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We revisit the problem of plane monochromatic gravitational waves impinging upon a Schwarzschild
black hole using complex angular momentum techniques. By extending our previous study concerning
scalar and electromagnetic waves [A. Folacci and M. Ould El Hadj, Phys. Rev. D 99, 104079 (2019)], we
provide complex angular momentum representations and Regge pole approximations of the helicity-
preserving and helicity-reversing scattering amplitudes and of the total differential scattering cross section.
We show, in particular, that for high frequencies (i.e., in the short-wavelength regime), a small number of
Regge poles permits us to describe numerically with very good agreement the black-hole glory and the
orbiting oscillations and we then provide a semiclassical approximation that unifies these two phenomena.
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I. INTRODUCTION

In this article, we extend to gravitational waves our
previous study concerning the Regge pole description of
scattering of scalar and electromagnetic waves by a
Schwarzschild black hole (BH) [1]. Scattering of gravita-
tional waves by this BH is usually tackled from partial wave
methods (see Refs. [2–6] as well as the monograph of
Futterman, Handler and Matzner [7]) which permit us to
construct numerically the helicity-preserving and helicity-
reversing scattering amplitudes as well as the total differ-
ential scattering cross section. By revisiting this problem
from complex angular momentum (CAM) techniques, we
shall show, in particular, that they provide a powerful tool of
resummation of the partial wave expansions which is helpful
to describe numerically and semiclassically, in terms of
Regge poles, the BH glory and the orbiting oscillations. Our
approach and our results could have interesting applications
in the context of strong gravitational lensing of gravitational
waves. Indeed, with the recent detection of gravitational
waves generated by coalescing binaries [8] and with the
planned development of ground-based and space-based
interferometers of considerable sensitivity, it should be
possible in a more or less distant future to observe signals
gravitationally lensed by BHs.
It should be noted that we shall not go back on what

makes CAM techniques and Regge pole analyses in BH
physics interesting. We refer the reader to the introduction

of our previous paper [1] and to references therein as well
as to the introduction of Ref. [9] where we used the CAM
approach to describe the gravitational radiation generated
by a particle falling radially into the Schwarzschild BH.
Our paper is organized as follows. In Sec. II, by means of

the Sommerfeld-Watson transform [10–12] and Cauchy’s
residue theorem, we construct for plane monochromatic
gravitational waves impinging upon a Schwarzschild BH,
exact CAM representations of the helicity-preserving and
helicity-reversing scattering amplitudes and of the total
differential scattering cross section. These CAM represen-
tations are split into a background integral in the CAM
plane and a sum over the Regge poles of the S-matrices
corresponding to the even and odd perturbations of the
BH which, in addition, involves the associated residues.
In Sec. III, we compute numerically, for various reduced
frequencies, the Regge poles of the S-matrices, the asso-
ciated residues and the background integrals. This permits
us to reconstruct the scattering amplitudes and the cross
section of the BH and to show that, in the short-wavelength
regime, they can be described from the Regge pole sums
alone with very good agreement. We also discuss the role of
the background integral for low reduced frequencies, i.e., in
the long-wavelength regime. In Sec. IV, from asymptotic
expressions for the lowest Regge poles and the associated
residues based on the correspondence Regge poles/“surface
waves” propagating close to the photon sphere [13–17], we
provide an analytical approximation describing with very
good agreement both the BH glory and a large part of the
orbiting oscillations. In the Conclusion, we briefly consider
possible extensions of our work.
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Throughout this article, we adopt units such that
G ¼ c ¼ 1. We furthermore consider that the exterior
of the Schwarzschild BH is defined by the line element
ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dθ2 þ r2sin2θdφ2 where
fðrÞ ¼ 1–2M=r and M is the mass of the BH while
t ∈� −∞;þ∞½, r ∈�2M;þ∞½, θ ∈ ½0; π� and φ ∈ ½0; 2π�
are the usual Schwarzschild coordinates. We finally assume
a time dependence expð−iωtÞ for gravitational waves.

II. SCATTERING AMPLITUDES AND
SCATTERING CROSS SECTION FOR

GRAVITATIONAL WAVES, THEIR CAM
REPRESENTATIONS AND REGGE

POLE APPROXIMATIONS

In this section, we first recall, for plane monochromatic
gravitational waves impinging upon a Schwarzschild BH,
the partial wave expansions of the differential scattering
cross section and of the helicity-preserving and helicity-
reversing scattering amplitudes. We then provide exact
CAM representations of these scattering amplitudes (and
therefore of the cross section) by means of the Sommerfeld-
Watson transform [10–12] and Cauchy’s theorem. These
representations are split into a background integral in
the CAM plane and a sum over the Regge poles of the
S-matrices corresponding to the even and odd perturbations
which, in addition, involves the associated residues.

A. Partial wave expansion of the differential
scattering cross section

Gravitational waves impinging upon a Schwarzschild
BH can be considered as gravitational perturbations of the
BH, a topic which has been the subject of lot of works since
the pioneering articles by Regge and Wheeler [18] and
Zerilli [19] (see also the monograph of Chandrasekhar
[20]). It should be recalled that these perturbations are
divided into even (polar) and odd (axial) perturbations
according to their even or odd parity in the antipodal
transformation on the unit 2-sphere S2. Here, and in the
following, we shall associate the parity symbols p ¼ ewith
the even perturbations and p ¼ o with the odd ones.
The differential scattering cross section for plane mono-

chromatic gravitational waves impinging upon a
Schwarzschild BH can be written in the form [5,6] (see
also Refs. [2–4])

dσ
dΩ

¼ jfþðω; xÞj2 þ jf−ðω; xÞj2 ð1Þ

where fþðω; xÞ and f−ðω; xÞ are scattering amplitudes
which are given by

f�ðω; xÞ ¼ L̂�
x f̃

�ðω; xÞ ð2Þ

with

f̃�ðω; xÞ ¼ 1

2iω

X∞
l¼2

ð2lþ 1Þ
ðl − 1Þlðlþ 1Þðlþ 2Þ

×

�
1

2
ðSðeÞl ðωÞ � SðoÞl ðωÞÞ −

�
1� 1

2

��
PlðxÞ:

ð3Þ

In the previous expressions, the variable x is linked to the
scattering angle θ by x ¼ cos θ, the functions Pl are
the Legendre polynomials [21] while the differential
operators L̂�

x which act on the partial-wave series (3)
can be defined by

L̂�
x ¼ ð1� xÞ2 d

dx

�
ð1 ∓ xÞ d2

dx2

�
ð1 ∓ xÞ d

dx

��
: ð4Þ

It should be noted that our notations for the scattering
amplitudes (2) and (3) differ slightly from those that can be
found in the literature. In fact, we have written these
amplitudes in a form much more tractable in order to
extract exact CAM representations from their partial wave
expansions. It is important to recall that fþðω; xÞ and
f−ðω; xÞ are respectively the helicity-preserving and hel-
icity-reversing scattering amplitudes.

We also recall that the S-matrix elements SðpÞl ðωÞ
appearing in Eq. (3) can be defined from the modes

ϕinðpÞ
ωl . These modes are solutions of the homogeneous

Zerilli-Moncrief (for p ¼ e) and Regge-Wheeler (for
p ¼ o) equations

�
d2

dr2�
þ ω2 − VðpÞ

l ðrÞ
�
ϕðpÞ
ωl ¼ 0 ð5Þ

with the Zerilli-Moncrief potential given by

VðeÞ
l ðrÞ

¼ fðrÞ
�
Λ2ðΛþ 2Þr3 þ 6Λ2Mr2 þ 36ΛM2rþ 72M3

ðΛrþ 6MÞ2r3
�
ð6Þ

and the Regge-Wheeler potential given by

VðoÞ
l ðrÞ ¼ fðrÞ

�
Λþ 2

r2
−
6M
r3

�
: ð7Þ

In Eqs. (6) and (7), we have introduced the parameter

Λ ¼ ðl − 1Þðlþ 2Þ ¼ lðlþ 1Þ − 2. The functions ϕinðpÞ
ωl

are defined by their purely ingoing behavior at the event
horizon r ¼ 2M (i.e., for r� → −∞)

ϕinðpÞ
ωl ðrÞ ∼

r�→−∞
e−iωr� ð8aÞ
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while, at spatial infinity r → þ∞ (i.e., for r� → þ∞), they
have an asymptotic behavior of the form

ϕinðpÞ
ωl ðrÞ ∼

r�→þ∞
Að−;pÞ
l ðωÞe−iωr� þ Aðþ;pÞ

l ðωÞeþiωr� : ð8bÞ

In the previous expressions, the coefficients Að−;pÞ
l ðωÞ and

Aðþ;pÞ
l ðωÞ are complex amplitudes. They are related to the

S-matrix elements appearing in Eq. (3) by

SðpÞl ðωÞ ¼ eiðlþ1Þπ A
ðþ;pÞ
l ðωÞ

Að−;pÞ
l ðωÞ

: ð9Þ

It is important to also recall that the solutions of the
homogeneous Zerilli-Moncrief and Regge-Wheeler equa-
tions (5) are related by the Chandrasekhar-Detweiler trans-
formation [20,22]

½ΛðΛþ 2Þ∓ ið12MωÞ�ϕðe=oÞ
ωl

¼
�
ΛðΛþ 2Þ þ 72M2

rðΛrþ 6MÞfðrÞ � 12MfðrÞ d
dr

�
ϕðo=eÞ
ωl :

ð10Þ

As a consequence, the coefficients Að�;pÞ
l ðωÞ satisfy the

relations

Að−;eÞ
l ðωÞ ¼ Að−;oÞ

l ðωÞ ð11aÞ

and

½ΛðΛþ 2Þ − ið12MωÞ�Aðþ;eÞ
l ðωÞ

¼ ½ΛðΛþ 2Þ þ ið12MωÞ�Aðþ;oÞ
l ðωÞ ð11bÞ

and the definition (9) provides

½ΛðΛþ 2Þ − ið12MωÞ�SðeÞl ðωÞ
¼ ½ΛðΛþ 2Þ þ ið12MωÞ�SðoÞl ðωÞ: ð12Þ

B. CAM representation of the scattering amplitudes
f + ðω; xÞ and f − ðω; xÞ

1. Sommerfeld-Watson representation
of the scattering amplitudes

By means of the Sommerfeld-Watson transformation
[10–12] which permits us to write

Xþ∞

l¼2

ð−1ÞlFðlÞ ¼ i
2

Z
C0
dλ

Fðλ − 1=2Þ
cosðπλÞ ð13Þ

for a function F without any singularities on the real λ axis,
we can replace in Eq. (3) the discrete sum over the ordinary
angular momentum l by a contour integral in the complex λ
plane (i.e., in the complex l plane with λ ¼ lþ 1=2). By
noting that PlðxÞ ¼ ð−1ÞlPlð−xÞ, we obtain

f̃�ðω; xÞ ¼ 1

2ω

Z
C0
dλ

λ

ðλ2 − 1=4Þðλ2 − 9=4Þ cosðπλÞ

×

�
1

2
ðSðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞÞ −

�
1� 1

2

��
× Pλ−1=2ð−xÞ: ð14Þ

In Eqs. (13) and (14), we have taken C0 ¼� þ∞þ iϵ;
2þ iϵ� ∪ ½2þ iϵ; 2 − iϵ� ∪ ½2 − iϵ;þ∞− iϵ½ with ϵ → 0þ
(see Fig. 1). We can recover (3) from (14) by using
Cauchy’s residue theorem and by noting that the poles
of the integrand in (14) are the zeros of cosðπλÞ that are
enclosed into C0, i.e., the semi-integers λ ¼ lþ 1=2 with
l ∈ N − f0; 1g. It should be recalled that, in Eq. (14), the
Legendre function of first kind Pλ−1=2ðzÞ denotes the
analytic extension of the Legendre polynomials PlðzÞ. It
is defined in terms of hypergeometric functions by [21]

Pλ−1=2ðzÞ ¼ F½1=2 − λ; 1=2þ λ; 1; ð1 − zÞ=2�: ð15Þ

Similarly, in Eq. (14), SðeÞλ−1=2ðωÞ and SðoÞλ−1=2ðωÞ denote

the analytic extensions of the matrices SðeÞl ðωÞ and SðoÞl ðωÞ.
We shall briefly mention some of their properties.

2. Analytic extensions of the matrices SðeÞl ðωÞ
and SðoÞl ðωÞ in the CAM plane

We can consider that the analytic extension of the matrix

SðpÞl ðωÞ is given by [see Eq. (9)]

FIG. 1. Integration contours in the CAM plane: C0 is associated
with the scattering amplitudes (14) and C with the scattering
amplitudes (23).
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SðpÞλ−1=2ðωÞ ¼ eiðλþ1=2Þπ A
ðþ;pÞ
λ−1=2ðωÞ

Að−;pÞ
λ−1=2ðωÞ

ð16Þ

where the complex amplitudes Að−;pÞ
λ−1=2ðωÞ and Aðþ;pÞ

λ−1=2ðωÞ are
defined from the analytic extensions of the modes ϕinðpÞ

ωl ,

i.e., from the functions ϕinðpÞ
ω;λ−1=2 solutions of the problem

(5)–(8) where we now replace l by λ − 1=2. It is worth
noting that the Chandrasekhar-Detweiler relations (11)
lead, in the CAM plane, to

Að−;eÞ
λ−1=2ðωÞ ¼ Að−;oÞ

λ−1=2ðωÞ ð17aÞ

and

½ðλ2 − 1=4Þðλ2 − 9=4Þ − ið12MωÞ�Aðþ;eÞ
λ−1=2ðωÞ

¼ ½ðλ2 − 1=4Þðλ2 − 9=4Þ þ ið12MωÞ�Aðþ;oÞ
λ−1=2ðωÞ ð17bÞ

and, as a consequence, that the definition (16) provides

½ðλ2 − 1=4Þðλ2 − 9=4Þ − ið12MωÞ�SðeÞλ−1=2ðωÞ
¼ ½ðλ2 − 1=4Þðλ2 − 9=4Þ þ ið12MωÞ�SðoÞλ−1=2ðωÞ: ð18Þ

Here, with the deformation of the contour C0 in mind, it is
important to note the symmetry property

eiπλSðpÞ−λ−1=2ðωÞ ¼ e−iπλSðpÞλ−1=2ðωÞ ð19Þ

which can be easily obtained from the definition (16) (see
also Ref. [23]). It is also important to remark that, due to the

relation (17a), the poles of the matrices SðeÞλ−1=2ðωÞ and

SðoÞλ−1=2ðωÞ in the complex λ plane (i.e., the so-called Regge
poles) are identical. They lie in the first and third quadrants

of the CAM plane, symmetrically distributed with respect
to the origin O of this plane, and the poles λnðωÞ with
n ¼ 1; 2; 3;… lying in the first quadrant satisfy

Að−;eÞ
λnðωÞ−1=2ðωÞ ¼ Að−;oÞ

λnðωÞ−1=2ðωÞ ¼ 0: ð20Þ

In the following, the residues of the matrices SðeÞλ−1=2ðωÞ
and SðoÞλ−1=2ðωÞ at these poles will play a central role. They
are defined by

rðpÞn ðωÞ ¼ eiπ½λnðωÞþ1=2�
"

Aðþ;pÞ
λ−1=2ðωÞ

d
dλA

ð−;pÞ
λ−1=2ðωÞ

#
λ¼λnðωÞ

: ð21Þ

It is moreover worth noting that, due to the Chandrasekhar-
Detweiler relations (17), we have

f½λnðωÞ2 − 1=4�½λnðωÞ2 − 9=4� − ið12MωÞgrðeÞn ðωÞ
¼ f½λnðωÞ2 − 1=4�½λnðωÞ2 − 9=4� þ ið12MωÞgrðoÞn ðωÞ:

ð22Þ

3. Modification of the contour defining the
Sommerfeld-Watson representation

of the scattering amplitudes

With the aim of collecting the Regge poles in mind,
it is necessary to move the contour C0 to the left so that
it coincides with the contour C ¼� þ∞þ iϵ;þiϵ� ∪
½þiϵ;−iϵ� ∪ ½−iϵ;þ∞− iϵ½ (see Fig. 1). Here, we extend
our treatment of scattering of electromagnetic waves [1].
However, we then introduce two spurious double poles:
the first one at λ ¼ 1=2 (i.e., at l ¼ 0) which comes from
the term 1=½ðλ − 1=2Þ cosðπλÞ� and the second one at
λ ¼ 3=2 (i.e., at l ¼ 1) which comes from the term
1=½ðλ − 3=2Þ cosðπλÞ�. It is necessary to remove the asso-
ciated residue contributions and we obtain

2ωf̃�ðω; xÞ

¼
Z
C
dλ

λ

ðλ2 − 1=4Þðλ2 − 9=4Þ cosðπλÞ
�
1

2
ðSðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞÞ −

�
1� 1

2

��
Pλ−1=2ð−xÞ

− 2iπ lim
λ→1=2

d
dλ

�
ðλ − 1=2Þ2 × λ

ðλ2 − 1=4Þðλ2 − 9=4Þ cosðπλÞ
�
1

2
ðSðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞÞ −

�
1� 1

2

��
Pλ−1=2ð−xÞ

�

− 2iπ lim
λ→3=2

d
dλ

�
ðλ − 3=2Þ2 × λ

ðλ2 − 1=4Þðλ2 − 9=4Þ cosðπλÞ
�
1

2
ðSðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞÞ −

�
1� 1

2

��
Pλ−1=2ð−xÞ

�
:

ð23Þ

The terms neutralizing the contributions of the spurious poles can be evaluated explicitly by using, in particular,
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�
d
dλ

Pλ−1=2ð−xÞ
�
λ¼1=2

¼ ln

�
1 − x
2

�
ð24aÞ

and �
d
dλ

Pλ−1=2ð−xÞ
�
λ¼3=2

¼ −ð1þ xÞ − x ln

�
1 − x
2

�
ð24bÞ

and we have

2ωf̃�ðω; xÞ ¼
Z
C
dλ

λ

ðλ2 − 1=4Þðλ2 − 9=4Þ cosðπλÞ
�
1

2
ðSðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞÞ −

�
1� 1

2

��
Pλ−1=2ð−xÞ

þ i
2

�
1

2
ðSðeÞ1 ðωÞ � SðoÞ1 ðωÞÞ −

�
1� 1

2

���
ð1þ xÞ þ x ln

�
1 − x
2

��

−
i
2

�
1

2
ðSðeÞ0 ðωÞ � SðoÞ0 ðωÞÞ −

�
1� 1

2

��
ln

�
1 − x
2

�

þ i
2

��
1

2

d
dλ

ðSðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞÞ
�
λ¼3=2

−
7

6

�
1

2
ðSðeÞ1 ðωÞ � SðoÞ1 ðωÞÞ −

�
1� 1

2

���
x

þ terms independent of x: ð25Þ

The terms SðpÞ0 ðωÞ, SðpÞ1 ðωÞ and ½d=dλSðpÞλ−1=2ðωÞ�λ¼3=2
appearing in Eq. (25) can be numerically determined by
solving the problem (5)–(8). However, they do not con-
tribute necessarily to the scattering amplitudes (2). Indeed,
by applying the differential operators L̂�

x on (25), we can
show that

f�ðω; xÞ ¼ L̂�
x

�
1

2ω

Z
C
dλ

λ

ðλ2 − 1=4Þðλ2 − 9=4Þ cosðπλÞ

×

�
1

2
ðSðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞÞ −

�
1� 1

2

��

× Pλ−1=2ð−xÞ
�
þ f�SPðω; xÞ ð26Þ

where the amplitudes f�SPðω; xÞ denote the contributions
of the terms introduced in order to neutralize the spurious
double poles at λ ¼ 1=2 and λ ¼ 3=2. These “shift cor-
rections” are given by

fþSPðω; xÞ ¼ 0; ð27aÞ

f−SPðω; xÞ ¼ −
3i
ω
½SðeÞ1 ðωÞ − SðoÞ1 ðωÞ� 1

ð1 − xÞ2

þ i
ω
½SðeÞ0 ðωÞ − SðoÞ0 ðωÞ� 2þ x

ð1 − xÞ2 : ð27bÞ

Here it should be noted that the last expression could be
slightly simplified by using the fact that [see Eq. (12)]

SðeÞl ðωÞ þ SðoÞl ðωÞ ¼ 0 for l ¼ 0 and 1: ð28Þ

It is also interesting to note that only the helicity-
reversing scattering amplitude f−ðω; xÞ is affected by
the shift of the integration contour. The helicity-
preserving scattering amplitude fþðω; xÞ, just like the
scattering amplitude associated with electromagnetic
waves [1], is not altered.

4. CAM representation of the scattering amplitudes

We now deform the contour C in Eq. (26) in order to
collect, by using Cauchy’s residue theorem, the Regge pole
contributions. This is achieved by following, mutatis
mutandis, the approach developed in Ref. [1] (see more
particularly Sec. IIB3 and Fig. 1 of this previous article).
As we have already noted in this work, this must be done
very carefully and, in particular, we must deal with the
contributions coming from the quarter circles at infinity
with great caution. By using (19) and the relation [21]

P−λ−1=2ðzÞ ¼ Pλ−1=2ðzÞ ð29Þ

we obtain

f�ðω; xÞ ¼ f�B ðω; xÞ þ f�RPðω; xÞ þ f�SPðω; xÞ ð30Þ

where

f�B ðω; xÞ ¼ f�B;Reðω; xÞ þ f�B;Imðω; xÞ ð31aÞ
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with

f�B;Reðω; xÞ ¼ L̂�
x

�
1

2πω

Z
C−

dλ
λ

ðλ2 − 1=4Þðλ2 − 9=4Þ

× ½SðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðxþ i0Þ
�

ð31bÞ

and

f�B;Imðω; xÞ ¼ L̂�
x

�
1

2πω

Z
0

þi∞
dλ

λ

ðλ2 − 1=4Þðλ2 − 9=4Þ

× ½SðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðxþ i0Þ
�

ð31cÞ

is a background integral contribution (here we have
C− ¼ ½0;−iϵ� ∪ ½−iϵ;þ∞− iϵ½ with ϵ → 0þ) and where

f�RPðω; xÞ

¼ L̂�
x

�
−
iπ
2ω

Xþ∞

n¼1

λnðωÞ½rðeÞn ðωÞ � rðoÞn ðωÞ�
½λnðωÞ2 − 1=4�½λnðωÞ2 − 9=4� cos½πλnðωÞ�

×PλnðωÞ−1=2ð−xÞ
�

ð32Þ

is a sum over the Regge poles lying in the first quadrant of the

CAM plane involving the residues of the matrices SðeÞλ−1=2ðωÞ
and SðoÞλ−1=2ðωÞ at these poles [see Eq. (21)]. In Eqs. (31b)
and (31c), we have introduced the Legendre function of
the second kind Qλ−1=2ðzÞ and used the relation [21]

Qλ−1=2ðxþ i0Þ ¼ π

2 cosðπλÞ ½Pλ−1=2ð−xÞ

− e−iπðλ−1=2ÞPλ−1=2ðþxÞ�: ð33Þ

Of course, Eqs. (30)–(32) and (27) provide exact representa-
tions of the scattering amplitudes f�ðω; xÞ equivalent to the

initial partial wave expansions defined by Eqs. (1)–(4). From
these CAM representations, we can extract the contributions
denoted by f�RPðω; xÞ given by (32) which, as sums over
Regge poles, are only approximations of the scattering
amplitudes f�ðω; xÞ and which can provide us with an
approximation of the differential scattering cross section (1).

5. Important remarks concerning background integrals

It is important to note that the path of integration
associated with the background integrals f�B ðω; xÞ ¼
f�B;Reðω; xÞ þ f�B;Imðω; xÞ defined by (31) is a continuous
one running down first the positive imaginary axis and then
running along C−, i.e., slightly below the positive real axis.
The branch C− cannot be deformed in order to coincide
exactly with the positive real axis. In fact, it can be
deformed taking account the singularities of the integrand
in the right-hand side of (31b). Indeed, at first sight, this
integrand has a simple pole at λ ¼ 1=2 and another one at
λ ¼ 3=2 and we must avoid these two poles by moving
along semicircles of radius ϵwith ϵ → 0þ lying in the lower
complex λ plane. In Fig. 2, we have displayed the path of
integration we shall now consider to define the background
integrals f�B ðω; xÞ.
We can then evaluate the background integral contribu-

tions f�B;Reðω; xÞ given by (31b) using again Cauchy’s
theorem. We have

Z
C−

dλ
λ

ðλ2 − 1=4Þðλ2 − 9=4Þ ½S
ðeÞ
λ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðcos θ þ i0Þ

¼ P:V:
Z þ∞

0

dλ
λ

ðλ2 − 1=4Þðλ2 − 9=4Þ ½S
ðeÞ
λ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðcos θ þ i0Þ

þ iπ lim
λ→1=2

�
ðλ − 1=2Þ × λ

ðλ2 − 1=4Þðλ2 − 9=4Þ ½S
ðeÞ
λ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðcos θ þ i0Þ

�

þ iπ lim
λ→3=2

�
ðλ − 3=2Þ × λ

ðλ2 − 1=4Þðλ2 − 9=4Þ ½S
ðeÞ
λ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðcos θ þ i0Þ

�
ð34Þ

FIG. 2. The path of integration in the CAM plane which defines
the background integrals f�B ðω; xÞ given by (31).
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where P.V. denotes the Cauchy principal value symbol associated with the treatment of the singularities of the integrand at
λ ¼ 1=2 and λ ¼ 3=2. The two residue contributions in (34) can be evaluated explicitly by using the expression (33) as well
as Eqs. (24a) and (24b). We then obtainZ

C−

dλ
λ

ðλ2 − 1=4Þðλ2 − 9=4Þ ½S
ðeÞ
λ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðcos θ þ i0Þ

¼ P:V:
Z þ∞

0

dλ
λ

ðλ2 − 1=4Þðλ2 − 9=4Þ ½S
ðeÞ
λ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðcos θ þ i0Þ

þ iπ
8
½SðeÞ0 ðωÞ � SðoÞ0 ðωÞ�

�
ln
�
1 − x
2

�
− ln

�
1þ x
2

��

−
iπ
8
½SðeÞ1 ðωÞ � SðoÞ1 ðωÞ�

�
x ln

�
1 − x
2

�
− x ln

�
1þ x
2

�
þ iπx

�
þ terms independent of x: ð35Þ

By finally applying the differential operators L̂�
x on this relation and by taking into account (28), we can show that

f�B;Reðω; xÞ ¼ L̂�
x

�
P:V:

1

2πω

Z þ∞

0

dλ
λ

ðλ2 − 1=4Þðλ2 − 9=4Þ

× ½SðeÞλ−1=2ðωÞ � SðoÞλ−1=2ðωÞ�Qλ−1=2ðxþ i0Þ
�
−
1

2
f�SPðω; xÞ ð36Þ

with f�SPðω; xÞ given by (27b).
It is interesting to note that, in fact, the integrand of the

function fþB;Reðω; xÞ given by (31b) is regular. Indeed, the
divergence of 1=ðλ − 1=2Þ for λ ¼ 1=2 and of 1=ðλ − 3=2Þ
for λ ¼ 3=2 is compensated by the vanishing of

SðeÞλ−1=2ðωÞ þ SðoÞλ−1=2ðωÞ [see Eq. (28)] and the path C−
can be deformed in order to coincide exactly with the
positive real axis. In other words, when if we define
fþB;Reðω; xÞ by (36), it is not necessary to consider the
Cauchy principal value of the integral over the real positive
axis and we can take for the integration contour defining the
background integral fþB ðω; xÞ ¼ fþB;Reðω; xÞ þ fþB;Imðω; xÞ
given by (31) the path � þ i∞; 0� ∪ ½0;þ∞½.

III. RECONSTRUCTION OF SCATTERING
AMPLITUDES AND OF THE DIFFERENTIAL

SCATTERING CROSS SECTION
FROM REGGE POLE SUMS

In this section, we compare numerically the exact
differential scattering cross section defined by (1)–(3)
as well as the helicity-preserving and helicity-reversing
scattering amplitudes (2)–(3) with their CAM represen-
tations constructed in Sec. II B and, more particularly,
with their Regge pole approximations (32). This permits
us to highlight the benefits of working with Regge
pole sums in the short-wavelength regime and the
necessity to include, in the long-wavelength regime,
the contribution of the background integrals (31) and
of the shift corrections (27).

A. Computational methods

In order to numerically construct the scattering
amplitudes (2)–(3), the differential scattering cross sec-
tion (1)–(3), the background integrals (31) as well as the
Regge pole sums (32), we use, mutatis mutandis, the
computational methods that have permitted us, in
Ref. [1], to revisit from CAM techniques the scattering
of scalar and electromagnetic waves by a Schwarzschild
BH. We refer the reader to Sec. IIIA of this previous article
but also to Secs. IIIB and IVA of Ref. [9] for the aspects
linked with Regge poles. We note that, due to the long-
range nature of the fields propagating on the Schwarzschild
BH, the scattering amplitudes (2)–(3) and the background
integrals (31b) suffer of a lack of convergence [this is
not the case for the background integrals (31c) because
their integrands vanish exponentially as λ → þi∞]. The
methods permitting us to overcome this problem, i.e., to
accelerate the convergence of these sums and integrals, are
described in the Appendix of Ref. [1]. Finally, it should be
noted that we have performed all the numerical calculations
by using Mathematica [24].

B. Results and comments

In Figs. 3–12, we have displayed our numerical results.
The comparisons of the exact scattering amplitudes and
scattering cross sections with their Regge pole approxima-
tions and CAM representations have been achieved for the
reduced frequencies 2Mω ¼ 0.3, 0.6, 1, 3 and 6 and, for
these frequencies, we have provided the lowest Regge poles
and the associated residues in Table I. The higher Regge

REGGE POLE DESCRIPTION OF SCATTERING OF … PHYS. REV. D 100, 064009 (2019)

064009-7



FIG. 3. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 0.3). We compare the exact cross section
defined by (1)–(3) with its Regge pole approximation constructed from (32). In addition, we emphasize the role of the background
integrals (31) and of the shift corrections (27).

FIG. 4. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 0.3). Here we consider the helicity-preserving
and helicity-reversing scattering amplitudes and we compare the exact results (2)–(3) with the corresponding Regge pole
approximations (32). In addition, we emphasize the role of the background integrals (31) and of the shift corrections (27).
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FIG. 5. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 0.6). We compare the exact cross section
defined by (1)–(3) with its Regge pole approximation constructed from (32). In addition, we emphasize the role of the background
integrals (31) and of the shift corrections (27).

FIG. 6. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 0.6). Here we consider the helicity-preserving
and helicity-reversing scattering amplitudes and we compare the exact results (2)–(3) with the corresponding Regge pole
approximations (32). In addition, we emphasize the role of the background integrals (31) and of the shift corrections (27).
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FIG. 7. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 1). We compare the exact cross section
defined by (1)–(3) with its Regge pole approximation constructed from (32). In addition, we emphasize the role of the background
integrals (31) and of the shift corrections (27).

FIG. 8. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 1). Here we consider the helicity-preserving
and helicity-reversing scattering amplitudes and we compare the exact results (2)–(3) with the corresponding Regge pole
approximations (32). In addition, we emphasize the role of the background integrals (31) and of the shift corrections (27).
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FIG. 9. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 3). We compare the exact cross section
defined by (1)–(3) with its Regge pole approximation constructed from (32).

FIG. 10. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 3). We emphasize the role of the helicity-
preserving and helicity-reversing scattering amplitudes and we compare the exact results (2)–(3) with the corresponding Regge pole
approximations (32).
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FIG. 11. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 6). We compare the exact cross section
defined by (1)–(3) with its Regge pole approximation constructed from (32).

FIG. 12. Scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 6). We emphasize the role of the helicity-
preserving and helicity-reversing scattering amplitudes and we compare the exact results (2)–(3) with the corresponding Regge pole
approximations (32).

ANTOINE FOLACCI and MOHAMED OULD EL HADJ PHYS. REV. D 100, 064009 (2019)

064009-12



poles and their residues that have been necessary to obtain
some of the results displayed in the figures are available
upon request from the authors.
In Figs. 9–12, the results correspond to “high” reduced

frequencies (here we have taken 2Mω ¼ 3 and 6). We can
then observe that, in the “short”-wavelength regime, the
Regge pole approximations (32) involving a small number
of Regge poles permit us to describe very well the cross
section and the scattering amplitudes for intermediate and
large values of the scattering angle and, in particular, the
BH glory. Taking into account additional Regge poles
improves the Regge pole approximations and we can see
that, by summing over a large number of Regge poles, the
whole scattering cross section as well as the scattering
amplitudes are impressively described, this being valid
even for small scattering angles. It is important to note that,
in this wavelength regime, it is not necessary to take into
account the background integrals and the shift corrections
in order to reproduce the scattering amplitudes and the
differential scattering cross section. As in the case of the
scalar and electromagnetic fields, these contributions are
completely negligible for intermediate and large scattering
angles. It seems they begin to play a role only for small
angles, i.e., for scattering angles θ ≪ 1=ð2MωÞ.
In Figs. 3–8, we focus on the results obtained for low

and intermediate reduced frequencies (here we have taken
2Mω ¼ 0.3, 0.6 and 1). We can then observe that, in the
long-wavelength regime, the Regge pole approximations
(32) alone do not permit us to reconstruct the scattering
amplitudes and the scattering cross sections but that this
can be achieved by taking into account the background
integral contributions (31) and the shift corrections (27).

IV. BH GLORY AND ORBITING OSCILLATIONS

We now extend to the case of gravitational waves the
approach developed in our previous paper, where we derived
an analytical approximation fitting both the backward glory
and a large part of the orbiting oscillations for the scattering
of scalar and electromagnetic waves (see, Sec. IVof Ref. [1]
for details and for our motivations). In order to obtain such
an approximation for the helicity-preserving and helicity-
reversing scattering amplitudes and for the total differential
scattering cross section, we need asymptotic approximations
at large reduced frequencies 2Mω for the Regge poles λnðωÞ
and for the associated residues rðeÞn ðωÞ and rðoÞn ðωÞ. We shall
use the asymptotic form

λnðωÞ ≈ 3
ffiffiffi
3

p
Mωþ iðn − 1=2Þ þ

ffiffiffi
3

p
an

18Mω
ð37Þ

where

an ¼
2

3

�
5

12
ðn − 1=2Þ2 þ 547

144

�
ð38Þ

TABLE I. Lowest Regge poles λnðωÞ for gravitational waves

and associated residues rðoÞn ðωÞ. We assume 2M ¼ 1. The

residues rðeÞn ðωÞ can be obtained from Eq. (22).

n ω λnðωÞ rðoÞn ðωÞ
1 0.3 1.177734þ 0.230543i 0.082479 − 0.005950i

0.6 1.677477þ 0.335822i 0.2788875þ 0.0273350i
1 2.531094þ 0.411206i 0.4326579þ 0.1435142i
3 7.457790þ 0.486581i −0.2242890þ 0.8685292i
6 15.171479þ 0.496524i −0.5321560 − 1.1687555i

2 0.3 0.836492þ 0.773620i 0.393716 − 0.154124i
0.6 1.572789þ 1.076695i 0.4447390 − 0.3967047i
1 2.518269þ 1.260871i 0.7211612 − 0.7533923i
3 7.484551þ 1.457991i 4.460584þ 1.895063i
6 15.188070þ 1.488756i −12.701904þ 4.668131i

3 0.3 0.785194þ 1.696053i 0.120036 − 0.314616i
0.6 1.559438þ 1.959412i 0.0223704 − 0.6732064i
1 2.550451þ 2.151728i −0.1658717 − 1.4015981i
3 7.537660þ 2.423973i 8.960724 − 10.234313i
6 15.220985þ 2.478570i 13.35540þ 70.80750i

4 0.3 0.900248þ 2.493219i 0.028309 − 0.277850i
0.6 1.664569þ 2.808204i −0.2577278 − 0.5695969i
1 2.649417þ 3.032799i −1.043417 − 1.107841i
3 7.615848þ 3.380665i −10.02892 − 25.10010i
6 15.269709þ 3.464449i 259.8284þ 17.6034i

5 0.3 1.042288þ 3.210140i −0.010991 − 0.252467i
0.6 1.810963þ 3.597981i −0.3838196 − 0.4403928i
1 2.789282þ 3.877087i −1.437568 − 0.527774i
3 7.716714þ 4.324544i −42.34029 − 9.81342i
6 15.333503þ 4.445015i 286.1595 − 664.6152i

6 0.3 1.187964þ 3.881018i −0.034909 − 0.234891i
0.6 1.969737þ 4.343670i −0.4461059 − 0.3314978i
1 2.948514þ 4.684410i −1.514306þ 0.007575i
3 7.836980þ 5.253021i −49.66798þ 35.28825i
6 15.411449þ 5.419065i −1124.069 − 1219.440i

7 0.3 1.332119þ 4.521690i −0.051937 − 0.221385i
0.6 2.131338þ 5.057289i −0.4780042 − 0.2412471i
1 3.116089þ 5.460734i −1.428013þ 0.432871i
3 7.973064þ 6.164682i −16.00828þ 76.27376i
6 15.502498þ 6.385600i −3180.632þ 810.520i

8 0.3 1.473437þ 5.140566i −0.065051 − 0.210265i
0.6 2.292297þ 5.746609i −0.4930803 − 0.1653409i
1 3.286697þ 6.211774i −1.262992þ 0.753379i
3 8.121586þ 7.059145i 41.25638þ 84.07005i
6 15.605524þ 7.343833i −1801.097þ 5504.876i

9 0.3 1.611665þ 5.742679i −0.0756224 − 0.200704i
0.6 2.451286þ 6.416742i −0.4978921 − 0.1005477i
1 3.457735þ 6.942014i −1.063278þ 0.987318i
3 8.279630þ 7.936753i 93.43801þ 53.60651i
6 15.719372þ 8.293188i 5449.250þ 7574.371i

10 0.3 1.746886þ 6.331313i −0.084397 − 0.192252i
0.6 2.607816þ 7.071211i −0.4960545 − 0.0445832i
1 3.627890þ 7.654858i −0.852336þ 1.152451i
3 8.444821þ 8.798278i 120.10872 − 1.77950i
6 15.842898þ 9.233283i 13938.834þ 939.263i
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for the Regge poles [15] and

rðoÞn ðωÞ≈ ½−i216ð3 ffiffiffi
3

p
MωÞ=ξ�n−1=2ffiffiffiffiffiffi

2π
p ðn−1Þ! ei2MωyeiπλnðωÞ ð39Þ

where

ξ ¼ 7þ 4
ffiffiffi
3

p
and y ¼ 3 − 3

ffiffiffi
3

p
þ 4 ln 2 − 3 ln ξ ð40Þ

for the odd residues [25]. As far as the even residues are
concerned, they can be obtained by inserting (39) into (22).
Here, it is important to recall that (37) and (39) which are
accurate only for the lowest Regge poles and the associated
residues are obtained by assuming the correspondence
Regge poles/“surface waves” propagating close to the
photon sphere [13–17]. From the technical point of view,
(37) is derived by using a WKB approximation to solve
the Regge-Wheeler equation defined by Eqs. (5) and (7) or,
more precisely, by extending to Regge poles the approach
developed in the context of the determination of the QNMs
by Schutz, Will and Iyer [26–28] (see also Refs. [16,29]).
Similarly, (39) has been derived in Ref. [25] by extending
to Regge poles the calculations which have permitted to
Dolan and Ottewill to derive an analytical expression for the
QNM excitation factors [30].
By inserting now the approximations (37) for the Regge

poles and (39) for the odd residues into the Regge pole
sums (32) where we take in addition into account (22), we

have at our disposal analytical approximations for the
scattering amplitudes and for the cross section associated
with gravitational waves which are formally valid for
2Mω → þ∞. It should be however noted that the Regge
pole sums can only involve a small number of terms
because the approximations (37) and (39) are accurate only
for the lowest Regge poles. As a consequence, from a
theoretical point of view, our analytical Regge pole
approximations cannot describe the cross sections for small
scattering angles.
In Figs. 13 and 14, we compare the exact scattering

amplitudes and the exact scattering cross section with their
analytical approximations constructed below. The compar-
isons are achieved for the reduced frequencies 2Mω ¼ 3
and 6 and the summations are over the first five Regge
poles. In these figures, we have in addition displayed the
usual formula for the backward glory scattering cross
section for gravitational waves which is given by [31]

dσ
dΩ

				
glory

¼ 30.752M3ω½J4ð5.357Mω sin θÞ�2; ð41Þ

and which is formally valid for 2Mω ≫ 1 and jθ − πj ≪ 1.
Here, J4 is a Bessel function of the first kind. It should be
noted that (41) encodes only the contribution of the first
backward glory and that the numerical factors appearing in
this approximation are those obtained in Ref. [32]. We can
observe that the analytical Regge pole approximations

FIG. 13. Scattering amplitudes and scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 3). We compare
the exact results given in Sec. II A with those obtained from the analytical Regge pole approximations constructed in Sec. IV. We also
display the glory cross section described by (41).
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FIG. 14. Scattering amplitudes and scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 6). We compare
the exact results given in Sec. II A with those obtained from the analytical Regge pole approximations constructed in Sec. IV. We also
display the glory cross section described by (41).

FIG. 15. Scattering amplitudes and scattering cross section of a Schwarzschild BH for gravitational waves (2Mω ¼ 6). We compare
the exact results given in Sec. II Awith those obtained from the analytical Regge pole approximations constructed in Sec. IV where we
sum over a large number of terms despite the inaccuracy of the approximations (37) and (39) for the higher Regge poles. We also display
the glory cross section described by (41).
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permit us to reproduce with very good agreement both the
glory cross section [more precisely than (41)] and a large
part of the orbiting cross sections. Glory scattering and
orbiting scattering are usually considered as two different
effects [4,31,33,34] and are described analytically by two
different semiclassical analytic formulas (see Refs. [31,34]
as well as Sec. 4.7.2 of Ref. [35] for a concise presentation).
Here, we prove that it is possible from Regge pole sums to
describe analytically both phenomena in a unique formula.
In fact, by using the Regge pole approach of BH physics, we
consider that glory and orbiting effects are not fundamen-
tally different insofar as they are both generated by the
excitation of surface waves propagating close to the BH
photon sphere and are a consequence of diffractive effects
due to this hypersurface [13–17,25]. The asymptotic expres-
sions (37) and (39) which are a direct consequence of this
point of view and which are valid in the short-wavelength
regime have permitted us to obtain this unified result.
In Fig. 15, we now display the scattering amplitudes and

the exact scattering cross section constructed from analyti-
cal Regge pole sums involving a large number of terms.
Despite the inaccuracy of the approximations (37) and (39)
for the higher Regge poles, it is surprising to observe that
we are able to describe the scattering amplitudes and the
cross section in a wide range of scattering angles.

V. CONCLUSION AND PERSPECTIVES

Scattering from BHs is usually is tackled from partial
wave methods. We are developing an alternative approach
based on the analytic extension of the S-matrix in the CAM
plane and the use of Regge poles. It is very efficient in the
short-wavelength regime where it allows us (i) to extract by
resummation the information encoded in partial wave
expansions and to overcome the difficulties linked to their
lack of convergence due to the long-range nature of the
fields propagating on BHs, (ii) to describe numerically,
with an impressive agreement, the BH glory occurring in

the backward direction as well as the orbiting oscillations
appearing on the differential scattering cross sections for
small and intermediate scattering angles and (iii) to
describe semiclassically the BH glory and the orbiting
oscillations by providing an accurate approximation that
unifies these two phenomena (without the need for addi-
tional fitting parameters [34]) and which is far superior to
existing formulas [31,34].
The CAM approach of scattering of massless fields by

the Schwarzschild BH we have developed in our previous
work [1] and in the present article is more general than it
seems. Indeed, a major part of the formalism can be
repeated identically in the context of scattering by four-
dimensional, asymptotically flat, static spherically sym-
metric BHs (regular or not) as well as for some models of
compact bodies described by Einstein’s general relativity.
In fact, if we consider a problem for which (i) the S-matrix
has a behavior at infinity in the CAM plane which is
identical to that of the Schwarzschild BH and (ii) the Regge
pole spectrum has a structure in the CAM plane quite
similar to that of the Schwarzschild BH, then only the
numerical aspects of our work and, of course, the physical
interpretation of the results must be modified or adapted.
We hope in next works to explore implications of our

results in the context of strong gravitational lensing of
electromagnetic and gravitational waves by BHs [25].
A more challenging task is the extension of our study to
scattering of waves by a Kerr BH. We also hope to make
progress in this direction in the near future.
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