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Context and problem statement

X ≈W · H

≈ ·

I Nonnegative Matrix Factorization
(NMF) is a popular tool in Signal/Image
Processing and Machine Learning

I Goal: estimate two nonnegative n × p and p ×m matrices W and H such that an observed
low-rank nonnegative n ×m matrix X can be written as X ≈W ·H

I Some applications:
I Source separation, dictionary learning, graph analysis, topic modelling, hyperspectral unmixing...

I Why is NMF so popular? Better interpretability than no-sign-constrained approaches

NMF and PCA applied to face dataset (source: [1])
I How is NMF working?

I Iterative procedure where W and H are alternatingly updated
I Historical techniques known to be slow (multiplicative updates, projected gradients, nonnegative least

squares, etc)
I NMF and Big Data: How to face the data deluge?

I Distributed computing (e.g., [2])
I Online factorization (e.g., [3])
I Fast solver (e.g., [4])
I Randomized strategies (e.g., [5, 6, 7])

I In many problems, observed data matrix X with missing entries or confidence measures
associated to each entry
I Some applications: collaborative filtering, source apportionment, low-rank nonnegative matrix

completion, mobile sensor calibration (aim of the Ph.D. thesis)
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í Weighted NMF (WNMF):
min

W ,H≥0
‖Q ◦ X −Q ◦ (W ·H)‖F

I WNMF and Big Data:
1. Most techniques are based on slow solvers
2. A few with the fastening strategies for unweighted NMF
3. No existing approach with random projections

í How to use random projections in WNMF?

Principle of random projections applied to NMF

I Random projections is a popular tool in machine learning to speed-up computations while
preserving pairwise structure

I Mathematical foundations based on the Johnson-Lindenstrauss Lemma

Principles of the random projections (source: [10])

I Gaussian random matrices as projection matrices [5]
I Structured random projections [6, 7]

î Randomized Power Iterations (RPIs) or Randomized Subspace Iterations (RSIs)

Require: a target rank ν (with p ≤ ν � min(n,m)) and an integer q
Draw Gaussian random matrices ΩL ∈ Rm×ν and ΩR ∈ Rν×n

Define BL , (XXT )q ·X ·ΩL and BR , ΩR ·X · (XT X )q

Derive L ∈ Rν×n and R ∈ Rm×ν by QR decompositions of BL and BR, respectively.

I RSIs are similar but add intermediate QR decompositions in the computations î less
sensitive to round-off errors than RPIs

î Why we have designed "compressions matrices" R and L ?
Dimensionality reduction of X by right (resp. left) multiplication with R (resp. L)

X ·R︸ ︷︷ ︸
XR

≈W · H ·R︸ ︷︷ ︸
HR

≈ ·

L ·X︸︷︷︸
XL

≈ L ·W︸ ︷︷ ︸
WL

·H

≈ ·

NMF with weights

Weighted Extensions of NMF aim to solve:

min
W ,H≥0

‖Q ◦ X −Q ◦ (W ·H)‖F

1. Direct computations (Ho, 2008):
I Incorporating the matrix Q in the update rules

2. EM-based strategy (Zhang et al., 2006)
I E-step: Estimate the unknown entries of X

X comp = Q ◦ X + (1n,m −Q) ◦ (W ·H), (1)
where 1n,m is the n ×m matrix of ones.

I M-step: Apply any standard NMF technique to X comp

î Direct incorportation of random projections is not trivial...

Proposed Method

Require: initial matrices W and H
repeat
{E-step} {Compression makes E-step 3 times slower in our experiments}
Compute Xcomp as in (1)
Apply RSIs or RPIs to Xcomp to compute L and R
Define Xcomp

L , L ·Xcomp and Xcomp
R , Xcomp ·R

{M-step} {10-100 times faster than SotA EM-W-NMF methods in our experiments}
for compt=1 to MaxOutIter do
Define HR , H ·R
Solve minW≥0 ‖Xcomp

R −WHR‖F
Define WL , L ·W
Solve minH≥0 ‖Xcomp

L −WLH‖F
end for

until a stopping criterion

Experiments and Results

To test our method we run each test for 60 seconds and repeat 15 times the following:
I we randomly generate nonnegative factor matrices W theo and H theo, with n = m = 10000

and p = 5.
I we randomly suppress data to generate X , with a sampling rate varying from 10 to 90%

(with a step-size of 20%)
I We compare the proposed REM-W-NMF strategy to the EM-W-NMF with several solvers,

i.e., MU, PG, ALS & Nesterov iterations
I measure the accuracy of reconstruction of X Relative Reconstruction Error (RRE) and the

accuracy of estimation of H (Signal-to-Interference Ratio—SIR)
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j

∣∣∣∣∣∣2 / ∣∣∣∣∣∣ĥorth
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Conclusion and perspectives

I Novel framework to combine random projections and weighted matrix factorization.
I Based on an EM scheme
I The proposed strategy outperforms non-randomized state-of-the-art EM techniques
I In future work, we aim to apply the proposed strategy to informed and structured NMF

techniques applied to mobile sensor calibration
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