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†Xlim-ASALI, CNRS U-7252, University of Poitiers, France

Abstract—One key issue in compressive sensing is to design
a sensing matrix that is random enough to have a good sig-
nal reconstruction quality and that also enjoys some desirable
properties such that orthogonality or being circulant. The classic
method to construct such sensing matrices is to first generate a
full orthogonal circulant matrix and then select only a few rows.
In this paper, we propose a refined construction of orthogonal
circulant sensing matrices that generates a circulant matrix
where only a given subset of its rows are orthogonal. That way,
the generation method is a lot less constrained leading to better
sensing matrices and we still have the desired properties. The
proposed partial shift-orthogonal sensing matrix is compared to
random and learned sensing matrices in the frame of signal
reconstruction. This sensing matrix is pattern-dependent and
thus efficient to detect color patterns and edges from the
measurements of a color image.

I. INTRODUCTION

To face the constantly growing amount of data coming from
sensors, a new acquisition model has recently emerged [1],
[2], [3], [4], [5]. Described in the seminal work of Candès,
Romberg and Tao in [6] and Donoho in [7], compressive
sensing aims at performing the acquisition and compression
steps of the classical acquisition paradigm in one single step.
This step consists of taking a limited number m of linear
measurements on a signal x (1D signal or digital images) of
length n.

yi = 〈φi, x〉, i = 1, . . . ,m,

where m is much smaller than n or, in short, y = Φx, where
Φ is referred to as the sensing matrix.

Recovering x from y is an ill-posed problem but if the signal
x is sparse in some known basis or dictionary Ψ, meaning that
x = Ψu with u sparse, the following minimization problem
is able to recover x.

argmin
u

‖u‖1 s.t. ΦΨu = y. (1)

The matrix Ψ will be referred to as the sparsifying basis or
dictionary.

For minimization (1) to successfully recover x, the sensing
matrix Ψ has to be carefully chosen. It has been shown that
random measurement taking is optimal in some sense [6].
Although we have theoretical guarantees that minimization (1)
will succeed, random measurements prevent minimization
problem (1) from being efficiently solved. Indeed, the key for
most algorithms is to be able to quickly calculate products by
the sensing matrix Φ and its transpose. We somehow have to
design deterministic sensing matrices to deal with larger signal

size. One possible solution is to choose the sensing matrix
as a fast transform followed by a projection [8]. However,
these measurement taking processes are not very realistic
when it comes to implementing them in a sensor. A more
realistic one is proposed in [9], [10] where sensing matrices are
orthogonal and circulant or Toeplitz. These sensing matrices
are both physically realistic as a convolution operator, easy to
multiply with only two FFTs and offer comparable recovering
properties [11], [12], [13].

To measure the quality of a sensing matrix, several metrics
have been proposed. The restricted isometry property (RIP)
proposed in [14] gives a measure quantifying how well the
sensing matrix is mapping isometrically signals of interest
to measurements. Another metric called mutual coherence
between the sensing matrix and the sparsifying dictionary
has been introduced in [15] and is easier to compute. Using
this metric, contributions have been proposed to learn both
the sparsifying dictionary and the sensing matrix from the
signals of interest [16] or requiring that the sensing matrix
is circulant [17]. In [18], the sensing matrix is designed by
minimizing its mutual coherence with a given sparsifying
basis.

Template detection in a multispectral image is one of
the first application when dealing with multispectral data. It
consists of locating a template within a multispectral image.
Several algorithms have been proposed so far to tackle down
this problem, see [19] and references therein. In our previous
paper [20], we have adapted this minimization problem to
the compressive sensing and proved that we can detect a
multispectral pattern from a compressive sensing of a color
image. However it is more difficult to detect patterns on an
image with few bands as a color image and we thus propose to
generate a partial shift-orthogonal matrix, a pattern-dependent
circulant matrix whose only rows we are interested in form an
orthogonal family.

The outline of this paper is as follows. Section II introduces
the principle of the compressive pattern detection. Section III
recalls what a shift-orthogonal matrix is and defines all the
necessary definitions. It is shown how to generate less restric-
tive shift-orthogonal matrices called partial shift-orthogonal
matrices. Section IV is devoted to numerical experiments
comparing the efficiency of sensing matrices with synthetic
and magnetic resonance spectroscopy signals. Section V then
presents and discusses results in the frame of detections of
color patterns and edges in the compressive sensing of color
images. Section VI concludes the paper.
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II. COMPRESSIVE SPATIAL PATTERN RECOGNITION

In a previous work, we proposed a method to detect a
spectral signature [21] in a compressive hyperspectral sensing
context and extented it for the detection of a spatial pat-
tern [20]. In this section we recall both methods.

A. Template detection

Detecting a particular signature in a multispectral image
is a fundamental task in multispectral imaging. It consists in
finding the locations of a given signature called a template.

In [19], Guo and Osher suggested the following minimiza-
tion problem that leverages the sparsity inducing ability of the
`1 norm to find those locations.

argmin
u≥0

‖u‖1 s.t. ‖XTu− s‖2 < σ. (2)

The vector s denotes the template we want to detect and X
the multispectral image where each column corresponds to a
channel and each row is the spectrum of a pixel.

In [21], we proposed a minimization problem in a com-
pressive sensing context where we only have access to a small
number of linear measurements on the multispectral image. We
proposed to reconstruct the vector u solution of (2) without
reconstructing the image first. The acquisition model is then
described as

M = FX, (3)

where F is a sensing matrix and we showed that the com-
pressive template matching can be solved by the following
minimization:

argmin
u≥0

‖u‖1 s.t. ‖MT (FF T )−1Fu− s‖2 < σ. (4)

The multispectral image X is replaced in (2) by the closest
matrix w.r.t the Frobenius norm such that M = FX .

B. Spatial pattern detection

We extended the compressive template detection minimiza-
tion problem to perform compressive spatial pattern detection
with a special transform called spectralization. We present
in this section the core principle, the complete mathematical
formalism can be found in [20].

Suppose we want to detect of spatial pattern described by
the following shape

i

j

(5)

This spatial pattern P is encoded as an ordered list of couples

P = ((0, 0), (1, 0), (1, 1)). (6)

The spectralization of a grayscale image I along P , denoted
specP (I) is the process of adding shifted copies of I as new
spectral bands. Shifts are controlled by the shape of the spatial
pattern P . The spectralization of a grayscale image along

the pattern P is depicted in Figure 1. It allows us to recast
a complex spatial pattern detection into a simpler template
detection.

(a) Grayscale image
(b) Spectralization along the
pattern (6)

Fig. 1: Spectralization of a grayscale image along the hook
pattern

III. PARTIAL SHIFT-ORTHOGONAL SENSING MATRICES

Both compressive spatial pattern detection and compressive
template detection rely on minimization (4). We then need to

choose F such that
(
FF T

)−1
is easily computable. One way

to do so is to choose F to have orthogonal rows.

A. Shift-orthogonal matrices

The spectralization also imposes us to have measurement
vectors (rows of F ) to be shifted versions from one another
once they are reshaped to match the image width and height
(see [20]). Here we only consider the reshaped version of one
measurement vector and call it the measurement matrix, not to
be confused with the sensing matrix. A measurement matrix
whose shifted copies form an orthogonal family will be called
a shift-orthogonal matrix.

In the following, before introducing partial shift-orthogonal
matrices, we first make a few definitions and assumptions.
For the sake of simplicity, we use 0-based matrix coordinates.
Given an element p = (i, j) of Z2, we define the operator
Sp acting on a matrix that shifts all its entries by p. More
formally, if A is of size N ×M we have

[Sp(A)]ab = I(a+imodN),(b+j modM). (7)

The purpose of this paper is to find a measurement matrix
A given a set of shifting vectors E =

{
e1, . . . , e|E|

}
⊂ Z2

such that the set of matrices

Se1(A), Se2(A), . . . , Se|E|(A), (8)

once vectorized, form an orthogonal family.
To that end, we introduce a few operators acting on matrices.

First, the correlation of two matrices is denoted by the operator
~. Formally, it is defined as follows.

(A~B)ij = TrS(i,j)(A)TB. (9)



3

The upper left coefficient stores the inner product of the two
matrices A and B. The other coefficients are inner products
of a shifted copy of A with B. For example, if we have the
two following matrices A and B

A =

(
3 1 2
3 3 1

)
and B =

(
1 3 1
2 3 3

)
. (10)

Their correlation C, denoted A~B, is then

C =

(
26 32 28
28 29 26

)
. (11)

Second, the well-known Fourier transform of a matrix is
denoted by the operator F . And last, the operator denoted by
R is defined as follows.

(R A)ij = A−i,−j . (12)

With the previous example, we have

R A =

(
3 2 1
3 1 3

)
and R B =

(
1 1 3
2 3 3

)
(13)

It is related to the Fourier transform by the following identity.

NM R = F 2, (14)

which shows in particular that F and R commute. Another
link between the two operators is that R characterizes the
matrices that have a Fourier transform that is real. More
precisely, A is real if and only if F A is R-invariant, which
means that

R F A = F A, (15)

with RA defined as R A. The correlation operator also relates
to the convolution operator by the following formula

A~B = R A ∗B. (16)

Now we can properly define a shift-orthogonal matrix. A
matrix A is shift-orthogonal if we have the following relation

A~A = Λ00, (17)

where the matrix Λij is 1 at location (i, j) and zero elsewhere.
It means that all possible shifted copies of A are orthogonal
to A. Using (16) and expanding the convolution operator with
Fourier transforms yields

F R A�F A = F Λ00 (18)
= 1, (19)

where 1 is the matrix filled with 1 and � is the entry-wise
product. Since A is real, we can show that F R A = F A.
So (19) reduces to

F A�F A = 1. (20)

Each entry of F A is then of modulus 1. We introduce the so
called randomization of the angle that represents the angle of
the entries of F A. A can then be written

A = F−1 E, (21)

where E is any matrix a complex numbers of modulus 1 that

verifies
R E = E. (22)

However, it might seem unnecessarily restrictive to impose
all the shifted copies of A to form an orthogonal family
especially in our use case where we are only interested in
the orthogonality of shifted copies represented by the mea-
surement pattern E (see (8)).

Here is a simple example that illustrates this fact. Suppose
that, for some reason, we want our measurement matrix A to
sum to 0. We have

A~ 1 = 0. (23)

This means that we have a set of NM + 1 matrices, namely

S00(A), . . . , SN−1,M−1(A) and 1, (24)

that forms an orthogonal family which is impossible because
the matrix A only has NM coefficients. This simple example
shows that the classic generation of such matrices is too
restrictive. This is especially a concern for our problem that
is to find a “random enough” measurement matrix.

In the following, we propose a less restrictive method that
forces only the desired shifted copies to form an orthogonal
system. We then show that it is possible in this case to apply
more constraints.

B. Partial shift-orthogonal matrix

We are going to relax the shift-orthogonality constraint (17)
by the orthogonality of family (8) only. According to (9), it
means that for all different f and g in E, we want

TrSf (A)TSg(A) = 0, (25)

which can be shown to be equivalent to

TrSf−g(A)TA = 0, (26)

which means, according to (9), that

(A~A)f−g = 0. (27)

Therefore, we define a new pattern from the measurement
pattern E, denoted Ẽ, defined as follows

Ẽ = {f − g | f, g ∈ E, f 6= g} . (28)

The problem (8) is now equivalent to finding a matrix A such
that

A~A = N , (29)

where N ij = 0 for all (i, j) ∈ Ẽ. Note that the matrix N
has to be R-invariant. If we expand the convolution operator
with Fourier transforms, we have

F−1 (F R A�F A) = N . (30)

The matrix A we want to generate is real. According to (15)
and because F and R commute, it implies that

F R A = F A. (31)

The equality (29) reduces to

|F A|2 = F N . (32)
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We first remark that F N has to have all its entries non-
negative. Then, it suffices to have

|F A| =
√

F N . (33)

for equality (32) to be verified. There is no constraint on the
argument of the coefficients of F A. We just have to make
sure that F A is R-invariant. We can then write

F A = E �
√

F N , (34)

where E is a R-invariant matrix of complex numbers of norm
1. Finally, we have

A = F−1
(
E �

√
F N

)
. (35)

Conversely, all matrices of the form (35) verify the condi-
tion (8). This result is summarized in the following theorem.

Theorem 1. The real matrices A such that the family (8) is
orthogonal are the matrices that write

A = F−1
(
E �

√
F N

)
, (36)

where E is any R-invariant matrix of complex numbers of
norm 1 and N any real R-invariant matrix that vanishes at
Ẽ and such that all entries of F N are non-negative.

From equation (30), we can show that∑
ij

Aij

2

=
∑
ij

N ij . (37)

For a simple shift-orthogonal measurement matrix we have
N = Λ00 meaning that such a matrix has to sum to ±1. Partial
shift-orthogonal matrices do not suffer from such a restriction
because the matrix E also has to be specified allowing them
to be much more flexible.

C. Practical example and discussion

We detail the steps established in the previous section
and show the generation of a partial shift-orthogonal matrix.
Suppose we want a 5 × 5 matrix where the shifted copies
represented by the pattern E

E =

i

j

, (38)

form an orthogonal family. According to theorem 1, we first
need to calculate Ẽ according to (28) and its reduced modulo

5, since we are working in Z5 ×Z5,

Ẽ =

i

j

, Ẽ =

i

j

,

(39)
which means that the matrix N looks like this

N =


1 ? 0 0 ?
? ? ? ? ?
0 ? 0 0 ?
0 ? 0 0 ?
? ? ? ? ?

 . (40)

Then we replace the stars by random inner product values
so as to have RN = N and F N non-negative and apply
the formula (36) which yields

A =


−0.15 −0.02 −0.16 0.14 0.14
0.21 0.25 −0.42 −0.03 0.19
0.15 −0.03 0.29 −0.47 0.04
0.11 −0.08 −0.07 −0.04 −0.08
0.18 0.17 0.34 −0.04 0.22

 . (41)

We verify that the correlation vanishes at the right locations.

A~A =


1 −0.09 0 0 −0.09
−0.1 0.29 −0.03 −0.2 −0.17
0 0.03 0 0 0.11
0 0.11 0 0 0.03
−0.1 −0.17 −0.2 −0.03 0.29

 . (42)

We are interested in limiting as much as possible the number
of elements of Ẽ. Indeed, if Ẽ is of maximal size (i.e.
Ẽ = {(i, j), 0 ≤ i, j < n}) then the matrix N in equation (40)
would be equal to Λ00 and we would fall back in the classical
case seen in section III.

As a consequence, we will restrict ourselves to measurement
patterns E that are quasi-rectangular. With this restriction, it
is not difficult to see that∣∣∣Ẽ∣∣∣ ∼ 4 · |E| . (43)

In that case, the pattern Ẽ is basically obtained by replicating
E on the three other quadrants, hence the “4” in equation (43).

E =

i

j

, Ẽ =

i

j

, (44)

With that equivalence the measurement rate as defined in [20]
verifies

|E|
NM

<
1

4
, (45)

since we also have
∣∣∣Ẽ∣∣∣ ≤ NM . As a result, for a partial

shift-orthogonal measurement matrix to be more general than
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shift-orthogonal ones we have to take a measurement rate less
than 1/4.

IV. NUMERICAL EXPERIMENTS: SIGNAL
RECONSTRUCTIONS

In this section, partial shift-orthogonal matrices are com-
pared with 7 classical measurement matrices in the frame of
signal reconstructions [12], [17], [22], [23]:
• Gaussian random matrices (G),
• Toeplitz matrices (T),
• Bernouilli matrices (B),
• circulant matrices whose first row is Gaussian-distributed

(CG),
• learning circulant matrices (LC) [17],
• shift-orthogonal matrices (SO),
• partial shift-orthogonal matrices (PSO).
First we propose to reconstruct synthetic signals and then

real MRS signals.

A. Reconstruction of synthetic signals

The first set of experiments is conducted on a random
sparse signal of size 512 with 75 spikes. To achieve better
precision, for each measurement rate, ranging from 10 to 30%,
we solve the minimization problem 100 times. The results

(a) 10% (b) 20%

(c) 30% (d) 40%

Fig. 2: SNR of reconstruction using 7 different sensing matri-
ces on a sparse signal.

are shown on Fig 2. We obtain better reconstruction results
with learning circulant matrices when the measurement rate is
high (30 and 40%). When the rate is low (10 and 20), PSO
matrices perform and we obtain better reconstruction median
value with low dispersion. The sparsity of signals is finally too
high to obtained good reconstruction results with LC matrices.
At these rates, we have similar statistical results with Gaussian,
Gaussian circulant, Bernouilli and Toeplitz matrices.

The second signal is a sinusoidal signal with a few periods
and of size 512. We use a DCT as sparsifying basis. The results
are shown in Fig 3. In this framework, the proposed PSO
matrices is as efficient as the reference matrices (Gaussian,
Bernouilli and circulant Gaussian). We note the PSO matrix

When we decrease the measurement rate, we obtain a result
with PSO matrices close to the one with Gaussian matrices
(which is our reference). Compared to the Gaussian, Bernouilli
and circulant Gaussian matrices, we observe a lower statistical
dispersion.

(a) 10% (b) 20%

(c) 30% (d) 40%

Fig. 3: SNR of sinus reconstructions using 7 different sensing
matrices on a sinusoidal signal.

In both experiments, the efficiency of partial shift-
orthogonal matrices are between full Gaussian ones and shift-
orthogonal ones. Though, the measurement rate should be kept
small for the difference to be significant.

B. Reconstruction of real MRS data

Magnetic Resonance Imaging apply compressive sensing
to accelerate the acquisition [24], [25]. We thus proposed to
reconstruct in vivo Magnetic Resonance Spectroscopy (MRS)
data which were acquired using 3T whole-body system (Ve-
rio, Siemens, Erlangen, Germany) and were provided by the
radiology department of CHU Poitiers (France). We work on
16 signals with a number of samples of signals is equal to
1024.

The range of measurement rate is from 10 to 40% and
we solve the minimization problem 100 times on the signal.
On Fig. 4 PSO matrices provide best reconstructions with a
rate equal to 20% and 30%. When the measurement rate is
low, Toeplitz matrices have a better median value (3.02 at
10%). Reconstructions with PSO matrices provide the second
best result (2.60) with less statistical dispersion. When the
measurement rate is high (superior to 40%) the learning
circulant matrices obtained best results with a high median
value and with less dispersion. Note that Bernouilli matrix is
not adapted to this signal reconstruction.
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(a) 10% (b) 20%

(c) 30% (d) 40%

Fig. 4: SNR of reconstruction using 7 different sensing matri-
ces on MRS signals.

Fig. 5 illustrates the MRS signal reconstruction with a rate
equal to 20%.

V. COMPRESSIVE COLOR PATTERN DETECTION

We conclude with a final application to a developed pattern
detection minimization problem introduced in section II.

A. Reconstruction Algorithm using shifted measurements

The idea is to take measurements that are not independent
but shifted from one another. Indeed, a shifted measurement on
a shifted image could be the same as the original measurement
on the original image. One effective measurement could be
used to reconstruct more than one virtual measurement.

The virtual measurements are a shifted version of one
measurement. The shifting information is so modelled as a
subset E = {e1, . . . , e|E|} of Z2. The virtual measurement
matrix is written M virt = F virt specP (X) with F virt the
virtual sensing matrix (see appendice A for more details).

The matrix M eff gathers the measurements taken on the
real image X by the sensing matrix F eff. To reconstruct
M virt that gathers the results of measurements on the virtual
image specP (X), we need to take the shifted measurements
represented by E + P .

The reconstruction of virtual measurements should not be
too expensive. We therefore minimize the following ratio of
reconstruction efficiency:

α(P ) =
effective measurements
virtual measurements

. (46)

We describe the algorithm of pattern detection on an image
after a compressive sensing in Algorithm 1.

In this applicative framework, we propose to generate a
pattern dependent circulant matrix whose only rows we are
interested in form an orthogonal family.

(a) MRS signal (b) G

(c) CG (d) T

(e) LC (f) SO

(g) PSO

Fig. 5: Signal reconstruction using different sensing matrices
on MRS data with a measurement rate equal to 20%.

We will discuss the pattern detection results with different
measurement matrices, measurement rates and color patterns.

B. Compressive pattern matching

1) Pattern detections with different sensing matrices: We
test our algorithm on a publicly available color image of Giza,
Egypt. We extract a 128×128 image shown in Fig. 6b and we
want to detect the locations where there is sand surrounded
by vegetation. We test the detection of patterns which are
displayed in Fig. 6a.

Fig. 7 illustrates the detections of pattern 2. We obtained
these results by using thresholding; the threshold is empirically
set at 80 percent from the maximum value. The results
are confirming our previous observations. Even if there is a
small difference between shift-orthogonal matrices and fully
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Algorithm 1: Compressive Pattern Matching algorithm
Data: Pattern P , Measurement rate p, Image X ,

Spectralized signature s, Measurement pattern E
Result:
Generate a random measurement f ;
Take the effective measurements according to E + P ;
Reconstruct M virt from M eff;
Compute A = MT

virt(F virtF
T
virt)
−1F virt;

Solve argmin
u≥0

‖φ(u)‖1 s.t. ‖Au− s‖2 < err;

i

j

(a) (b)

Fig. 6: (a) Proposed pattern; (b) Giza, Egypt image.

(a) Gaussian (b) Bernouilli

(c) Toeplitz (d) shift-orthogonal

(e) partial shift-orthogonal

Fig. 7: Detection of patterns with the 6 different sensing
matrices.

Gaussian ones, we can still improve the detection by choosing
partial shift-orthogonal sensing matrices. Results with the
Toeplitz matrices, circulant Gaussian matrices and are too bad
and the patterns are not detected (see the result with a Toeplitz
matrix on Fig. 7c).

We solve the minimization problem 100 times for each
sensing matrix. We set the measurement rate to 20%. In
Tab. I, we observe a better the partial shift-orthogonal matrices
obtain better results than the full Gaussian and shift-orthogonal
matrices. We detect in average 2.5 false patterns.

Full Gaussian SOG PSOG
75% 74% 80%

TABLE I: Average number of detection errors for three
different sensing matrices with a measurement rate set to 20%.

We test the compressive pattern detection using Gaussian,
shift-orthogonal and partial shift-orthogonal matrices. We ob-
tain a relatively low computational time equal to 670 seconds
with a partial shift-orthogonal matrix (we use Matlab on Linux
with Quad-core Intel Core i7-6820HQ). The computational
time with a Gaussian matrix is 7850 seconds or more than 10
times slower. The computer is however not enough efficient
to test the pattern detections with learning circulant matrices.

2) Pattern detections with different measurement rates: We
test our algorithm on the color image named girl. We extract
a 128× 128 image shown in Fig. 10b and we want to detect
the locations of the blue pearl. The aim is to validate that a
color can be detected from a compressive sensing of a color
image.

As shown on Fig. 8b we extract the blue value on the
original image and construct a square. We test the detection
of this pattern (see on Fig. 8a).

i

j

(a) (b) (c)

Fig. 8: (a) Proposed pattern; (b) a part of the blue pearl; (b) a
part of image Girl.

Fig. 9 shows that we detect correctly the blue pearl with the
three different measurement rates but we add false detection
when we decrease the rate.

3) Color edge detection: On image 10b we want to detect
the transition between the yellow and green and we set the
measurement rate to 15%. The aim is to validate that color
edges can be detected from a compressive sensing of a color
image.

We use the pattern which are displayed on Fig. 10a and the
partial shift-orthogonal sensing matrix.



8

(a) 15% (b) 20%

(c) 25%

Fig. 9: Pattern detection with partial shift-orthogonal measure-
ment matrices and 3 different measurement rates.

(a) (b) (c)

Fig. 10: Color edge detections with 15% of measurements:
(a) the pattern; (c) detection result.

Fig. 10c shows that we detect correctly the transition
between the green texture and the yellow one with a low
measurement rate. The result is correct and we observe that
the transition is not detected when the orientation is not the
same as the pattern.

VI. CONCLUSION AND PERSPECTIVES

This paper introduces an improved way to generate circulant
orthogonal or shift-orthogonal sensing matrices that more
precisely fit the minimization problem’s need. Our hope was
that a more relaxed construction of such matrices would yield
better sensing matrices. Partial shift-orthogonal matrices are
tested in different scenarii: the first two on one-dimensional
signals, a reconstruction of a MRS signal and two pattern
detections on color images with minimization problem devel-
oped in a previous paper. We have compared the proposed
sensing matrix with different sensing matrices in a framework
of compressive reconstruction and we have illustrated the

obtained quality of reconstructions. We have shown that the
partial shift-orthogonal matrix allows to detect a pattern on
multispectral images with few bands as a color images. We
have also shown that we can detect a color patch and the
edges between two colors from a compressive sensing of a
color image.

Even if the difference between full Gaussian sensing matri-
ces and shift-orthogonal ones is small, the efficiency of partial
shift-orthogonal measurement matrices lies between the two.
The new generation process only requires one more Fourier
transform as opposed to the shift-orthogonal case.

A further development would be to look if we can losen
the constraints even more and drop the partial orthogonality
constraint. Indeed, we are able to specify the value of the
inner product between the measurement matrix and a given
shifted copy of it. We have set this value to zero to have an
orthogonality property but nothing prevents us from choosing
a non-zero value. The open question is how to choose those
values so as to have a measurement matrix that would still
enjoy a nice structure allowing us to quickly compute the
product with its transpose.

APPENDIX A
MATRIX DEFINITION FOR RECONSTRUCTION USING

SHIFTED MEASUREMENTS [20]

Let B be the measurement matrix that is the 2-dimensional
version of the measurement vector f . We then have

vec(B) = f.

If the measurement matrix B is shifted by a vector e, it
becomes Se(B). The shifted measurement vector fe is then

fe = Qef.

Suppose all our virtual measurements are a shifted version
of one measurement f , the measurements writes

me = fTQ−e specP (X),

The shifting information is modelled as a subset E =
{e1, . . . , e|E|} of Z2 and the virtual measurement matrix is
defined by

M virt = F virt specP (X) (47)

with

M virt =

 me1
...

me|E|

 and F virt =


fT

fTQ−e2
...

fTQ−e|E|

 (48)

To reconstruct M virt that gathers the results of measure-
ments on the virtual image specP (X), we need to take the
shifted measurements represented by E′ = E+P where E+P
denotes the set

{ei + pj | ei ∈ E, 1 ≤ i ≤ |E|, pj ∈ P, 1 ≤ j ≤ |P |} . (49)



9

Therefore, we choose

F eff =


fT

fTQ−e′2
...

fTQ−e′|E′|

 , (50)

and the effective sensing matrix is obtained by

M eff = F effX (51)
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template matching on multispectral data,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP). Vancouver,
Canada: IEEE, 2013.

[22] A. Moshtaghpour, L. Jacques, V. Cambareri, K. Degraux, and
C. De Vleeschouwer, “Consistent basis pursuit for signal and matrix
estimates in quantized compressed sensing,” IEEE signal processing
letters, vol. 23, no. 1, pp. 25–29, 2016.

[23] S. Dirksen, H. C. Jung, and H. Rauhut, “One-bit compressed
sensing with partial gaussian circulant matrices,” arXiv preprint
arXiv:1710.03287, 2017.

[24] Y. Yu, J. Jin, F. Liu, and S. Crozier, “Multidimensional compressed
sensing mri using tensor decomposition-based sparsifying transform,”
PloS one, vol. 9, no. 6, p. e98441, 2014.

[25] K. Arai, C. Belthangady, H. Zhang, N. Bar-Gill, S. DeVience, P. Cappel-
laro, A. Yacoby, and R. L. Walsworth, “Fourier magnetic imaging with
nanoscale resolution and compressed sensing speed-up using electronic
spins in diamond,” Nature nanotechnology, vol. 10, no. 10, p. 859, 2015.


