
HAL Id: hal-02166566
https://hal.science/hal-02166566

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Matching long and short distances at order O(α_s) in
the form factors for K → πℓ+ℓ−

Giancarlo d’Ambrosio, David Greynat, Marc Knecht

To cite this version:
Giancarlo d’Ambrosio, David Greynat, Marc Knecht. Matching long and short distances at
order O(α_s) in the form factors for K → πℓ+ℓ−. Phys.Lett.B, 2019, 797, pp.134891.
�10.1016/j.physletb.2019.134891�. �hal-02166566�

https://hal.science/hal-02166566
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Matching long and short distances in the form factors for K → π`+`−

Giancarlo D’Ambrosioa, David Greynatb, Marc Knechtc

aINFN-Sezione di Napoli, Via Cintia, I-80126 Napoli, Italia
bPresently without affiliation
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Abstract

At order O(αGF), the amplitudes for the decays K → π`+`− involve a form factor given by the matrix element of the
time-ordered product of the electromagnetic current with the four-quark operators describing weak non-leptonic neutral-
current transitions between a kaon and a pion. The short-distance behaviour of this time-ordered product, when considered
at order O(αs) in the perturbative expansion of QCD, involves terms linear and quadratic in the logarithm of the Euclidean
momentum transfer squared. It is shown how one can exactly match these short-distance features using a dispersive
representation of the form factor, with an absorptive part given by an infinite sum of zero-width resonances following a
Regge-type spectrum. Some phenomenology-related issues are briefly discussed.

1. Introduction

The amplitude for a ∆S = +1 neutral-current transi-
tion K(k) → π(p)`+(p+)`−(p−), ` = e, µ, where (K, π) ∈
{(K+, π+), (K0, π0)}, takes the form [1–3]

AK→π`+`−(s) = −e2 × ū(p−)γρv(p+) ×
1
s

×

{
i
∫

d4x 〈π(p)|T { jρ(0)L∆S =1
non-lept(x)}|K(k)〉

+

(
−

GF
√

2
VusVud

)
×

C7V (ν)
4πα

× s

× 〈π(p)|(s̄γρd)(0)|K(k)〉
}

(1.1)

= −e2 × ū(p−)(6k + 6p)v(p+) ×
WKπ(z)

16π2M2
K
.

Here s = (k− p)2 = (p+ + p−)2 = zM2
K is the square of the

di-lepton invariant mass, MK denotes the kaon mass [for
our present purposes, it is not necessary to distinguish be-
tween the masses of charged and neutral kaons], e is the
electric charge, GF the Fermi constant, and Vud, Vus are
elements of the CKM matrix. Each matrix element oc-
curring in the first expression has to be evaluated in QCD
with three active flavours. In particular, the electromag-
netic current jρ is made up from the contributions of the
u, d and s quarks,

jρ(x) =
∑

q=u,d,s

eq(q̄γρq)(x), eu = +
2
3
, ed = es = −

1
3
. (1.2)
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Furthermore, L∆S =1
non-lept(x) represents the effective Lagran-

gian for ∆S = +1 transitions [4–9], and involves the two
current-current four-quark operators, as well as the QCD
penguin operators, modulated by the appropriate Wilson
coefficients

L∆S =1
non-lept(x) =

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)QI(x; ν). (1.3)

The above representation of AK→π`+`− holds at order
O(αGF), α = e2/4π denoting the fine-structure constant,
and with a corresponding form factor for each (K, π) chan-
nel, that is for the CP conserving transitions K+ → π+`+`−

and KS → π0`+`−, but also for the direct-CP violating
part of the amplitude for the decay KL → π0`+`−. The
purpose of the perhaps somewhat unfamiliar first expres-
sion of AK→π`+`− given in Eq. (1.1) above is to explicitly
display the two main components of the weak transition
form factor defined by the second expression in Eq. (1.1),

WKπ(z) = WLD
Kπ (z; ν) + WSD

Kπ (z; ν). (1.4)

The first part is dominated by long-distance contributions,
the second one is generated at short distances, at the elec-
troweak scale or beyond in case new physics sets in at
even higher energies. Notice the appearance of an ul-
traviolet subtraction scale ν in each of the two terms in
Eq. (1.4). Their sum WKπ(z) appears in the amplitude
AK→π`+`− entering the physical decay rate and should of
course not depend on ν anymore. Explicitly, one has[
s(k + p)ρ − (M2

K − M2
π)(k − p)ρ

]
×

WLD
Kπ (z; ν)

16π2M2
K

= i
∫

d4x 〈π(p)|T { jρ(0)L∆S =1
non-lept(x)}|K(k)〉 (1.5)
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for the long-distance dominated part, whereas the con-
tribution from short distances, which arises from a local
term [7, 10–12]

L∆S =1
lept (x; ν) = −

GF
√

2
V∗usVudC7V (ν)Q7V (x), (1.6)

with Q7V = (s̄idi)V−A( ¯̀`)V , reads

WSD
Kπ (z; ν)

16π2M2
K

= −

(
−

GF
√

2
VusVud

)
×

C7V (ν)
4πα

×CKπ f+(s)

(1.7)
in terms one of the form factor f+(s) describing the matrix
element of the ∆S = +1 neutral current

〈π(p)|
(

s̄ γρd
)
(0)|K(k)〉

= CKπ
[
(k + p)ρ f Kπ

+ (s) + (k − p)ρ f Kπ
− (s)

]
. (1.8)

In these last formulas, CKπ denotes a Clebsch-Gordan
coefficient, chosen such that f+(0) = 1 in the flavour-
S U(3) limit. In both Eqs. (1.5) and (1.8) the terms pro-
portional to (k − p)ρ do not contribute to the amplitude
AK→π`+`− due to the conservation of the leptonic current,
(k − p)ρ ū(p−)γρv(p+) = 0. For the sake of complete-
ness, let us recall that in the standard model there is also
a contribution to the short-distance part of the amplitude
AK→π`+`− coming from a term proportional to C7AQ7A(x),
with Q7A = (s̄idi)V−A( ¯̀`)A. This term does not play any
role in the present discussion, as it does not involve the
short-distance scale ν and is anyway CKM suppressed.
We will therefore not mention it any further.

In WSD
Kπ (z; ν) the scale dependence is entirely carried by

the Wilson coefficient C7V (ν),

ν
dC7V (ν)

dν
=

α

αs(ν)

6∑
J=1

γJ,7V (αs) CJ(ν). (1.9)

The anomalous dimensions γJ,7V (αs) are known to leading
[10–13] and to next-to-leading [14] orders,

γJ,7V (αs) = γ(0)
J,7V

αs

4π
+ γ(1)

J,7V

(αs

4π

)2
+ · · · . (1.10)

In WLD
Kπ (z; ν), the scale dependence arises from the singu-

lar structure, at short distances, of the time-ordered prod-
uct of the electromagnetic current with the ∆S = +1 ef-
fective Lagrangian [both jµ and L∆S =+1

non-lept are finite opera-
tors]. This short-distance singularity can be studied per-
turbatively within the operator-product expansion (OPE)
[15, 16]. After renormalization [we use dimensional reg-
ularization in the MS subtraction scheme, and below qµ

denotes a Euclidian momentum, with q2 = s < 0, whose
components become simultaneously large] one obtains
the general structure, cf. Ref. [3],

lim
q→∞

i
∫

d4x eiq·xT { jµ(x)L∆S =+1
non-lept(0)}

= [qµqρ − q2ηµρ]× s̄γρ(1 − γ5)d (1.11)

×

(
−

GF
√

2
VusVud

)
×

1
4π

6∑
I=1

CI(ν)ξI(αs ; ν2/q2) + O(q),

with

ξI(αs ; ν2/s) =
∑
p≥0

p+1∑
r=0

ξI
prα

p
s (ν) lnr(−ν2/s). (1.12)

The subleading terms in the OPE have finite coefficients,
and do therefore not depend on the renormalization scale
ν. Consequently [recall that z ≡ s/M2

K],

ν
dWLD

Kπ (z; ν)
dν

= −16π2M2
KCKπ f+(s) ×

(
−

GF
√

2
VusVud

)
×

1
4π
ν

d
dν

6∑
I=1

CI(ν)ξI(αs ; ν2/s). (1.13)

From Eqs. (1.11) and (1.12) one infers that in the Eu-
cliean region z → −∞ the form factor WLD

Kπ (z; ν) behaves
asymptotically like powers of ln(−z) times powers of the
strong coupling αs.

In the present Letter, we wish to discuss how the above
short-distance behaviour can be reproduced, up to the or-
der O(αs), by a model involving an infinite number of
equally-spaced [in mass squared] zero-width resonances.
Models of this kind were considered in various contexts
in the past, see for instance the articles [17–19] and refer-
ences therein. Such Regge-type models find their justifi-
cation in the properties of the QCD spectrum in the limit
of a large number of colours [20–22]. More recently quite
efficient methods, based on the Converse Mapping The-
orem [23] and the notion of harmonic sums, were devel-
oped in order to handle such models [24–26]. In the case
at hand, the general idea put forward in Ref. [3] consists
in decomposing the long-distance dominated part of the
form factor as a sum

WLD
Kπ (z) = Wππ

Kπ(z) + W res
Kπ(z; ν). (1.14)

The first term describes the contribution from the reso-
nant P-wave two-pion intermediate state to WKπ(z). It is
constructed upon assuming that it is given by an unsub-
tracted dispersion integral. The absorptive part consists of
the two-pion spectral density ρππKπ(s), and is obtained upon
inserting a two-pion intermediate state in the representa-
tion of the form factor given in Eq. (1.1). This contribu-
tion is not relevant for the discussion of the short-distance
properties, and we refer the interested reader to Ref. [3]
for details. The second term describes the contributions
from the intermediate states with higher thresholds as a
sum of zero-width resonances. The weight with which
each resonance contributes must be chosen such as to re-
produce the short-distance behaviour given in Eqs. (1.11)
and (1.12). In Ref. [3], this matching has been achieved
at order O(α0

s), which involves only a constant term and a
term linear in ln(−z). Here we wish to extend this match-
ing to the order O(αs), where we also encounter a term
quadratic in ln(−z).

The remainder of this Letter is thus organized as fol-
lows. In section 2 we determine the required coefficients
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ξI
01, ξI

11 and ξI
12, relying on a renormalization-group ar-

gument given in Ref. [3]. For paedagogical reasons, we
then review (Section 3) the matching at order O(α0

s), mak-
ing the discussion of Ref. [3] simpler and, hopefully,
also more intuitive. The matching at order O(αs) is then
presented in Section 4. Finally, we discuss some conse-
quences and features of our results (Section 5).

2. Determination of the short-distance coefficients

From the perspective of perturbative QCD, the ma-
trix element that defines the long-distance dominated part
WLD

Kπ (z; ν) is described by the Feyman diagrams of the
type shown on Fig. 1. This is obviously not a realistic
description of WLD

Kπ (z; ν), except at short distances, when
the momentum transfered to the electromagnetic current
becomes large in the space-like or Euclidean domain,
s → −∞. The leading contribution to the OPE of the
electromagnetic current and the four-quark operators de-
scribing ∆S = +1 transitions involves the neutral-current
operator s̄γρ(1 − γ5)d, and corresponds to the diagram (a)
of Fig. 1. The calculation with a bare four-quark operator
QI is straightforward, see Ref. [3], and gives

lim
q→∞

i
∫

d4x eiq·xT { jµ(x)L∆S =+1
non-lept(0)}

= [qµqρ − q2ηµρ] × [s̄γρ(1 − γ5)d](0) ×
(
−

GF
√

2
VusVud

)
×

1
4π

6∑
I=1

CI

{
ξI

00 − ξ
I
01

[
2

D − 4
+ ln

(
−q2

ν2

)]
+ O(αs)

}
+ O(q). (2.1)

with

ξI
01 =

1
4π

8
9
× (Nc , 1 , −1 , −Nc , 0 , 0) ,

ξI
00 =

ξI
01

3
×

 2 NDR

5 HV
, (2.2)

The result for ξI
00 depends on the scheme used to han-

dle the Dirac matrices in D dimensions, here either naive
dimensional regularization (NDR) [27] or the ’t Hooft-
Veltman (HV) scheme [28, 29]. The divergent part is
removed through the renormalization of the (bare) cou-
pling C7V . Notice also that at this order the Wilson coeffi-
cients are not yet running. In the presence of QCD correc-
tions, the four-quark operators and the corresponding Wil-
son coefficients are renormalized. But this does not take
care of all the divergences, since two external lines of the
QI operators are closed into a loop with the insertion of
the electromagnetic current, see Fig. 1. These remaining
divergences are again absorbed through the higher-order
renormalization of C7V . To all orders in the powers of αs,
and after renormalization through minimal subtraction in
the MS scheme, the leading term in the OPE then takes the

form given in Eqs. (1.11) and (1.12). From the scale de-
pendence of the Wilson coefficients C7V (ν), given in Eq.
(1.9), and CI(ν),

ν
dCI(ν)

dν
=

6∑
J=1

γJ, I(αs)CJ(ν), (2.3)

one infers that the total form factor in Eq. (1.4) will be
scale independent provided the equation

ν
dξI(αs ; ν2/s)

dν
+

6∑
J=1

γI,J(αs)ξJ(αs ; ν2/s) = −
γI,7V (αs)
αs(ν)

(2.4)
holds. At order O(α0

s), this allows to recover the values
of the coefficients ξI

01 from the known one-loop anoma-
lous dimension matrices. Including first-order QCD cor-
rections, one obtains, after renormalization,

lim
q→∞

i
∫

d4x eiq·xT { jµ(x)L∆S =+1
non-lept(0)} (2.5)

= [qµqρ − q2ηµρ] × s̄γρ(1 − γ5)d ×
(
−

GF
√

2
VusVud

)
×

1
4π

6∑
I=1

CI(ν)
{
ξI

00 − ξ
I
01 ln

(
−q2

ν2

)
+ αs(ν)

[
ξI

10

−ξI
11 ln

(
−q2

ν2

)
+ ξI

12 ln2
(
−q2

ν2

)]
+ O(α2

s)
}

+ O(q).

From the above renormalization-group argument and the
known two-loop anomalous dimension matrices [30–34],
one infers the relations

ξI
12 =

1
(4π)2

4
27

(
Nc −

1
Nc

)
×
(
0 , −8 , +11 , N f , 0 , N f

)
,

(2.6)
and

ξI
11 =

1
(4π)2

8
3

(
Nc −

1
Nc

)

×


(Nc

2 , − 19
18 ,

17
9 ,

7
6 −

Nc
2 , 0 , 7

6

)
NDR(Nc

2 , − 5
18 ,

13
9 ,

7
6 −

Nc
2 , 0 , 7

6

)
HV

. (2.7)

The coefficients ξI
10 cannot be obtained this way, and their

determination would require a full two-loop calculation,
which we will however not need to attempt here.

3. The matching at order O(α0
s)

It is convenient to represent the resonance contribution
to the form factor in Eq. (1.14) as a dispersive integral

W res
Kπ(z; D) =

CKπ f Kπ
+ (zM2

K)
4π

∫
dx

ρres
Kπ(x; D)

x − zM2
K − i0

, (3.1)

where the spectral density is constructed order by order in
the expansion in powers of the strong coupling αs,

ρres
Kπ(x; D) = ρres;0

Kπ (x; D) + ρres;1
Kπ (x; D) + · · · , (3.2)

3



(a) (b)

(d)

(c)

(f)(e)

Figure 1: Diagrams contributing to the leading short-distance behaviour of the time-ordered product of the electromagnetic current (materialized by the
wiggly line on the left) with one of the four-quark operators, whose insertion is shown by the crossed-circle (⊕) vertex on the right of diagram (a), of
order O(α0

s ), and of the diagrams (b) to (e). The latter also form a representative subset of the diagrams contributing to the gluonic corrections at order
O(αs). The vertex represented by a circular black blob (•) on the right of diagram ( f ) corresponds to the insertion of an order O(αs) countertem into the
lowest-order diagram (a). The other external lines represent an incoming d quark and an outgoing s quark, while the loop consists of a q̄-q pair, where
q = u, d, s.

and is defined in D dimensions. This last point requires
some explanation. Indeed, by power counting the naive
superficial degree of divergence of the diagrams in Fig. 1
is two, and becomes actually zero once the Ward identity
following from the conservation of the electromagnetic
current is implemented. Therefore, in four dimensions the
form factor satisfies a once-subtracted dispersion relation,
which would thus constitute an appropriate representation
to start with. However, the information from short dis-
tances at our disposal, and summarized in the preceding
section, comes from calculations done within a dimen-
sional renormalization scheme with minimal subtraction
and not within a momentum subtraction one. Since we
want to make direct use of this information without trans-
forming it first into a different scheme, we choose instead
to start from an unsubtracted dispersion relation in D di-
mensions. As will hopefully become clear in the sequel,
far from being an unnecessary complication, this choice
even presents some advantages in actually guiding our in-
tuition in the process of constructing an appropriate ansatz
for the spectral density ρres;0

Kπ (x; D) or ρres;1
Kπ (x; D).

At the one-loop level, i.e. order O(α0
s), the resonance

representation we are looking for should match, at large
negative values of s, the behaviour in the same limit of the
unrenormalized QCD diagram (a) of Fig. 1. In order to
reproduce a logarithmic behaviour at short distances, an
infinite set of resonances is required [22]. We will con-
sider a simple Regge-type description of the resonance
spectrum in terms of equally spaced [in mass squared]
zero-width states. Accordingly, the general structure of
ρres;0

Kπ (x; D) is given by

ρres;0
Kπ (x; D) = A0(D)(4π)2− D

2

(
M2

ν2
MS

) D
2 −2

Γ

(
2 −

D
2

)
×
∑
n≥1

M2µ(0)
n (D)δ(x − nM2), (3.3)

with so-far unspecified functions A0(D) and µ(0)
n (D). The

additional prefactors simply account for the structure of
diagram (a) of Fig. 1 in D dimensions. Since the one-loop
divergence is already contained in the factor Γ(2 − D/2),
A0(D) has to be regular at D = 4. It accounts for the
scheme dependence, for instance in handling Dirac matri-
ces in D dimensions, see Section 2. M denotes the mass of
the lowest-lying resonance and νMS denotes the renormal-
ization scale in the minimal subtraction scheme. Then,
with w ≡ −s/M2,∫

dx
ρres;0

Kπ (x; D)
x + wM2 = A0(D)(4π)2− D

2

(
M2

ν2
MS

) d
2−2

×Γ

(
2 −

D
2

)∑
n≥1

µ(0)
n (D)

n + w
. (3.4)

The value of the above dispersive integral at w = 0 repro-
duces the divergent part of the diagram (a) of Fig. 1∫

dx
x
ρres;0

Kπ (x; D) = A0(D)(4π)2− D
2

(
M2

ν2
MS

) d
2−2

×Γ

(
2 −

D
2

)∑
n≥1

µ(0)
n (D)

n
. (3.5)

A0(4) being so far a free parameter, one may, without loss
of generality, require that∑

n≥1

µ(0)
n (D)

n
= 1 + (D − 4)µ(0) + O((D − 4)2), (3.6)

with µ(0) a constant that remains unspecified for the time
being. Then∫

dx
x
ρres;0

Kπ (x; D) = A0(4)
[
−

2
D − 4

+ ln
ν2

M2 (3.7)

−2
A′0(4)
A0(4)

− 2µ(0)
]

+ O(D − 4),

4



with ν ≡ νMSe−γE/2
√

4π the subtraction scale in the MS
scheme. The constant µ(0) can actually be absorbed with-
out loss of generality into A′0(4), which has also not been
specified so far. The remaining, subtracted, dispersive in-
tegral

wM2
∫

dx
x
ρres;0

Kπ (x; D)
x + wM2 = A0(D)(4π)2− D

2

(
M2

ν2
MS

) d
2−2

(3.8)

×Γ

(
2 −

D
2

)∑
n≥1

wµ(0)
n (D)

n(n + w)

should then be finite as D → 4. This in turn will be the
case if we require

µ(0)
n (D) = (D − 4)µ̄(0)

n + O((D − 4)2) (3.9)

and

ξ(w) =
∑
n≥1

µ̄(0)
n

n(n + w)
converges. (3.10)

Consequently

wM2
∫

dx
x
ρres;0

Kπ (x; D)
x + wM2 = A0(4)(−2w)ξ(w) + O(D − 4).

(3.11)
Finally, in order to reproduce the correct matching with
the short-distance behaviour, one must also require

−2wξ(w) = ln w + Cst + · · · (3.12)

as w → +∞. At this stage, one may observe that µ(0)
n ∝

(D − 4)µ̄(0), with µ̄(0) a constant, would provide a conver-
gent series ξ(w), endowed with an asymptotic logarithmic
behaviour. But it would fail to satisfy the condition (3.6).
As we now show, this defect can be easily repaired. In-
tuitively, the task will consist in providing a convergence
factor for the sum (3.6) when D < 4, but which is no
longer operative for D = 4, otherwise the sum ξ(w) would
converge too quickly, and would no longer exhibit a loga-
rithmic behaviour for large values of w. Instead, it would
rather behave as a constant or an inverse power of w. Con-
sider therefore the ansatz

µ(0)
n (D) = a(0)(D)n

D
2 −2. (3.13)

Then one has∑
n≥1

µ(0)
n (D)

n
= a(0)(D)ζ

(
3 −

D
2

)
, (3.14)

where ζ(s) denotes Riemann’s zeta-function, see [35, sec-
tion 25.2]. Since, as D→ 4, ζ(3−D/2) ∼ −2/(D−4)+γE ,
where γE is the Euler constant, any choice of the form

a(0)(D) =
1

ζ
(
3 − D

2

)
+ f (D)

, (3.15)

where f (D) is an arbitrary function regular at D = 4, will
lead to∑

n≥1

µ(0)
n (D)

n
= 1 +

f (4)
2

(D − 4) + O((D − 4)2) (3.16)

and thus satisfy the condition (3.6) with µ(0) = f (4)/2.
The condition (3.9) is then also satisfied, with µ̄n = −1/2,
so that

Γ

(
2 −

D
2

)
µn(D) = 1 + O(D − 4). (3.17)

The condition (3.10) is met as well, with

−2wξ(w) =
∑
n≥1

w
n(n + w)

= γE + ψ(1 + w). (3.18)

Putting everything together, one ends up with∫
dx

ρres;0
Kπ (x; D)
x + wM2 = A0(4)

{
−

2
D − 4

+ ln
ν2

M2 − 2
A′0(4)
A0(4)

−2µ(0) −
[
γE + ψ(1 + w)

]}
+ O(D − 4). (3.19)

In this last formula, the di-gamma function ψ resums the
dispersive integral

ψ(1 + w) = −γE+M2w
∫

dx
x

1
x + M2w

∑
n≥1

M2δ(x−nM2).

(3.20)
Finally, for large positive w the di-gamma function be-
haves as ψ(1 + w) ∼ ln w = ln(−s/M2), so that the correct
short-distance behaviour is also recovered, provided one
takes

A0(4) = −16π2M2
K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)ξI
01 (3.21)

and

A′0(4) +
(
µ(0) +

γE

2

)
A0(4) = +16π2M2

K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)
ξI

00

2
. (3.22)

Minimal subtraction of the divergence leads to the renor-
malized dispersion relation∫

dx
ρres;0

Kπ (x; D)
x + wM2 = −16π2M2

K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)

×

[
ξI

01

(
ln

ν2

M2 − ψ(1 + w)
)

+ ξI
00

]
+O(D − 4), (3.23)

with

ρres;0
Kπ (x; D) = −16π2M2

K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)

×

{
ξI

01 −
D − 4

2
[
ξI

00 + ( f (4) + 2γE)ξI
01

]}
×

(
M2

ν2

) D
2 −2

Γ

(
2 −

D
2

)
(3.24)

×
∑
n≥1

M2n
D
2 −2

ζ
(
3 − D

2

)
+ f (D)

δ(x − nM2).
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We may now, in some sense, reverse-engineer the
whole construction, starting directly from the represen-
tation of ρres;0

Kπ (x; D) in D dimensions given in Eq. (3.24)
above and showing that it satisfies the required properties.
This will be useful in Section 4, where we will only sketch
the construction of the spectral density ρres;0

Kπ (x; D), give
the result, and show that it indeed exhibits the appropriate
features. Using the Mellin representation

1
1 + w

n
=

∫ c1+i∞

c1−i∞

du
2πi

(w
n

)−u
Γ(u)Γ(1 − u), (3.25)

where 0 < c1 < 1, one has

∫
dx

ρres;0
Kπ (x; D)
x + wM2

= −16π2M2
K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)
{
ξI

01 −
D − 4

2

×
[
ξI

00 + ( f (4) + 2γE)ξI
01

]}
×

(
M2

ν2

) D
2 −2

×
Γ
(
2 − D

2

)
ζ
(
3 − D

2

)
+ f (D)

×

∫ c1+i∞

c1−i∞

du
2πi

w−uΓ(u)Γ(1 − u)

×ζ

(
3 −

D
2
− u
)
. (3.26)

The first singularity of the integrand lying on the left of
the fundamental band c1 = Re u ∈]0, 2 − D/2[ is a simple
pole at u = 0, coming from the factor Γ(u). According to
the Converse Mapping Theorem [23] one therefore has

∫
dx

ρres;0
Kπ (x; D)
x + wM2

=
w→0
−16π2M2

K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)
{
ξI

01 −
D − 4

2

×
[
ξI

00 + ( f (4) + 2γE)ξI
01

]}
×

(
M2

ν2

) D
2 −2

×
Γ
(
2 − D

2

)
ζ
(
3 − D

2

)
ζ
(
3 − D

2

)
+ f (D)

=
D→4
−16π2M2

K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)
{
−2

D − 4
ξI

01

+ ξI
00 + ξI

01γE + ξI
01 ln

M2

ν2

}
+ O(D − 4). (3.27)

The first singularity of the integrand lying on the right of
the fundamental band c1 = Re u ∈]0, 2 − D/2[ is a sin-
gle pole occurring at u = 2 − D/2, with ζ

(
3 − D

2 − u
)
∼

−1/(u−2+ D/2), so that, according to the Converse Map-

ping Theorem,∫
dx

ρres;0
Kπ (x; D)
x + wM2

∼
w→+∞

−16π2M2
K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν)
{
ξI

01

−
D − 4

2
[
ξI

00 + ( f (4) + 2γE)ξI
01

]}
×

(
M2

ν2

) D
2 −2

×
Γ
(
2 − D

2

)
ζ
(
3 − D

2

)
+ f (D)

× Γ

(
2 −

D
2

)
Γ

(
D
2
− 1
)

×

[
w

D
2 −2 + O

(
w−1)] . (3.28)

Considering next the limit D → 4, one indeed recovers
the expected result:∫

dx
ρres;0

Kπ (x; D)
x + wM2

∼
w→+∞

−16π2M2
K

(
−

GF
√

2
VusVud

)
×

6∑
I=1

CI(ν) (3.29)

×

{
−2

D − 4
ξI

01 + ξI
00 + ξI

01 ln
ν2

−s

}
+ O(D − 4).

Summarizing the preceding analysis, we find inded that
the spectral density (3.24) reproduces the minimally sub-
tracted dispersive integral in Eq. (3.23). Let us notice, at
this stage, that the result (3.23) for D = 4 does no longer
depend at all on f (D). We will return to this point in Sec-
tion 5 below.

4. The matching at order O(αs)

In order to include the O(αs) corrections that arise at
two loops, it is necessary to start with a somewhat more
involved expression of the spectral density. We again let
ourselves be guided by the perturbative structure of this
contribution. On the basis of the order O(αs) diagrams
shown in Fig. 1, we are led to consider as a starting point
the sum of two terms,

ρres;1
Kπ (x; D) = ρres;1a

Kπ (x; D) + ρres;1b
Kπ (x; D) (4.1)

with

ρres;1a
Kπ (x; D) = A1a(D)(4π)4−D

(
M2

ν2
MS

)D−4[
Γ

(
2 −

D
2

)]2

×
∑
n≥1

M2µ(1a)
n (D) δ(x − nM2),

ρres;1b
Kπ (x; D) =

A1b(D)
D − 4

(4π)2− D
2

(
M2

ν2
MS

) D
2 −2

Γ

(
2 −

D
2

)
×
∑
n≥1

M2µ(1b)
n (D) δ(x − nM2), (4.2)

where both functions A1a(D) and A1b(D) are regular at
D = 4. The first term, ρres;1a

Kπ (x; D), corresponds to the
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genuine two-loop diagrams, like the graphs (b) to (e) of
Fig. 1. The second term, ρres;1b

Kπ (x; D), stands for the dia-
gram ( f ), i.e. the one-loop graph (a) with the insertion of
a one-loop counterterm proportional to 1/(D−4). Without
loss of generality, one may impose a normalization con-
dition like (3.6) for each set of coefficients separately, and
from there proceed as in Section 3. We will not go through
the details of this straightforward exercise, but rather state
the final result and show that it satisfies the required prop-
erties. Before that, let us make a few useful remarks.

With the normalizations set as in Eq. (3.6) for both
ρres;1a

Kπ (x; D) and ρres;1b
Kπ (x; D), the corresponding dispersive

integrals at w = 0 display double and single poles at
D = 4. The single poles contain a contribution propor-
tional to ln(M2/ν2), which, on general grounds [36], is
not allowed, and hence has to cancel in the sum of the
two dispersive integrals. For this to happen, we need to
impose the condition A1b(4) = 4A1a(4).

Next, ρres;1b
Kπ (x; D) has to describe the same structure

than ρres;0
Kπ (x; D) up to an additional factor ∝ 1/(D − 4)

coming from the inserted counterterm. It is thus natural to
consider for it the ansatz

µ(1b)
n (D) =

n
D
2 −2

ζ
(
3 − D

2

)
+ f̃ (D)

, (4.3)

where f̃ (D) is an arbitrary function regular at D = 4. Then
the resulting subtracted dispersive integral

wM2
∫

dx
x
ρres;1b

Kπ (x; D)
x + wM2 (4.4)

still contains a term proportional to ψ(1 + w)/(D − 4),
which has eventually to be canceled by a similar contri-
bution from the dispersive integral involving ρres;1a

Kπ (x; D).

Turning to the latter, we consider the ansatz

µ(1a)
n (D) =

ny(D−4)

ζ (1 + 4y − yD) + g(D)
, (4.5)

where g(D) is an arbitrary function regular at D = 4, and
y is a so-far free parameter. Considering the dispersive
integral

wM2
∫

dx
x
ρres;1a

Kπ (x; D)
x + wM2 , (4.6)

we find that the required cancellation of the unwanted pole
terms takes place for the choice y = 1.

Adjusting the remaining free parameters such as to re-
produce the asymptotic behaviour of Eq. (2.5), we finally

arrive at the result1

ρres;1
Kπ (x; D)

= −16π2M2
K

(
−

GF
√

2
VusVud

)
αs(ν)

6∑
I=1

CI(ν)

×

{(
M2

ν2

)D−4 [
Γ

(
2 −

D
2

)]2

eγE (4−D)ξI
12

×
∑
n≥1

M2 nD−4

ζ (5 − D)
δ(x − nM2)

+

(
M2

ν2

) D
2 −2

Γ

(
2 −

D
2

)
eγE (4−D)/2

D − 4

×

{
4ξI

12 + (D − 4)
[
ξI

11 + 2γEξ
I
12

]
−

(D − 4)2

2

[
ξI

10 + ξI
11γE − 2ξI

12

(π2

6
+ γ1

)]}
×
∑
n≥1

M2 n
D
2 −2

ζ
(
3 − D

2

) δ(x − nM2)

}
. (4.7)

It is a straightforward exercise, making use of the tech-
niques described in the second part of Section 3, to show
that this spectral density leads to the desired properties.
For instance, after minimal subtraction of the simple and
double poles at D = 4, the renormalized dispersive inte-
gral reads∫

dx
ρres;1

Kπ (x; D)
x + wM2

= − 16π2M2
K

(
−

GF
√

2
VusVud

)
αs(ν)

6∑
I=1

CI(ν)
{
ξI

12ψ̃(w)

+

[
2ξI

12 ln
M2

ν2 − ξ
I
11

]
ψ(1 + w) + ξI

10 − 2
(
π2

6
+ γ1

)
ξI

12

+

[
ξI

12 ln
M2

ν2 − ξ
I
11

]
ln

M2

ν2

}
+ O(D − 4), (4.8)

with

ψ̃(w) = 2M2w
∫

dx
x

1
x + M2w

∑
n≥1

M2(ln n)δ(x − nM2)

= 2w
∑
n≥1

ln n
n(n + w)

. (4.9)

We now need to establish some properties of the function
ψ̃(w), which is defined by an absolutely convergent sum as
long as w is not equal to a negative integer. Thus, ψ̃(0) = 0
and

ψ̃′(0) = 2
∑
n≥1

ln n
n2 = −2ζ′(2). (4.10)

1Up to a factor (−1)n, the Stieltjes constants γn give the coefficients
of the Taylor expansion of the regular part of ζ(s) at s = 1, with γ0 =

γE = 0.577216 · · · , γ1 = −0.0728 · · · , γ2 = −0.00969 · · · ; see [35,
section 25.2].
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Next, using the relation (3.25) and∑
n≥1

nu−2 ln n = −ζ′(2 − u), (4.11)

one obtains the following Mellin representation of the
function ψ̃(w)

ψ̃(w) = −2w
∫ c1+i∞

c1−i∞

du
2πi

w−uΓ(u)Γ(1−u)×ζ′(2−u). (4.12)

The first singularity on the left of the fundamental strip
0 < c1 < 1 lies at u = 0. It consists of a simple pole
coming from the factor Γ(u) of the integrand. There-
fore, the Converse Mapping Theorem allows to state that
ψ̃(w) = −2wζ′(2) + · · · as w → 0, a property already es-
tablished before. The first singularity one encounters on
the right of the fundamental strip consists of a triple pole
and a simple pole, both located at u = +1,

Γ(u)Γ(1−u)ζ′(2−u) ∼
u→+1

1
(u − 1)3 +

π2

6 + γ1

u − 1
+γ2+O(u−1).

(4.13)
The Converse Mapping Theorem then allows to conclude
that

ψ̃(w) ∼
w→+∞

ln2 w + 2
(
π2

6
+ γ1

)
+ · · · , (4.14)

which is precisely what is required. The function ψ̃(w)
does not seem to be related in an obvious way to the stan-
dard sets of functions that have been studied in the math-
ematical literature, see e.g. [35] and references therein.
It is thus interesting to notice that the Mellin represen-
tation (4.12) of ψ̃(w), which holds for Rew > 0, can be
recast into [the integral is understood as its Cauchy prin-
cipal value for w real and positive]

ψ̃(w) = 2
∫ ∞

0

dx
x

w
x − w

[ψ(1 + x) + γE]

+2[ψ(1 + w) + γE] ln w. (4.15)

This representation allows to extend the function ψ̃(w) to
negative values of Rew. The integral is then regular, while
the second term reproduces the poles of ψ̃(w) when w
equals a strictly negative integer. The determination of
ln w is given by w → w − iε, with ε > 0 and infinitesi-
mal, in agreement with the prescription s → s + iε. This
representation also proves quite useful for the numerical
evaluation of ψ̃(w).

5. Discussion

We have shown that it is possible to construct a func-
tion W res

Kπ(z; ν) through an infinite sum of zero-width res-
onances with a Regge-type spectrum, such that its short-
distance behaviour matches, at order O(αs), the one ob-
tained from the leading term in the OPE. After renor-
malization in the MS scheme of dimensional regulari-
sation, and up to the order O(αs), this function reads

5 10 15
z

-0.3

-0.2

-0.1

0.1

0.2

0.3

Figure 2: The functionWres
Kπ(z; ν) defined in Eq. (5.1) as a function of z

for ν = 2 GeV and M = 1 Gev. The light-red (purple) band corresponds
to the NDR (HV) scheme. The red (blue) line coresponds to the trun-
cation ofWres

Kπ(z; ν) to lowest order in the NDR (HV) scheme. For the
ease of visualization, the location of the poles at z = nM2/M2

K has been
slightly shifted off the real-z axis.

[w ≡ −zM2
K/M

2]

W res
Kπ(z; ν) = −16π2M2

K

(
−

GF
√

2
VusVud

)
CKπ f Kπ

+ (zM2
K)

4π

×

6∑
I=1

CI(ν)
{
ξI

00 + αs(ν)ξI
10

+ ln
ν2

M2

[
ξI

01 + αs(ν)
(
ξI

11 + ξI
12 ln

ν2

M2

)]
−ψ(1 + w)

[
ξI

01 + αs(ν)
(
ξI

11 + 2ξI
12 ln

ν2

M2

)]
+αs(ν) ξI

12

(
ψ̃(w) −

π2

3
− 2γ1

)}
≡ −16π2M2

K

(
−

GF
√

2
VusVud

)
CKπ f Kπ

+ (zM2
K)

4π
×Wres

Kπ(z; ν). (5.1)

This expression involves two scales. The first one, M,
is the scale of the lowest resonance in the spectrum be-
sides the ρ(770), which is already taken into account by
the contribution Wππ

Kπ(z) in Eq. (1.14), see Ref. [3].
The first resonance appearing in W res

Kπ(z; ν) is thus the
K∗(892) or the φ(1020), hence M ∼ 1 GeV. The sec-
ond scale in Eq. (5.1) is the renormalization scale ν. It
represents the onset of the perturbative regime of QCD.
In practice, the description of the spectrum in terms of
well-identified resonances extends to a few radial excita-
tions of the resonances mentioned just above, for instance
ρ(1450), ρ(1570), φ(1680)..., before they merge into the
continuum. This means ν ∼ 2 GeV.

The function Wres
Kπ(z; ν) is shown in Fig. 2. For posi-

tive values of z it displays the expected infinite series of
equally-spaced poles, whereas for negative values of z the
asymptotic regime sets in rapidly. In order to draw these
plots, some knowledge of the coefficients ξI

10, which are
not fixed by the renormalization-group constraint (2.4), is
needed. For the sake of illustration, we have estimated
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a
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a
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-0.85

-0.80

-0.75
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b
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b
+
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Figure 3: The variation of a+ (left plot) and of b+ (right plot) as a function of the short-distance renormalization scale ν. The scale dependence at
lowest order corresponds to the red (blue) lines in the NDR (HV) scheme. The scale dependence after inclusion of O(αs) corrections corresponds to the
light-red (purple) bands in the NDR (HV) scheme.

these coefficients to vary in the range −ξI
11 ≤ ξ

I
10 ≤ +ξI

11,
taking the relation (2.2) between the lowest-order coeffi-
cients ξI

00 and ξI
01 as a guide. The same choice also applies

to Fig. 3.
In the remainder of the Letter, we wish to address in

turn two issues that we think deserve to be given some
consideration, namely: i) the size of the residual depen-
dence with respect to the short-distance scale ν and ii)
some features and properties of the resonance model that
we have constructed, as well as possible improvements.

5.1. Residual scale dependence

By construction, the expression of W res
Kπ(z; ν) displayed

in Eq. (5.1) provides a form factor that is independent of
the renormalization scale ν at order O(αs),

ν
d
dν

[
W res

Kπ(z; ν) + WSD
Kπ (z; ν)

]
= O(α2

s). (5.2)

We expect the residual scale dependence to be weaker
that the one that results from the matching at lowest or-
der only. We illustrate these changes in the case of the
two constants a+ and b+ corresponding to the values of
the form factor WKπ(z), for (K, π) = (K+, π+), and of its
derivative at z = 0, respectively. For this purpose, we
add to the sum of W res

Kπ and WSD
Kπ the contribution Wππ

Kπ
of the two-pion intermediate state evaluated in Ref. [3],
see Eq. (1.14) above. This means a+|ππ = −1.58 and
b+|ππ = −0.76. The improvement when going from low-
est order to next-to-leading order can be appreciated from
the plots shown in Fig. 3 [details on the numerical as-
pects can be found in the appendix]. We notice that in-
deed both the scale dependence and the scheme depen-
dence become less pronounced when order O(αs) correc-
tions are included. Our ignorance of the coefficients ξI

10
induces, under the conditions stated above, an uncertainty
that amounts, at ν = 2 GeV, to about 5% in both a+ and
b+. We also observe that the corrections coming from the
resonance and short-distance parts are quite small as com-
pared to the contribution from the two-pion state.

This improvement in the control over the scheme and
scale deprendences allows us to refine somewhat our eval-
uation of the coefficients a+ and b+ made in Ref. [3]. We
obtain

a+ = −1.59(8), b+ = −0.82(6). (5.3)

These values are still at variance with the experimental
determinations aexp

+ = −0.593(11) and bexp
+ = −0.675(43),

see Ref. [3] for a detailed discussion, especially as far as
a+ is concerned. On the other hand, as discussed in Ref.
[3], in order to reach a definite conclusion, the contribu-
tions a+|ππ and b+|ππ need to be evaluated within a tighter
framework than the one adopted there, and other exclusive
contributions, in particular from two-kaon states, should
eventually be accounted for explicitly, see also the discus-
sion below. Work in this direction is on its way [37].

5.2. Properties and features of the resonance model
The resonance model that we have constructed in Sec-

tions 3 and 4 is by far not unique. Discussing the arbi-
trariness of the construction in full generality represents a
formidable, if not impossible, task, given the fact that the
corresponding dispersive integrals are only constrained to
reproduce the divergences of perturbative QCD at z = 0
and the leading asymptotic behaviour from the OPE at
z → −∞. The determination of sub-leading terms in the
OPE might be a way to constrain the resonance model fur-
ther. We will, however, not address this possibility here,
but rather state a few remarks concerning the model that
we have constructed above.

Some of the arbitrariness of the construction is em-
bodied in the functions A0(D) and f (D) in Section 3, or
A1a(D), A1b(D) f̃ (D) and g(D) in Section 4. These func-
tions do not appear anymore in the final expression (5.1),
partly because they are absorbed in the matching to the
coefficients ξI

rp, partly because they contribute only to the
terms of order O(D − 4) in the renormalized dispersive
integral.

These features certainly do not exhaust all the arbitrari-
ness of the model. While the contribution of the res-
onances with higher masses will be constrained by the
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short-distance behaviour, one might expect that the de-
scritpion of the lower-lying resonances like K∗(892) or
φ(1020) [recall that the contribution from ρ(770) is al-
ready taken care of by Wππ

Kπ] provided by this model may
be less realistic from a phenomenological point of view.
One way to circumvent this possible drawback would be
to consider additional intermediate states in a more ex-
plicit way, i.e. by extending the decomposition in Eq.
(1.14) to, for instance [3]

WLD
Kπ (z) = Wππ

Kπ(z) + WKπ
Kπ (z) + WKK̄

Kπ (z) + W res
Kπ(z; ν). (5.4)

We will, however, not pursue this matter in the present
Letter, and leave the discussion of such an extension and
of the corresponding multi-channel analysis it requires for
future work.

Appendix

In this appendix, we gather some information and give
the input values used in order to produce the plots shown
in Fig. 3. The running of the Wilson coefficients is given
in Eqs. (1.9) and (2.3) using the anomalous dimensions
γJ,7V given in [14] and γI, J given in [33, 34]. We have,
however, restricted ourselves to the contributions from the
two current-current operators C± = C2 ± C1, neglecting
those from the QCD penguin operators CI , I = 3, 4, 5, 6.
The Wilson coefficients at next-to-leading order are then
given by

C+(ν)
C+(ν0)

=

[
1 + S ++

(
αs(ν)

4π
−
αs(ν0)

4π

)](
αs(ν)
αs(ν0)

)−2/9

,

(A.1)

C−(ν)
C−(ν0)

=

[
1 + S −−

(
αs(ν)

4π
−
αs(ν0)

4π

)](
αs(ν)
αs(ν0)

)+4/9

,

and
C7V (ν)
α

−
C7V (ν0)

α
(A.2)

=
16
99

C+(ν0)
αs(ν0)

{
1 −
[

1 − S ++

(
αs(ν0)

4π
−
αs(ν)

4π

)]
×

(
αs(ν)
αs(ν0)

)−11/9

− S 7+

αs(ν0)
4π

[(
αs(ν)
αs(ν0)

)−2/9

− 1
]}

−
8

45
C−(ν0)
αs(ν0)

{
1 −
[

1 − S −−

(
αs(ν0)

4π
−
αs(ν)

4π

)]
×

(
αs(ν)
αs(ν0)

)−5/9

− S 7−
αs(ν0)

4π

[(
αs(ν)
αs(ν0)

)+4/9

− 1
]}

,

where

S ++ =
307
162

, S −− = −
181
81

, S 7+ = −
2071
108

, S 7− =
443
108
(A.3)

in the NDR scheme, and

S ++ = −
773
162

, S −− = −
397
81

, S 7+ = −
3331
108

, S 7− =
1991
108
(A.4)

in the HV scheme. These expressions for C±(ν) and for
C7V (ν) hold at next-to-leading order, and their truncation
to the lowest order is obtained upon taking all the coeffi-
cients S i j equal to zero. The input values we have used
are [14]

C+(ν0) = 0.688, C−(ν0) = 2.108, C7V (ν0)/α = −0.026
(A.5)

at lowest-order. At next-to-leading order they become

C+(ν0) = 0.771, C−(ν0) = 1.737, C7V (ν0)/α = −0.037
(A.6)

in the NDR scheme and

C+(ν0) = 0.735, C−(ν0) = 1.937, C7V (ν0)/α = 0.000
(A.7)

in the HV scheme. In all three cases these values hold for
ν0 = 1 GeV. The running of αs is given by

αs(ν) =
2π

9 ln(ν/Λ)

[
1 −

32
81

ln
(
ln ν2/Λ2

)
ln(ν/Λ)

]
(A.8)

at next-to-leading order, and with the obvious truncation
at lowest order. The QCD scale for three active flavours
is taken as Λ = 332 MeV. Finally, the mass of the lowest
resonance is set at M = 1 GeV.
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