, and Y 2(i+1) [j + 1] + Y 2(i+1) [j + 2] + Y 2(i+1) [j + 3] -Y 2i+1 [j] ≥ 0 to dictate that Y 2i+1 [j] must be 0 when all of Y 2(i+1) [j + 1], Y 2(i+1) [j + 2], Y 2(i+1) [j + 3]
are 0, where the indexes are computed modulo 4. With these constraints, the Y i [j] variables propagate in a pattern depicted in Fig. 7.

state0 state1 Y0[0] Y0[1] Y0[2] Y0[3] S S S S Y1[0] Y1[1] Y1[2] Y1[3] L AK state2 state3 Y2[0] Y2[1] Y2[2] Y2[3] S S S S Y3[0] Y3[1] Y3[2] Y3[3] L AK state4 state5 Y4[0] Y4[1] Y4[2] Y4[3] S S S S Y5[0] Y5[1] Y5[2] Y5[3] L AK state6 Y6[0] Y6[1] Y6[2]
Y6 [START_REF] Daemen | The block cipher square[END_REF] Fig. 7: The backward determination of a 3-round toy cipher Note that the concepts introduced in this section are generic and not limited to SP ciphers. For instance, we depicted the propagation patterns of the forward differential and backward determination of a Feistel cipher with 8-bit block size and 4 × 4 S-box in Fig. 8a and Fig. 8b We introduce 2 sets of variables Vars(X) = {X i [j] : 2r 0 ≤ i ≤ 2(r 0 + r 1 ), 0 ≤ j < n c } and Vars(Y ) = {Y i [j] : 2r 0 ≤ i ≤ 2(r 0 + r 1 ), 0 ≤ j < n c } for all the words of the states {state i [j] : 2r 0 ≤ i ≤ 2(r 0 + r 1 ), 0 ≤ j < n c } involved in the r 1 rounds of E 1 as shown in Fig. 1. We then impose a set of constraints on Vars(X) such that Vars(X) models the forward differential of a δ(A)-set

Q δ(A) = {Q 0 , • • • , Q N -1 } for state 2r0 with A = [j : X 2r0 [j] = 1, 0 ≤ j < n c ] in rounds (r 0 → r 0 + 1 → • • • → r 0 + r 1 -1).
Also, another set of constraints is imposed on Vars(Y ) such that Vars(Y ) models the backward determination relationship of

{Q 0 (state 2(r0+r1) [B]), • • • , Q N -1 (state 2(r0+r1) [B])} with B = [j : Y 2(r0+r1) [j] = 1, 0 ≤ j < n c ] in rounds (r 0 + r 1 -1 → • • • → r 0 ). Finally, we introduce a new set of variables Vars(Z) = {Z i [j] : 2r 0 ≤ i ≤ 2(r 0 + r 1 ), 0 ≤ j < n c } and impose a set of constraints on Vars(Z) such that Z i [j] = 1 if and only if X i [j] = Y i [j] = 1.
The variables in Vars(X), Vars(Y ), and Vars(Z) together with the constraints imposed on them form a CP model.

Then we have the following observations which can be easily derived from the Assumption 1 made at the end of Sect. 2 and the definition of forward/backward differential and forward/backward determination relationship.

Observation 1 If Vars(X) models the forward differential of a δ(A)-set

Q δ(A) = {Q 0 , • • • , Q N -1 }
for state 2r0 (Fig. 1) with A = [j :

X 2r0 [j] = 1, 0 ≤ j < n c ] in rounds (r 0 → r 0 + 1 → • • • → r 0 + r 1 -1)
, then for an arbitrary ordered set B of indices, we can determine the sequence of differences

∆ E1 (Q δ(A) , B) = [Q 0 ⊕ Q 1 (state 2(r0+r1) [B]), • • • , Q 0 ⊕ Q N -1 (state 2(r0+r1) [B])]
from the knowledge of the following set of intermediate values of

Q 0 . {Q 0 (state 2i [j]) : X 2i [j] = 1, r 0 ≤ i < r 0 + r 1 , 0 ≤ j < n c }. Observation 2 Let Q δ(A) = {Q 0 , • • • , Q N -1 }
be a δ(A) set for state 2r0 for an arbitrary A. If Vars(Y ) models the backward determination relationship of

{Q 0 (state 2(r0+r1) [B]), • • • , Q N -1 (state 2(r0+r1) [B])} with B = [j : Y 2(r0+r1) [j] = 1, 0 ≤ j < n c ] in rounds (r 0 + r 1 -1 → • • • → r 0 ),
then we can determine the sequence of differences

∆ E1 (Q δ(A) , B) = [Q 0 ⊕ Q 1 (state 2(r0+r1) [B]), • • • , Q 0 ⊕ Q N -1 (state 2(r0+r1) [B])]
from the knowledge of the following set of intermediate values of

Q 0 {Q 0 (state 2i [j]) : Y 2i [j] = 1, r 0 ≤ i < r 0 + r 1 , 0 ≤ j < n c }.
Note that Observation 1 and Observation 2 are stated with an arbitrary ordered set A and B respectively. Therefore, if we know the intermediate values of Q 0 (state[j]) such that X 2i [j] and Y 2i [j] are equal to 1 simultaneously, we can determine the sequence ∆ E1 (Q δ(A) , B) with the specific A and B corresponding to the underlying values of Vars(X) and Vars(Y ).

Observation 3 Let A = [j : X 2r0 [j] = 1, 0 ≤ j < n c ], B = [j : Y 2(r0+r1) [j] = 1, 0 ≤ j < n c ], and Q δ(A) = {Q 0 , • • • , Q N -1 }
be a δ(A) set for state 2r0 . Then from the knowledge of the following

r0+r1-1 i=r0 nc-1 j=0 Z 2i [j] c-bit words {Q 0 (state 2i [j]) : Z 2i [j] = 1, r 0 ≤ i < r 0 + r 1 , 0 ≤ j < n c },
we can determine the value of the sequence of differences

∆ E1 (Q δ(A) , B) = [Q 0 ⊕ Q 1 (state 2(r0+r1) [B]), • • • , Q 0 ⊕ Q N -1 (state 2(r0+r1) [B])].
From the above observations, it is easy to see that any solution of Vars(X), Vars(Y ), and Vars(Z) corresponds to a DS-MITM distinguisher (A, B, Deg E1 (A, B))

with A = [j : X 2r0 [j] = 1, 0 ≤ j < n c ], B = [j : Y 2(r0+r1) [j] = 1, 0 ≤ j < n c ], and Deg E1 (A, B) = r0+r1-1 i=r0 nc-1 j=0 Z 2i [j].

CP model for the outer rounds E 0 and E 2

The CP model for E 0 . As discussed in Sect. 3, the attacker needs to prepare a set P δ( Ā) of chosen plaintexts based on the distingusher (A, B, Deg E1 (A, B)) placed at E 1 . According to the definition of Ā, there must be

P 1 , • • • , P N -1 in P δ( Ā) such that Q δ(A) = {Q 0 , • • • , Q n-1 } forms a δ(A)-set for state 2r0 , where Q j = E 0 (P j ).
For E 0 we introduce a set of 0-1 variables Vars(M ) = {M i [j] : 0 ≤ i ≤ 2r 0 , 0 ≤ j < n c } and impose a set of constraints on Vars(M ) such that Vars(M ) models the backward differential of the δ(A)-set

Q δ(A) with A = {j : X 2r0 [j] = 1, 0 ≤ j < n c } in rounds (r 0 -1 → • • • → 0).
Then according to the definition of backward differential and assumption 1, we have the following observation.

Observation 4 Given P 0 ∈ P δ( Ā) , the set

Guess(E 0 ) = {P 0 (state 2i [j]) : M 2i [j] = 1, 0 < i < r 0 , 0 ≤ j < n c } of r0-1 i=1 nc-1 j=0 M 2i [j] c-bit words needs to be guessed to find P 1 , • • • , P N -1 in P δ( Ā) .
The CP model for E 2 . After the guess of Guess(E 0 ), we obtain a set {P 0 ,

• • • , P N -1 } ⊆ P δ( Ā) such that Q δ(A) = {Q 0 , • • • , Q N -1 } with Q j = E 0 (P j )
forms a δ(A) set for state 2r0 (under the guess). Let C j = E(P j ), 0 ≤ j < N . Then we want to get the sequence

∆ E1 (Q δ(A) , B) = {Q 0 (state 2(r0+r1) [B]), • • • , Q N -1 (state 2(r0+r1) [B])} by decrypting {C 0 , • • • , C N -1 } with E 2 .
For E 2 we introduce a set of 0-1 variables Vars(W ) = {W i [j] : 2(r 0 + r 1 ) ≤ i ≤ 2(r 0 + r 1 + r 2 ), 0 ≤ j < n c } and impose a set of constraints on Vars(W ) such that Vars(W ) models the forward determination of the set

{Q 0 (state 2(r0+r1) [B]), • • • , Q N -1 (state 2(r0+r1) [B])} with B = {j : Y 2(r0+r1) [j] = 1, 0 ≤ j < n c } in rounds (r 0 + r 1 → • • • → r 0 + r 1 + r 2 -1). Observation 5 Given {C 0 , • • • , C N -1 }, the set Guess(E 2 ) = {Q 0 (state 2i [j]) : W 2i [j] = 1, r 0 + r 1 ≤ i < r 0 + r 1 + r 2 , 0 ≤ j < n c } of r0+r1+r2-1 i=r0+r1 nc-1 j=0
W 2i [j] c-bit words needs to be guessed to determine the sequence

∆ E1 (Q δ(A) , B) = [C 0 ⊕ C 1 (state 2(r0+r1) [B]), • • • , C 0 ⊕ C N -1 (state 2(r0+r1) [B])].
Remark. There is still a gap between Guess(E i ) and k Ei for i ∈ {0, 2}. To perform the attack (see Sect. 3), we need to identify k Ei rather than Guess(E i ). As we will show in Sect. 7.1, Sect. 7.2 and Sect. 7.3, it is fairly straightforward to convert Guess(E i ) to k Ei .

How to Use the Modelling Technique in Practice?

The modelling technique for DS-MITM attack can be applied in several scenarios. In the following, we identify two of them and give a discussion of possible extensions.

Enumeration of DS-MITM Distinguishers

In Sect. 5, the descriptions of the modelling of E 1 (the distinguisher part) and the outer rounds (E 0 and E 2 ) are intentionally separated to have a method whose only purpose is to search for DS-MITM distinguishers.

When we target a cipher with DS-MITM attack, probably the first that come into mind is to identify a DS-MITM distinguisher covering as many rounds as possible. To this end, we can build a model with the method presented in Sect. 5 for k rounds of the target cipher, and add one more constraint dictating that

Deg(A, B) = r0+r1-1 i=r0 nc-1 j=0 Z 2i [j] < |K| c
to prevent the complexity of the offline phase from being too high, where |K| c is the number of c-bit words in the master key of the target cipher. Then we can enumerate all solutions using a constraint solver. If the solutions of the model lead to valid distinguishers, we can increase k and try to find distinguishers covering more rounds.

Fast Prototyping for DS-MITM Attacks

Given a keyed permutation E = E 2 •E 1 •E 0 , it is difficult to determine which DS-MITM distinguisher covering E 1 will lead to the best attack, though intuitively a distinguisher (A, B, Deg(A, B)) with smaller Deg(A, B) is preferred. In this situation, we can set up a model for the whole

E 2 • E 1 • E 0 with the constraints        Deg(A, B) = r0+r1-1 i=r0 nc-1 j=0 Z 2i [j] < |K| c r0-1 i=1 nc-1 j=0 M 2i [j] + r0+r1+r2-1 i=r0+r1 nc-1 j=0 W 2i [j] < |K| c
The resolution of the model leads to both a distinguisher covering E 1 and an attack based on the distinguisher simultaneously, which should be very useful in fast prototyping of DS-MITM attack in the analysis and design of block ciphers. Note that the output of the tool is a distinguisher (A, B, Deg(A, B)) and the secret information Guess(E 0 ) and Guess(E 2 ), which needs to be converted to k E0 and k E2 automatically or manually. Then the so-called key-bridging technique [START_REF] Derbez | Improved key recovery attacks on reduced-round AES in the single-key setting[END_REF][START_REF] Lin | Automatic search for key-bridging technique: Applications to lblock and TWINE[END_REF] can be applied to give an estimation of |k E0 ∪ k E2 |.

Another strategy is to find all k-round distinguishers (A, B, Deg(A, B)) with Deg(A, B) < d for some integer d. Then various generic or dedicated optimization techniques [START_REF] Derbez | Improved key recovery attacks on reduced-round AES in the single-key setting[END_REF] (some of which may be unknown at present) can be applied based on these distinguishers to see which one leads to the best attack.

Application to SKINNY

In this section, we apply our method to SKINNY-128-384 (the TK3 version with 128-bit block size, 384-bit key, and 0-bit tweak) to have a concrete example demonstrating the method presented in Sect. 4. The specification of SKINNY can be found in [START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF], and we omit it from this paper due to space restrictions.

The indexing scheme we used for analyzing SKINNY is illustrated in Fig. 9, which is essentially the same as Fig. 1, except that the states are drawn as 4 × 4 squares and the NL layer is composed of a parallel application of 16 Sboxes and a shift row operation.

To model an r-round DS-MITM distinguisher, we introduce 3 sets Vars(X), Vars(Y ), and Vars(Z) of variables for all the states involved in rounds (k, k + 1,

• • • , k + r -1), where Vars(X) = {X i [j] : 2k ≤ i ≤ 2(k + r), 0 ≤ j < n c } models the forward differential, Vars(Y ) = {Y i [j] : 2k ≤ i ≤ 2(k + r), 0 ≤ j < n c } models the backward determination relationship, and Vars(Z) = {Z i [j] : 2k ≤ i ≤ 2(k + r), 0 ≤ j < n c } such that Z i [j] = 1 if and only if X i [j] = Y i [j] = 1. Note that the logical statement of Z i [j] can be converted into allowed tuples of (Z i [j], X i [j], Y i [j]), that is (Z i [j], X i [j], Y i [j]
) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}, which can be modeled in CP or MILP trivially [START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF][START_REF] Sun | Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[END_REF]. So the only question left is what kind of constraints should be imposed on Vars(X) and Vars(Y ) such that they model the intended properties. The constraints imposed on Vars(X). Firstly, according to the definition of forward differential and the SB, AC, AK, SR operations of SKINNY, we have

X 2i+1 [4a+b] = X 2i [4a+(b-a) mod 4] for k ≤ i < k +r, where a, b ∈ {0, 1, 2, 3}
are used to index the rows and columns of a state respectively. Secondly, for every column b ∈ {0, 1, 2, 3} and k ≤ i < k + r, we impose the following constraints due to the MC operation

• X 2(i+1) [b] = 0 if and only if X 2i+1 [b] = X 2i+1 [b + 8] = X 2i+1 [b + 12] = 0; • X 2(i+1) [b + 4] = X 2i+1 [b]; • X 2(i+1) [b + 8] = 0 if and only if X 2i+1 [b + 4] = X 2i+1 [b + 8] = 0; • X 2(i+1) [b + 12] = 0 if and only if X 2i+1 [b] = X 2i+1 [b + 8] = 0.
Note that all constraints given in the above can be converted to allowed tuples of some variables and therefore can be easily modeled by the CP approach. An example solution of a set of variables modelling the forward differential of 4-round SKINNY is visualized in Fig. 10. 

• Y 2i+1 [b] = 0 if and only if Y 2(i+1) [b] = Y 2(i+1) [b + 4] = Y 2(i+1) [b + 12] = 0; • Y 2i+1 [b + 4] = Y 2(i+1) [b + 8]; • Y 2i+1 [b + 8] = 0 if and only if Y 2(i+1) [b] = Y 2(i+1) [b + 8] = Y 2(i+1) [b + 12] = 0; • Y 2i+1 [b + 12] = Y 2(i+1) [b].
An example solution of a set of variables modelling the backward determination relationship of 4-round SKINNY is visualized in Additional constraints. We require X i [j] = 0, Y i [j] = 0, and Z i [j] = 0 to exclude the trivial solution where all variables are assigned to 0. Also, to make the time complexity of the offline phase not exceeding the complexity of the exhaustive search attack, we require

Z 2i [j] ≤ |K| c = 384/8 = 48 .
Objective functions. The objective function is to minimize k+r-1 i=k 15 j=0 Z 2i [j] to make Deg(A, B) as small as possible.

Cipher-specific constraints. For SKINNY, we can reduce the number of guessed parameters by exploiting the properties of its linear transformation. According to the MC operation of SKINNY, for an intermediate value Q and b ∈ {0, 1, 2, 3}, we have

       Q(state 2(i+1) [b]) = Q(state 2i+1 [b]) + Q(state 2i+1 [b + 8]) + Q(state 2i+1 [b + 12]) Q(state 2(i+1) [b + 4]) = Q(state 2i+1 [b]) Q(state 2(i+1) [b + 8]) = Q(state 2i+1 [b + 4]) + Q(state 2i+1 [b + 8]) Q(state 2(i+1) [b + 12]) = Q(state 2i+1 [b]) + Q(state 2i+1 [b + 8]) Hence, the tuple (Q(state 2i+1 [b + 8]), Q(state 2(i+1) [b + 4]), Q(state 2(i+1) [b + 12]
)) can be fully determined when any two of the three entries are known. Similarly, the tuple (Q(state

2i+1 [b + 12]), Q(state 2(i+1) [b]), Q(state 2(i+1) [b + 12]
)) can be fully determined when any two of the three entries are known. To take these facts into account, we introduce two new sets {φ i : k ≤ i < k + r} and {ϕ i : k ≤ i < k + r} of 0-1 variables , and include the following constraints for b ∈ {0, 1, 2, 3}

• φ i = 1 if and only if Z 2i+1 [b + 8] + Z 2(i+1) [b + 4] + Z 2(i+1) [b + 12] = 3; • ψ i = 1 if and only if Z 2i+1 [b + 12] + Z 2(i+1) [b] + Z 2(i+1) [b + 12] = 3;
We also need to set the objective function to minimize

k+r-1 i=k 15 j=0 Z 2i [j] - k+r-1 i=k (φ i + ψ i ).
Using the above model, we can find a DS-MITM distinguisher for 10.5-round SKINNY-128-384 in 2 seconds. In [START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF], the designers of SKINNY expected that there should be no DS-MITM distinguisher covering more than 10 rounds of SKINNY since partial-matching can work at most (6 -1) + (6 -1) = 10 rounds. Hence, our result concretize the 10-round distinguisher, and actually our tool found DS-MITM distinguishers of SKINNY covering more than 10 rounds. An enumeration of all DS-MITM distinguishers covering 10.5-round SKINNY with 40 ≤ Deg(A, B) ≤ 48 is performed and the results are listed in Table . 2. Note that distinguishers with Deg(A, B) > 48 are ineffective for an attack. We then try to get an attack on SKINNY by modelling E 1 (the distinguisher part), E 0 and E 2 (the outer rounds) as a whole with the method presented in Sect. To perform the attack, we still need to convert Guess(E 0 ) and Guess(E 2 ) into the secret information of subkeys manually, which is visualized in Fig. 19 in [supplementary material A]. Then we perform the key-bridging technique [START_REF] Derbez | Improved key recovery attacks on reduced-round AES in the single-key setting[END_REF][START_REF] Lin | Automatic search for key-bridging technique: Applications to lblock and TWINE[END_REF] on k in and k out , and find that |k in ∪ k out | ≤ 376.

Complexity analysis. According to the discussion of Sect. 3.3, in the offline phase, the time complexity is 2 8×40 × 2 8×1 × 40

16×22 C E ≈ 2 324.86 C E , and the memory complexity is (2 8 -1) × 8 × 1 × 2 8×40 ≈ 2 330.99 bits. In the online phase, the time complexity is 2 47×8 × 2 8×1 × 57+64

22×16 C E ≈ 2 382.46 C E . The data complexity of the attack is 2 8×12 = 2 96 , which can be obtained from the input state of Fig. 18 in [supplementary material A].

Application to LBlock

The indexing scheme we used for analyzing LBlock is shown in Fig. 13, where the AK is the subkey xor operation, SB is a parallel application of 8 4 × 4 S-boxes, and LN is a permutation permuting j to LN [j].

To model an r-round DS-MITM distinguisher of LBlock, we introduce 3 sets Vars(X), Vars(Y ), and Vars(Z) of variables for all the states involved in rounds

(k, k + 1, • • • , k + r -1), where Vars(X) = {X L i [j], X R i [j] : k ≤ i ≤ k + r, 0 ≤ j < n c } ∪ {X S i [j], X M i [j] : k ≤ i < k + r, 0 ≤ j < n c } models the forward differential, Vars(Y ) = {Y L i [j], Y R i [j] : k ≤ i ≤ k + r, 0 ≤ j < n c } ∪ {Y S i [j], Y M i [j] : k ≤ i < k + r, 0 ≤ j < n c }
models the backward determination relationship, and 

Vars(Z) = {Z L i [j], Z R i [j] : k ≤ i ≤ k + r, 0 ≤ j < n c } ∪ {Z S i [j], Z M i [j] : k ≤ i < k + r, 0 ≤ j < n c } such that • Z L i [j] = 1 if and only if X L i [j] = Y L i [j] = 1 • Z R i [j] = 1 if and only if X R i [j] = Y R i [j] = 1 X L i X R i X S i X M i X L i+1 X R i+1 0 0 0 0 X L i X R i X S i X M i X L i+1 X R i+1 1 1 1 1 X L i X R i X S i X M i X L i+1 X R i+1 2 2 2 2 X L i X R i X S i X M i X L i+1 X R i+1 3 3 3 3 X L i X R i X S i X M i X L i+1 X R i+1 4 4 4 4 X L i X R i X S i X M i X L i+1 X R i+1 5 5 5 5 X L i X R i X S i X M i X L i+1 X R i+1 6 6 6 6 X L i X R i X S i X M i X L i+1 X R i+1 7 
• Z S i [j] = 1 if and only if X S i [j] = Y S i [j] = 1 • Z M i [j] = 1 if and only if X M i [j] = Y M i [j] = 1
Note that the logical statement of Vars(Z) can be converted into allowed tuples, e.g.

(Z L i [j], X L i [j], Y L i [j]
) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}, which can be modeled in CP or MILP trivially [START_REF] Sun | Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers[END_REF][START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF]. So the only question left is what kind of constraints should be imposed on Vars(X) and Vars(Y ) such that they model the intended properties.

The constraints imposed on Vars(X). According to the definition of forward differential and the AK, SB, LN, ≪ 8, XOR operations of LBlock, we have the following constraints

• X L i [j] = X S i [j] = X R i+1 [j], for k ≤ i < k + r and 0 ≤ j ≤ 7; • X M i [LN [j]] = X S i [j], for k ≤ i < k + r and 0 ≤ j ≤ 7; • X L i+1 [j] = 0 if and only if X R i [(j + 2) mod 8] = X M i [j] = 0, for k ≤ i < k + r and 0 ≤ j ≤ 7.
The constraints imposed on Vars(Y ). Similarly, according to the definition of the backward determination relationship and the AK, SB, LN, ≪ 8, XOR operations of LBlock, we have the following constraints

• For k ≤ i < k +r and 0 ≤ j ≤ 7, Y L i [j] = 0 if and only if Y R i+1 [j] = Y S i [j] = 0; • Y M i [LN [j]] = Y S i [j],
for k ≤ i < k + r and 0 ≤ j ≤ 7; • For XOR and SR operations:

Y M i [j] = Y R i [(j + 2) mod 8] = Y L i+1 [j]
According to the constraints imposed on Vars(Z), if Vars(X) and Vars(Y ) are assigned to values as illustrated in Fig. 14a and Fig. 14b, then we can derive the values of Vars(Z) by superposition of Fig. 14a and Fig. 14b, which is depicted in Fig. 14c. Additional constraints. We require

X L k [j] + X R k [j] = 0, Y L k+r [j] + Y R
k+r [j] = 0, to exclude the trivial solution where all variables are assigned to 0. Also, to make the time complexity of the offline phase not exceeding the complexity of the exhaustive search, we require

Z S i [j] < |K| c = 80/4 = 20 .
Objective functions. The objective function is to minimize k+r-1 i=k 7 j=0 Z S i [j] to make Deg(A, B) as small as possible.

By integrating the above model with the models of E 0 and E 2 with some simple tweak, we identify a DS-MITM attack on 21-round LBLOCK. The distinguisher used in the attack is an 11-round DS-MITM distinguisher (A, B, Deg(A, B)) with A = [START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects -revealing structural properties of several ciphers[END_REF], B = [START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects -revealing structural properties of several ciphers[END_REF], and deg(A, B) = 14, which is shown in Fig. 20 in [supplementary material]. The secret intermediate values Guess(E 0 ) and Guess(E 2 ) created by P 0 in the outer rounds are presented in Fig. 21 in [supplementary material] marked with red color. To perform the attack, we convert Guess(E 0 ) and Guess(E 2 ) into the secret information of subkeys manually, which is visualized in Fig. 22 in [supplementary material], where there are 22 nibbles in k in and 12 nibbles in k out . Then we perform the key-bridging technique [START_REF] Derbez | Improved key recovery attacks on reduced-round AES in the single-key setting[END_REF][START_REF] Lin | Automatic search for key-bridging technique: Applications to lblock and TWINE[END_REF] on k in and k out , and find that |k in ∪ k out | ≤ 69, which is illustrated in Fig. 23 Complexity analysis. According to the discussion of Sect. 3.3, in the offline phase, the time complexity is 2 4×14 ×2 4×1 × 14

21×8 C E ≈ 2 56.42 C E , and the memory complexity is (2 4 -1) × 4 × 1 × 2 4×14 ≈ 2 61.91 bits. In the online phase, the time complexity is

2 69 × 2 4×1 × 12+12 21×8 C E ≈ 2 70.20 C E .
The data complexity of the attack is 2 4×12 = 2 48 , which can be obtained from input state (Round 0) of Fig. 21 in [supplementary material].

Application to TWINE-80

With the method presented in Sect. Complexity analysis. According to the discussion of Sect. 3.3, in the offline phase, the time complexity is 2 4×19 ×2 4×1 × 19

20×8 C E ≈ 2 76.93 C E , and the memory complexity is (2 4 -1) × 4 × 2 × 2 4×19 ≈ 2 82.91 bits. In the online phase, the time complexity is 2 76 ×2 4×1 × 7+20

20×8 C E ≈ 2 77.44 C E . The data complexity of the attack is 2 4×8 = 2 32 , which can be obtained from input state (Round 0) of Fig. 25 in [supplementary material].

Applications to AES, ARIA, and SIMON

We also apply our method to AES, ARIA, and SIMON. However, no better result is obtained. Still, We would like to provide some information about our analysis for the sake of completeness.

For AES, our tool can recover the base DS-MITM attacks behind all attacks (including the best ones) presented in [28-30, 53, 54]. However, currently known best attacks on AES exploit the differential enumeration technique [START_REF] Dunkelman | Improved single-key attacks on 8-round AES-192 and AES-256[END_REF] which our tool cannot take into account automatically. To deal with this, we use a 2-step approach. First, we list all the distinguishers that may lead to a valid attack using the fact that, at best, the differential enumeration technique can decrease the memory complexity by a factor strictly less than 2 n , where n is the state size. For AES-128 we would only add the constraint dictating that two consecutive states cannot be fully active in the distinguisher. Then in a second step, we can obtain the concrete complexities of the attacks derived from the distinguishers by applying known techniques. Usually, the distinguisher leading to the best attack has the lowest number of active bytes. But some manual work is inevitable to really optimize the attacks. Actually, during our analysis, our code generates figures based on the distinguishers automatically, which greatly facilitates subsequent manual analysis and the checking of correctness. Note that the first step alone can be used to get an upper bound on the number of rounds one may attack (independent of any tricks involving manual work): if there is no distinghuisher then there is no attack.

For ARIA, we obtain the same result presented in [START_REF] Akshima | Improved meet-inthe-middle attacks on 7 and 8-round ARIA-192 and ARIA-256[END_REF]. Unlike the other targets presented in the paper which are modeled using MILP, we also provide a Choco [START_REF] Prud'homme | Choco Documentation[END_REF] implementation for finding the DS-MITM distinguishers of the ARIA cipher to show that we can choose from MILP/SAT/SMT/CP as the modeling language freely. This fact is important since the solvers are being improved constantly, and thus we can expect the resolution of more difficult instances in the future. We also try our tool on bit-oriented ciphers like SIMON. For SIMON32/64, only an 8-round DS-MITM distinguisher is identified, which is far less than the rounds can be penetrated by differential attacks.

Applications in the Process of Block Cipher Design

In the design process, the designer typically first fixes the general structure of the block cipher. Then she or he tries to identify the optimal local components in terms of security, efficiency, power consumption etc. by a tweaking-and-analysis style iterative approach. Therefore, it is important to have efficient tools at hands such that a thorough exploration of the design space can be performed. In this section, we show that our tool can be applied in this situation by tweaking the block ciphers LBlock and TWINE. Note that unlike Ivica's tool [START_REF] Nikolic | How to use metaheuristics for design of symmetric-key primitives[END_REF], where nature-inspired meta-heuristics are employed, our method essentially performs an DS-MITM distinguishing attack for each possible instantiation of the target cipher, and pick the optimal ones according to the results.

For LBlock-80, we tweak the 8-nibble to 8-nibble permutation. We exhaustively search for the 11-round DS-MITM distinguishers with the lowest Deg(A, B) for the 8! = 40320 cases. The distribution of the 40320 cases in terms of Deg(A, B) is shown in Fig. 15. According to Fig. 15, we can make several interesting observations. Firstly, there are many very weak permutations with very low deg(A, B) which obviously should be avoided. In extreme cases, there are 12560 permutations with Deg(A, B) = 0. Secondly, the number of permutations with high resistance against DS-MITM attack is small. There are 64 permutations among the 40320 ones with Deg(A, B) = 14, and actually the original permutation of LBlock is chosen from these good permutations. For TWINE-80, we tweak the word shuffle of 16 nibbles. There are totally 16! ≈ 2 44.25 possibilities, which is out of reach of our computational power. However, according to [START_REF] Suzaki | Improving the generalized feistel[END_REF], we only need to consider the 8!×8! even-odd shuffles. Let P = (P 0 , P 1 ), be the word shuffle where P 0 is the shuffle of all even positions while P 1 is the shuffle of all odd positions. Then it can be shown that (P 0 , P 1 ) is equivalent to (Q

• P 1 • Q -1 , Q • P 2 • Q -1 )
, where Q is an arbitrary word shuffle. Therefore, the number of cases can be further reduced since the 8! × 8! shuffles can be divided into 22 × 8! = 887040 equivalent classes with respect to the DS-MITM attack. We exhaustively search for the 11-round DS-MITM distinguishers with the lowest Deg(A, B) for the 887040 cases. The distribution of the 887040 cases in terms of Deg(A, B) is shown in Fig. 16. According to Fig. 16: The horizontal axis shows Deg(A, B) of the 11-round distinguisher (N/A means there is no valid distinguisher found), while the vertical axis indicates the corresponding numbers of permutations Fig. 16, we can make several interesting observations. Firstly, there are many very weak permutations with very low deg(A, B) which obviously should be avoided. In extreme cases, there are 528631 permutations with Deg(A, B) = 0. Secondly, the number of permutations with high resistance against DS-MITM attack is small. There are only 344 permutations among the 887040 ones with Deg(A, B) = 14, and actually the original permutation of TWINE is chosen from these good permutations. Finally, we identify a set of 12 permutations for which we can not find any 11-round distinguisher, indicating that they are stronger than the original permutation in TWINE-80 with respect to the DS-MITM attack.

Since both the DS-MITM attack in this paper and the word-oriented truncated impossible differential attack are structure attacks whose effectiveness is not affected by the details of the underlying S-boxes, we are wondering whether there is a set of strongest word shuffles with respect to the DS-MITM attack and impossible differential attack simultaneously. We exhaustively analysis the 887040 TWINE variants. It turns out that for any variant there is a 14-round impossible differential, and there are 144 variants with no 15-round impossible differential. Finally, we identify a set of 12 word shuffles with no 15-round impossible differential and no 11-round DS-MITM distinguisher (listed in Table . 4 in [supplementary material]). Note that the word shuffle used in TWINE is not in this set. Therefore, it is potentially better to use one from these 12 word shuffles.

Conclusion and Discussion

In this paper, we present the first tool for automatic Demirci-Selçuk meet-inthe-middle analysis based on constraint programming. In our approach, the formulation and resolution of the model are decoupled. Hence, the only thing needs to do by the cryptanalysts is to specify the problem in some modeling language, and the remaining work can be done with any open-source or commercially available constraint solvers. This approach should be very useful in fast prototyping block cipher designs. Finally, we would like to identify a set of limitations of our approach, overcoming which is left for future work.

Limitations. First of all, some important techniques for improving the DS-MITM attack have not been integrated into our framework yet, including (but not limited to) the differential enumeration technique, and using several distinguishers in parallel. Secondly, we cannot guarantee the optimality of the attacks produced by our tool, due to the heuristic natures of the key-recovery process, and the lack of automatically considering cipher specific properties. Finally, we do not know how to apply our method to ARX based constructions. Fig. 27: A illustration that if we know the nibbles marked with red in round 18 of the key schedule algorithm of TWINE, we can derive the values of all the nibbles marked with green in the other rounds. The reader can verify that all the nibbles marked with orange in Fig. 26 are included in the colored nibbles of this figure.

Fig. 1 :

 1 Fig.1: An r-round SP block cipher E = E 2 • E 1 • E 0 with r = r 0 + r 1 + r 2 , whose round function consists of a layer of nonlinear operation and a layer of linear operation. A DS-MITM key-recovery attack is performed based on a DS-MITM distinguisher placed at E 1 . A more detailed explanation of this figure will be given in Sect. 3.2.

  • A : The variables in Vars(X) for state 2r0 whose values are 1 indicate A; • B : The variables in Vars(Y ) for state 2(r0+r1) whose values are 1 indicate B; • Deg E1 (A, B) : The variables in Vars(Z) for state 2j , r 0 ≤ j < r 0 + r 1 whose values are 1 indicate Deg E1 (A, B); • Ā and guessed materials in E 0 : The variables in Vars(M ) whose values are 1 indicate Ā and guessed materials in E 0 which tells us how to prepare the plaintexts leading a δ(A) set at state 2r0 ; • Guessed materials in E 2 : The variables in Vars(W ) whose values are 1 indicate the Guessed materials in E 2 with which we can derive the sequence of differences at state 2(r0+r1) from the ciphertexts.

Fig. 3 :

 3 Fig. 3: The round function of the toy cipher

Fig. 4 :

 4 Fig. 4: Forward/backward differential illustrated on a 5-round keyed permutation

2 8Fig. 6 :

 26 Fig. 6: The forward/backward determination relationship illustrated on a 5round keyed permutation

Fig. 8 :

 8 Fig. 8: The forward differential and backward determination of a 3-round toy cipher with Feistel structure

Round i + 1 Fig. 9 :Fig. 10 :

 1910 Fig.9: The indexing scheme used for the rounds, states, and words of SKINNY

Fig. 11 :

 11 Fig. 11: The backward determination relationship of {Q 0 (state 8 [B]), • • • , Q N -1 (state 8 [B])} for state 8 in rounds (3 → 2 → 1 → 0) with B = [11]

Fig. 11 .Fig. 12 :

 1112 Fig. 12: A visualization of an instantiation of Vars(Z) according to the values assigned to Vars(X) and Vars(Y ), which can be regarded as a superposition of Fig. 10 and Fig. 11

  4. We omit the detailed description of the constraints for Vars(M ) and Vars(W ) introduced for E 0 and E 2 since they are similar to the constraints imposed on Vars(X) and Vars(Y ) given previously. As a result, we identify a DS-MITM attack on 22-round SKINNY-128-384 based on a distinguisher (A, B, Deg(A, B)) with A = [14], B = [7], and deg(A, B) = 40, which is shown in Fig. 17 in [supplementary material]. The secret intermediate values Guess(E 0 ) and Guess(E 2 ) created by P 0 in the outer rounds are presented in Fig. 18 in [supplementary material A].

8 SKFig. 13 :

 813 Fig. 13: The indexing scheme used for LBlock

14 :

 14 An instantiation of the Vars(X), Vars(Y ) and Vars(Z)

  in [supplementary material].

  4, we find a DS-MITM attack on 20-round TWINE-80 based on a distinguisher (A, B, Deg(A, B)) with A = [3], B = [9, 13], and deg(A, B) = 19, which is shown in Fig. 24 in [supplementary material]. The secret intermediate values Guess(E 0 ) and Guess(E 2 ) created by P 0 in the outer rounds are presented in Fig. 25 in [supplementary material]. To perform the attack, we convert Guess(E 0 ) and Guess(E 2 ) into the secret information of subkeys manually, which is visualized in Fig. 26 in [supplementary material]. Then we perform the key-bridging technique [29, 47] on k in and k out , and find that |k in ∪ k out | ≤ 76, which is illustrated in Fig. 27 in [supplementary material].

Fig. 15 :

 15 Fig. 15: The horizontal axis shows Deg(A, B) of the 11-round distinguisher (N/A means there is no valid distinguisher found), while the vertical axis indicates the corresponding numbers of permutations

A 10 Fig. 17 :

 1017 Fig.17:A DS-MITM distinguisher (A, B, Deg(A, B)) for 10.5-round SKINNY-128-384 with A =[START_REF] Gerault | Constraint programming models for chosen key differential cryptanalysis[END_REF] (the nibble marked with crosshatch in the input state of round 0), B =[START_REF] Mouha | Towards finding optimal differential characteristics for ARX: Application to Salsa20[END_REF] (the nibbles marked with crosshatch in the input state of round 11), and Deg(A, B) = 40 (the nibbles before the SB, AC, AK, and SR operations mark with red color). The nibble marked with blue color are those redundant bytes required to be guessed if we do not impose the cipher-specific constraints presented in Sect. 7.1.

Fig. 22 :

 22 Fig. 22: Derive k E0 and k E2 from Fig. 21. The subkey nibbles marked with orange are the secret-key information we need to

  and a state state is viewed as a

		Plaintext
	state 0	
	Ā	NL
	state 1	

  be an ordered set, where Q and Q are two values for state 2k . If we know the value of Q(state 2k [I]), then we can derive the value of Q ⊕ Q (state 2k+1 ) with the knowledge of Q ⊕ Q (state 2k [I]). Similarly, we can derive the value of Q ⊕ Q (state 2k ) with the knowledge of Q(state 2k+1 [I]) and Q ⊕ Q (state 2k+1 [I]).

  Impose a set of constraints on Vars(Z) such that a type-Z variable for state i [j] is 1 if and only if the type-X and type-Y variables for state i [j] are 1 simultaneously.

	1. Modelling the distinguisher part
	• Introduce three types (X, Y , and Z) of 0-1 variables for each word of the states state 2r0 , • • • , state 2(r0+r1) involved in E 1 . We denote the sets of all type-X, type-Y and type-Z variables by Vars(X), Vars(Y ) and Vars(Z), re-
	spectively.
	• Introduce a set of constraints over Vars(X) to model the propagation of the forward differential, and introduce a set of constraints over Vars(Y ) to model
	the backward determination relationship.
	•

Table 3 :

 3 The 64 permutations for which we can not find 12-round distinguishers and have high resistance against 11-round DS-MITM attack, where (7, 6, 5, 4, 3, 2, 1, 0) means that 0 is permuted to 7, 1 is permuted to 6, and so on.

	No.	Permutation	No.	Permutation	No.	Permutation	No.	Permutation
	1	(7,6,5,3,4,1,2,0) 17	(7,6,2,4,0,5,1,3) 33	(7,5,6,3,4,2,1,0) 49	(7,5,2,0,3,1,6,4)
	2	(7,2,4,1,3,6,0,5) 18	(7,2,0,5,3,6,4,1) 34	(7,1,5,4,0,2,6,3) 50	(7,1,6,0,3,5,2,4)
	3	(6,4,7,5,2,0,3,1) 19	(6,3,5,0,2,7,1,4) 35	(6,3,1,4,2,7,5,0) 51	(6,0,3,5,2,4,7,1)
	4	(5,7,4,6,1,3,0,2) 20	(5,4,3,2,0,1,6,7) 36	(5,4,2,3,0,1,7,6) 52	(5,3,0,6,1,7,4,2)
	5	(5,1,3,7,4,0,2,6)		(5,1,6,2,4,0,7,3) 37	(5,0,2,7,1,4,6,3) 53	(5,0,6,3,1,4,2,7)
	6	(4,6,2,7,3,5,1,0) 22	(4,6,1,3,0,2,5,7) 38	(4,5,3,2,1,0,6,7) 54	(4,5,2,3,1,0,7,6)
	7	(4,2,5,3,0,6,1,7) 23	(4,2,1,0,7,5,6,3) 39	(4,1,5,7,3,2,6,0) 55	(4,1,7,2,0,5,3,6)
	8	(4,1,3,6,0,5,7,2) 24	(4,1,2,0,7,6,5,3) 40	(4,0,7,3,5,1,6,2) 56	(4,0,2,6,5,1,3,7)
	9	(3,6,4,1,7,2,0,5) 25	(3,6,0,5,7,2,4,1) 41	(3,5,2,4,7,1,6,0) 57	(3,5,1,0,4,6,2,7)
	10	(3,2,6,0,4,1,5,7) 26	(3,2,1,7,0,5,6,4) 42	(3,1,2,7,0,6,5,4) 58	(3,1,6,4,7,5,2,0)
	11	(2,4,7,1,6,0,3,5) 27	(2,7,5,0,6,3,1,4) 43	(2,7,1,4,6,3,5,0) 59	(2,0,3,1,6,4,7,5)
	12	(1,5,2,6,0,4,3,7) 28	(1,5,7,3,0,4,6,2) 44	(1,4,6,3,5,0,2,7) 60	(1,4,2,7,5,0,6,3)
	13	(1,3,0,2,5,7,4,6) 29	(1,7,4,2,5,3,0,6) 45	(1,0,7,6,4,5,2,3) 61	(1,0,6,7,4,5,3,2)
	14	(0,6,5,4,3,1,2,7) 30	(0,6,1,7,4,2,5,3) 46	(0,5,6,4,3,2,1,7) 62	(0,5,3,6,4,1,7,2)
	15	(0,5,1,3,7,6,2,4) 31	(0,5,7,2,4,1,3,6) 47	(0,4,6,2,1,5,7,3) 63	(0,4,3,7,1,5,2,6)
	16	(0,2,5,7,4,6,1,3) 32	(0,2,6,3,7,1,5,4) 48	(0,1,6,7,5,4,3,2) 64	(0,1,7,6,5,4,2,3)

Table 4 :

 4 The 12 strongest word shuffles with respect to both DS-MITM attack and impossible differential attack. An illustration of the backward differential and forward determination relationship in the outer rounds of SKINNY with the DS-MITM distinguisher presented in Fig.17placed at E 1 . The bytes in Guess(E 0 ) and Guess(E 2 ) are marked with red color. From the input state of round 0, we know that Ā = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14]. Hence, the data complexity is 2 8×12 = 2 96 . Fig.19: Derive k E0 and k E2 from Fig.18. The subkey nibbles marked with orange color are the secret-key information we need to guess. With the knowledge of these bytes, we can derive the values of all the bytes of P 0 marked with orange color in this figure, from which we can determine all the bytes in Guess(E 0 ) and Guess(E 2 ) shown in Fig.18. An illustration of the backward differential and forward determination relationship in the outer rounds of LBlock with the DS-MITM distinguisher presented in Fig.20placed at E 1 . Nibbles in Guess(E 0 ) and Guess(E 2 ) are marked with red.

	No.	Permutation	No.	Permutation
	1 (15,2,13,4,11,6,3,8,1,10,5,0,7,12,9,14) 7 (7,2,13,4,15,6,1,8,5,10,3,0,11,12,9,14)
	2 (15,2,9,4,1,6,11,8,3,10,13,0,7,12,5,14) 8 (7,2,11,4,9,6,1,8,15,10,13,0,3,12,5,14)
	3 (13,2,15,4,11,6,3,8,1,10,5,0,9,12,7,14) 9 (7,2,11,4,9,6,1,8,13,10,15,0,5,12,3,14)
	4 (13,2,9,4,1,6,11,8,3,10,15,0,5,12,7,14) 10 (7,2,15,4,13,6,1,8,5,10,3,0,9,12,11,14)
	5 (9,2,7,4,11,6,15,8,13,10,5,0,1,12,3,14) 11 (5,2,9,4,13,6,15,8,3,10,7,0,1,12,11,14)
	6 (9,2,7,4,11,6,13,8,15,10,5,0,3,12,1,14) 12 (5,2,9,4,15,6,13,8,3,10,7,0,11,12,1,14)

SK

Fig.

21:

  Fig. 25: An illustration of the backward differential and forward determination relationship in the outer rounds of TWINE with the DS-MITM distinguisher presented in Fig. 24 placed at E 1 . Nibbles in Guess(E 0 ) and Guess(E 2 ) are marked with blue. RK Fig. 26: Derive k E0 and k E2 from Fig. 25. The subkey nibbles marked with orange are the secret-key information we need to guess.
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