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Maximal green sequences for arbitrary
triangulations of marked surfaces
(Extended Abstract)

Matthew R. Mills†

Department of Mathematics, University of Nebraska - Lincoln, Lincoln, NE, USA

Abstract. In general, the existence of a maximal green sequence is not mutation invariant. In this paper we show that
it is in fact mutation invariant for cluster quivers associated to most marked surfaces. We develop a procedure to find
maximal green sequences for cluster quivers associated to an arbitrary triangulation of closed higher genus marked
surfaces with at least two punctures. As a corollary, it follows that any triangulation of a marked surface with at least
one boundary component has a maximal green sequence.

Résumé. En général, l’existence d’une suite verte maximale n’est pas invariante par mutation. Dans cet article, nous
montrons qu’elle est invariante par mutation pour les carquois amassés associés à la plupart des surfaces marquées.
Nous développons une méthode permettant de trouver des suites vertes maximales pour les carquois amassés associés
à une triangulation arbitraire d’une surface marquée fermée de genre supérieur avec au moins deux ponctions. Nous
obtenons comme corollaire que toute triangulation d’une surface marquée avec au moins une composante de bord
admet une suite verte maximale.

Keywords. maximal green sequences, higher genus marked surfaces, cluster algebras

1 Introduction
Cluster algebras were introduced by Fomin and Zelevinsky in [14]. Cluster algebras have become an
important tool in the study of many areas of mathematics and mathematical physics. They play a role in
the study of Teichmüller theory, canonical bases, total positivity, Poisson Lie-groups, Calabi-Yau alge-
bras, noncommutative Donaldson-Thomas invariants, scattering amplitudes, and representations of finite
dimensional algebras.

One very important property of a quiver associated to a cluster algebra is whether or not it has a maxi-
mal green sequence. Quiver mutation is a transformation of a quiver, determined by a choice of a vertex of
the quiver, into a new quiver. A maximal green sequence is a certain sequence of quiver mutations given
by a sequence of vertices of the quiver. The idea of maximal green sequences of cluster mutations was in-
troduced by Keller in [18]. He explored quantum dilogarithm identities by utilizing these sequences in the
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explicit computation of noncommutative Donaldson-Thomas invariants of quivers which were introduced
by Kontsevich and Soibelman in [19]. If a quiver with potential has a maximal green sequence, then its
associated Jacobi algebra is finite dimensional [3, 17]. In [2] an explicit construction of a cluster category
from a quiver with potential whose Jacobian algebra is finite dimensional is given.

The existence of a maximal green sequence for a quiver also seems to be related to whether the cluster
algebra A it generates is equal to its upper cluster algebra U . Gross, Hacking, Keel and Kontsevich
showed that if A = U and a maximal green sequence exists, then the Fock- Goncharov canonical basis
conjecture holds [16]. It is still unknown as to whether or not A = U for closed higher genus surfaces
with at least two punctures and punctured closed spheres. For all other quivers from marked surfaces it
is known that A = U if and only if there exists a quiver with a maximal green sequence. See [7] and
references therein for more information on A = U .

The main result in this paper focuses on the existence of maximal green sequences for quivers that are
associated to triangulations of surfaces.

Theorem 1.1 Suppose that a marked surface Σ is:

(A) of genus at least one with at least two punctures;

(B) or of arbitrary genus with at least one boundary component.

Then for any triangulation of Σ there exists a maximal green sequence for the associated quiver.

The proof of Theorem 1.1(A) is an explicit construction of maximal green sequences for these surfaces.
We only give a brief overview of the construction in this paper. A more detailed proof will be given in a
later work. The proof for (B) follows from (A) together with a theorem of Muller that we recall here as
Theorem 4.4. We give a sketch of this proof in Section 4.2

It was shown by Ladkani that quivers associated to once-punctured closed surfaces of genus at least one
do not admit maximal green sequences [20]. We do not expect that it will be difficult to expand Theorem
1.1 to include the case of the punctured closed sphere and it will be done in the near future.

It is straightforward to see from the definition of quiver mutation (formally stated in Definition 2.2) that
mutation imposes an equivalence relation on the set of all quivers. For a quiver Q we let Mut(Q) denote
the equivalence class of Q under this relation. A quiver Q is said to be of finite mutation type if Mut(Q)
is finite.

Conjecture 1.2 Let Q be a quiver of finite mutation type, then a maximal green sequence exists for every
quiver in Mut(Q), or there is no maximal green sequence for any quiver in Mut(Q).

Muller showed that in general the existence of a maximal green sequence is not mutation invariant
[21]. It is already known that every quiver of finite type has a maximal green sequence [3]. The exis-
tence of maximal green sequences for special triangulation of various marked surfaces has been shown
in many papers [1, 5, 6]. This work shows that Conjecture 1.2 holds, for all cluster quivers arising from
surfaces except for those of closed spheres. It is known that all finite mutation type quivers arise from
triangulations of surfaces except for the rank 2 case and 11 exceptional cases. Among these exceptional
cases it has been shown that there exists a quiver with a maximal green sequence for all but X7 [1]. It
was shown by Seven in [22] that X7 has no maximal green sequence. In [15] Garver and Musiker give a
combinatorial approach to construct maximal green sequences for type A quivers, which are exactly the
quivers associated to triangulations of unpunctured disks. Cormier et al., give an explicit construction of
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minimal length maximal green sequences for this case in [8]. In [4] Brüstle, Hermes, Igusa, and Todorov
use semi-invariants to prove two conjectures about maximal green sequences.

In Section 2 we give background on quivers and maximal green sequences. In Section 3 we give
background on marked surfaces and their triangulations. In Section 4 we give an outline of the proofs of
Theorem 1.1. We then give examples in Section 5.

2 Quivers and maximal green sequences
We recall the definitions from [17], but use the setup given in [3].

Definition 2.1 A (cluster) quiver is a directed graph with no loops or 2-cycles. An ice quiver is a pair
(Q,F ) where Q is a quiver and F is a subset of the vertices of Q called frozen vertices; such that
there are no edges between frozen vertices. If a vertex of Q is not frozen it is called mutable. For
convenience, we assume that the mutable vertices are labelled {1, . . . , n}, and frozen vertices are labeld
by {n+ 1, . . . , n+m}.
Definition 2.2 Let (Q,F ) be an ice quiver, and k a mutable vertex of Q. The mutation of (Q,F ) at
vertex k is denoted by µk, and is a transformation (Q,F ) to a new ice quiver (µk(Q), F ) that has the
same vertices, but making the following adjustment to the edges:

1. For every 2-path i→ k → j, add a new arrow i→ j.

2. Reverse the direction of all arrows incident to k.

3. Delete any 2-cycles created during the first two steps, and any arrows between frozen vertices.

Mutation at a vertex is an involution, and an equivalence relation. We defineMut(Q) to be the equivalence
class of all quivers that can be obtained from Q by a sequence of mutations.

Definition 2.3 Let Q0 be the set of vertices of Q. The framed quiver associated with a quiver Q is the
ice quiver (Q̂,Q′0) such that:

Q′0 = {i′ | i ∈ Q0}, Q̂0 = Q0 tQ′0
Q̂1 = Q1 t {i→ i′ | i ∈ Q0}

Since the frozen vertices of the framed quiver are so natural we will simplify the notation and just write
Q̂. Now we must discuss what is meant by red and green vertices.

Definition 2.4 Let R ∈Mut(Q̂).
A mutable vertex i ∈ R0 is called green if

{j′ ∈ Q′0 | ∃ j′ → i ∈ R1} = ∅.

It is called red if
{j′ ∈ Q′0 | ∃ j′ ← i ∈ R1} = ∅.

The result that every mutable vertex in R0 is either red or green is due to [9] and then in a more general
setting in [16].

Definition 2.5 A green sequence for Q is a sequence i = (i1, . . . , il) ⊂ Q0 such that i1 is green in Q̂
and for any 2 ≤ k ≤ l, the vertex ik is green in µik−1

◦ · · · ◦µi1(Q̂). A green sequence i is called maximal
if every mutable vertex in µil ◦ · · · ◦ µi1(Q̂) is red.
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Fig. 1: A triangulation T1 of Σ1 = {1, 0, 4, ∅} (left), and the corresponding quiver QT1 (right).

3 Marked surfaces and their triangulations
To begin the section we recall the definition of a marked surface given in [12]. Let S be an orientable
2-dimensional Riemann surface with or without boundary. We designate a finite number of points M in
the closure of S as marked points. We require at least one marked point on each boundary component.
We call marked points in the interior of S punctures. Together the pair Σ = (S,M) is called a marked
surface. For technical reasons we exclude the cases when Σ is one of the following:

• a sphere with less than four punctures;

• an unpunctured or once punctured monogon;

• an unpunctured digon; or

• an unpunctured triangle.

Note that the construction allows for spheres with four or more punctures, but we do not discuss this case
in this note.

Up to homeomorphism a marked surface is determined by four things. The first is the genus g of the
surface. The second is the number of boundary components b of S. The third is the number of punctures
p in M , and the fourth is the set m = {mi}bi=1 where mi ∈ Z>0 denotes the number of marked points on
the ith boundary component of S. We will commonly say a surface Σ = {g, b, p,m} when we mean that
Σ is a surface in this homeomorphism class.

Definition 3.1 An arc γ in (S,M) is a curve in S such that:

• The endpoints of γ are in M .

• γ does not intersect itself, except that its endpoints may coincide.

• γ is disjoint from M and the boundary of S, except at its endpoints.

• γ is not isotopic to the boundary, or the identity.

An arc is called a loop if its two endpoints coincide. Each arc is considered up to isotopy. Two arcs are
called compatible if there exists two arcs in their respective isotopy classes that do not intersect in the
interior of S.
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Fig. 2: A special situation in the construction of a quiver from a triangulation.

Definition 3.2 A taggd arc is constructed by taking an arc that does not cut out a once-punctured mono-
gon and marking or ”tagging” its ends as either plain or notched so that:

• an endpoint lying on the boundary of S is tagged plain; and

• both ends of a loop must be tagged in the same way.

We use a ./ to denote the tagging of an arc in figures. Two tagged arcs are considered compatible if:

• Their underlying untagged arcs are the same, and their tagging agrees on exactly one endpoint.

• Their underlying untagged arcs are distinct and compatible, and any shared endpoints have the
same tagging.

A maximal collection of pairwise compatible tagged arcs is called a (tagged) triangulation of (S,M).

Each triangulation T of (S,M) gives rise to a quiver,QT , by the following construction. For each arc α
in a triangulation T add a vertex vα toQT . If αi and αj are two edges of a triangle in T with αj following
αi in a clockwise order, then add an edge to QT from vαi

→ vαj
. If αk and αj have the same underlying

untagged arc we refer you to Figure 2 for the construction in this situation. Note that the quiver is the
same whether αj or αk is tagged, and distinct triangulations may yield the same quiver.

We now define the analog of quiver mutation for triangulations of a marked surface.

Definition 3.3 A flip is a transformation of a triangulation that removes an arc γ and replaces it with a
(unique) different arc γ′ that, together with the remaining arcs, forms a new triangulation T ′. In this case
we define µγ(T ) = T ′. This makes sense by the following lemma.

Lemma 3.4 [12, Lemma 9.7] Let T and T ′ be two triangulations related by a flip of an arc γ. Suppose γ
corresponds to vertex k of QT , then QT ′ = µk(QT ).

Remark 3.5 Thurston’s theory of laminations and shear coordinates provide a way to keep track of frozen
variables on a surface, but for brevity we do not discuss it here. The interested reader can see [11, 13] for
more information.

It is helpful for the discussion in Section 4 to refer to an arc as being either green or red. Suppose that
T is a triangulation of some marked surface and QT is its corresponding quiver. Let µ be some sequence
of mutations. We say that an arc in µ(T ) is green (resp. red) if its corresponding vertex in µ(QT ) is green
(resp. red).
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4 Existence of maximal green sequences.
4.1 Construction of sequences for higher genus closed surfaces
In this section we let Σ = {g, 0, p, ∅}, where g ≥ 1 and p ≥ 2. It was shown by Ladkani in [20] that any
once-punctured higher genus surface has no maximal green sequence.

In any triangulation when there are at least three arcs (none of which are loops) incident to a puncture,
these arcs form an oriented cycle in the corresponding quiver. The mutation sequences given in this paper
rely heavily on the following lemma which gives a maximal green sequence for when each vertex in the
oriented cycle is green.

Lemma 4.1 [5, Lemma 4.2] Let C be a quiver that is an oriented n-cycle with vertices labeled ci i =
1, . . . , n, with ci → ci−1 for 2 ≤ i ≤ n and c1 → cn. Define a sequence

χ(cn, cn−1, . . . , c2, c1) = cncn−1 · · · c2c1c3c4 · · · cn−1cn.

Then χ is a maximal green sequence for C. Furthermore, after applying χ to C the resultant quiver is
still an oriented cycle with c2 and c1 interchanged.

When we say that vertices i and j are interchanged we mean that there exists a relabelling of the quiver
that fixes the label on vertex k if k 6= i, j; but relabels vertex i with j and vice versa. In the degenerate
case when there are exactly two arcs incident to a puncture, the corresponding vertices are not connected
by an edge. However we will still refer to these two arcs as a cycle and the mutation seqence µ = (c1, c2)
is a maximal green sequence that interchanges the arcs corresponding to c1 and c2.

There is a subset of the triangulations of higher genus surfaces where fundamental loops are arcs in the
triangulation. We give a name to triangulations that have the nicest version of this property.

Definition 4.2 Let T be a triangulation of a surface Σ with genus g ≥ 1. A fundamental loop of Σ is a
loop without self-crossings that is not homotopy equivalent to a point on the unmarked surface. We say
that T is a delta-triangulation if there exists a puncture P such that there exists 2g fundamental loops
ψ1, φ1, . . . , ψg, φg in T based at P which form a standard fundamental 4g-polygon

φ1, ψ1φ
−1
1 , ψ−11 , . . . , φg, ψgφ

−1
g , ψ−1g

in the unversal cover of Σ. We use ∂PT , or just ∂T when the puncture is irrelevant, to denote the set of
all fundamental loops in T based at puncture P . In other words we have;

∂PT = {α ∈ T |α is a fundamental loop of Σ based at puncture P.};

and T is a delta-triangulation if and only if there exists a puncture P ∈ Σ such that a subset of arcs in
∂PT form a standard fundamental polygon.

In Figure 1 we have ∂PT1 = {1, 2} and T1 is a delta-triangulation. In Figure 8 we have ∂PT2 = {1, 2}
and T2 is not a delta-triangulation. In Figure 9 we have ∂PT3 = {1, 2, 3, 4} and T3 is delta-triangulation.
In Figure 10 we have ∂PT4 = {1, 2} and T4 is a delta-triangulation.

We give a brief overview of a maximal green sequence for the quivers associated to triangulations of
Σ. When we refer to mutation of an arc we mean to mutate the vertex of the quiver corresponding to the
arc and to flip the arc in the triangulation. We omit the proof that the mutation sequence described in the
following steps is a maximal green sequence for brevity.
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1. Mutating to a delta-triangulation. Choose a puncture P of Σ. If our initial triangulation is a delta-
triangulation and there is exactly one puncture R that is not encosed in a monogon we cannot choose P
to be R. If our initial triangulation of Σ was not a delta-triangulation, then we first mutate to a delta-
triangulation. Suppose that we want to obtain a fundamental loop γ based at a puncture P . If we super-
impose γ onto T and label the distinct arcs crossed by traversing γ as α1, · · · , αn. Then the sequence
(α1, αnα2, αn−1, . . . , αdn+1

2 e
) gives a green sequence to obtain that fundamental loop in your triangula-

tion. We apply this until we obtain a delta-triangulation. We call this mutation sequence µP . Note that if
T is a delta-triangulation based at P then µP is empty. One remarkable property of this algorithm is that
if Q is some other puncture in Σ, then even if T is a delta-triangulation with loops based at P , we can
begin a maximal green sequence by first mutating to µQ(T ).

2. Separating of “interior” punctures. We call two punctures Q and R of Σ separated in a triangu-
lation T if there is no arc with one endpoints at Q and the other at R in T . Let P denote the set of all
punctures of Σ except for P and any punctures enclosed by monogons. In this step of the maximal green
sequence we want to separate each pair of punctures in P . Call this mutation sequence µsep.

3. Transfering the basepoint of monogons. Punctured monogons require special attention in the con-
struction of our maximal green sequence. By separating the punctures of P we have that any punctured
monogon will be cut out by a digon between P and some puncture Q ∈ P . At this point we mutate the
monogons based at Q and will handle monogons based at P in Step 6. We may switch the basepoint of
these monogons from Q to P by mutating the arcs that are incident to Q in a particular order and leaving
any arcs between the punctures inside the monogon unaffected. We do this for all punctured monogons in
the triangulation based at some Q ∈ P and call this mutation sequence µM .

The point of this step is so that we can get an oriented cycle around the punctures of P . When there is a
monogon based at a puncture the corresponding cycle in the quiver passes through the vertex correspond-
ing to the monogon twice and Lemma 4.1 does not apply.

4. Mutating cycles around punctures. After separating the punctures of P and moving the monogons
basepoints to P , we have two possible cases for a puncture S ∈ P; (1) every arc incident to S is green and
has its other endpoint at P ; (2) S is incident to exactly one green and one red arc where the other endpoint
of each arc is at P and differ only by the red arc being tagged at S. In the first case this means that in the
corresponding quiver there is an oriented cycle of green vertices. We apply Lemma 4.1 to each of these
cycles in µMµsepµP (T ). The second case arises if S initially had exactly one arc α with endpoints at S
and P , then during the separation step we would have introduced an arc β that only differs from α by
having the opposite tagging at Q. In this case we only mutate α since β is already tagged at Q. Call this
mutation sequence µcycle.

5. Mutating back to our initial triangulation. Note that some arcs may have been interchanged, by
the application of µcycle. We assume that this is not the case for any arc that was mutated during µsep
or µP . This is possible by starting the mutation of the cycle at an appropriate vertex. Mutation is an
involution, so we have that the inverse of a mutation sequence is just the reverse of the mutation sequence.
At this point in our mutation sequence (µMµsepµP )−1 = µ−1P µ−1sepµ

−1
M is a green mutation sequence for

µcycleµMµsepµP (T ). We apply this sequence now with slight a change. If we are in the situation (2)
described in the previous section then we omit the arc that is already tagged at the puncture from µ−1sep .

It is worth while to note that in this stage of the green sequence all of the punctures of P have changed
their taggings. Any arcs whose endpoints exclusively belong to P will no longer have to be mutated.
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Fig. 3: A triangulation T ∗ of Σ∗ = {1, 1, 1, {3}} (left), and the corresponding quiver (right) that we extend to the
triangulation in Figure 1. Note that this quiver is an induced subquiver of the one in Figure 1.

Furthermore, since any monogon based at puncture of P will no longer need to be mutated the quiver is
effectively broken into disjoint subquivers. We now turn our attention to flipping the tagging at puncture
P , and conclude with the punctures inside of a monogon.

6. Preparing puncture P. First, we apply a mutation sequence annalogous to the one given above to any
monogon based at P to transfer the monogon to the opposite puncture in the digon enclosing it. Call this
sequence µMP

. We then mutate any other arcs that are loops based at P . First we mutate the loops that
are not arcs in ∂P (T ) in a sequence called µH . These arcs will no longer be loops at P . We then mutate
the arcs of ∂P (T ) in a sequence called µB so they are no longer loops at P . In general, it is necesarry to
do this in two different steps.

7. Cycle around P. In the current state of the quiver/triangulation the only green arcs are incident to
puncture P and form an oriented cycle in the quiver. We apply Lemma 4.1 to this cycle and call it µC .
We now apply µ−1B followed by µ−1H and finally µ−1MP

.

8. Punctures enclosed in a monogon. We now apply a mutation sequence to the arcs enclosed in the
punctured monogon. We can apply a sequence similar to that of Steps 2-5 to make the arcs in the interior
of the monogon red. We call this mutation sequence µI .

Putting together the previous steps we have that the sequence

µIµ
−1
MP

µ−1H µ−1B µCµBµHµMP
µ−1P µ−1sepµ

−1
M µcycleµMµsepµP ,

is a maximal green sequnce for QT . Note that with function notation the sequence is read from right to
left. Also note that some of mutation sequences may be empty.

4.2 Existence for surfaces with nonempty boundary
We first recall the definition of an induced subquiver and a theorem from Muller.

Definition 4.3 Given a subset V of vertices of a quiver Q, the induced subquiver, is the quiver with
vertex set V and edges consisting of the edges between pairs of vertices in V that are in Q.

Theorem 4.4 [21, Lemma 1.4.1] If a quiver admits a maximal green sequence, then any induced sub-
quiver admits a maximal green sequence.

By the previous theorem it suffices to show that the quiver obtained from any triangulation of a surface
with boundary is an induced subquiver of a closed surface with at least two punctures.
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Suppose Σ = (S,M) = {g, b, p,m} is a surface with boundary and g ≥ 1. Let Σ = {g, 0, p +
N(b,m), ∅}, where N(b,m) is an integer determined by the number of boundary components of Σ and
the number of marked points on them. We show that for any triangulation T of Σ, we can embed T into Σ
and extend it to a triangulation T of Σ by replacing a boundary component bi with a (possibly punctured)
mi-gon. By our previous work we know that QT has a maximal green sequence so we conclude the proof
for the boundary case by showing that QT is an induced subquiver of QT . We also adress the case of
punctured disks; possibly with more than one boundary component. If Σ = {0, b, p,m} with b ≥ 1, it is
easy to see that any triangulation T of Σ can be embedded into a torus and extend to a triangulation so it
again follows that QT has a maximal green sequence.

5 Examples
In this section we give examples following the outline given in the previous section. We refer the reader
to the java applet by Keller if they wish to verify the examples. The applet can be found at http:
//webusers.imj-prg.fr/˜bernhard.keller/quivermutation/.

Example 1. In Figure 1 we give a delta-triangulation T1 of Σ = {1, 0, 4, ∅}. A maximal green sequence
for QT1

is given by

i1 = (10, 11, 12, 10, 7, 6, 10, 9, 8, 3, 5, 4, 3, 12, 11, 10, 1, 2, 4, 7, 5, 8, 3, 6, 9, 3, 8, 5, 7, 4, 2, 1).

We draw the corresponding triangulations at different stages of i1 in Figures 4 - 7. We do not show the
application of µC or µ−1B . We also provide a decomposition of i1 into the nonempty mutation sequences

http://webusers.imj-prg.fr/~bernhard.keller/quivermutation/
http://webusers.imj-prg.fr/~bernhard.keller/quivermutation/
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Fig. 8: A triangulation T2 of Σ2 = {2, 0, 2, ∅} (left), and the corresponding quiver QT2 (right).
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Fig. 9: A triangulation T3 of Σ = {2, 0, 3, ∅} (left), and the corresponding quiver QT3 (right).

given in Section 4. It is as follows; µsep = (10, 11, 12), µcycle = (10, 7, 6, 10, 9, 8, 3, 5, 4, 3, 11, 12, 10),
µC = (4, 7, 5, 8, 3, 6, 9, 3, 8, 5, 7, 4), and finally µB = (1, 2). Note that µcycle is composed of the three
green cycles around the punctures; one of which is (9, 8).

In Figure 3 we give a triangulation T ∗ of Σ∗ = {1, 1, 1, {3}} which extends to T . Note that the quiver
associated to T ∗ is an induced subquiver of QT1

and is obtained by taking all the vertices of QT1
except

for 10, 11, and 12. Therefore by Theorem 4.4 we have that QT∗ has a maximal green sequence.

Example 2 In Figure 8 we give a triangulation T2 of a surface Σ2 = {2, 0, 2, ∅}.

i2 = (6, 3, 4, 10, 6, 9, 7, 8, 9, 6, 10, 4, 3, 6, 5, 11, 12, 1, 2, 7, 11, 5, 12, 8, 10, 9, 8, 12, 5, 11, 7, 2, 1, 12, 11, 5).

Again, the decomposition of the sequence is provided. µP = (6, 3, 4), µcycle = (10, 6, 9, 7, 8, 9, 6, 10),
µH = (5, 11, 12), µB = (1, 2), and µC = (7, 11, 5, 12, 8, 10, 9, 8, 12, 5, 11, 7).

Example 3 In Figure 9 we give a triangulation T3 of the surface Σ3 = {2, 0, 3, ∅} that was studied in
[6]. The maximal green sequence given in this paper is shorter then the one appearing there. The sequence
given here has length 44, whereas the maximal green sequence for this quiver given in [6] has length 52.
The maximal green sequence is given by

i3 = (10, 8, 7, 9, 8, 11, 5, 12, 13, 6, 14, 15, 1, 2, 3, 4,
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Fig. 10: A triangulation T4 of Σ4 = {1, 0, 3, ∅} (left), and the corresponding quiver QT4 (right).

5, 8, 10, 7, 6, 15, 14, 9, 12, 13, 9, 14, 15, 6, 7, 10, 8, 5, 4, 3, 2, 1, 15, 14, 6, 12, 13, 5).

The sequence is decomposed into the steps from Section 4 as follows;
µsep = (10), µcycle = (8, 7, 9, 8, 11), µH = (5, 12, 13, 6, 14, 15), µB = (1, 2, 3, 4), and
µC = (5, 8, 10, 7, 6, 15, 14, 9, 12, 13, 9, 14, 15, 6, 7, 10, 8, 5). Note that in this mutation sequence µ−1sep is
empty.

Example 4. In Figure 10 we give a triangulation of Σ4 = {1, 0, 3, ∅} with a punctured monogon.

i4 = (8, 9, 11, 10, 6, 5, 3, 4, 7, 3, 5, 6, 10, 11, 9, 8, 1, 2, 5, 6, 3, 7, 4, 3, 6, 5, 2, 1, 12, 9, 10, 11).

The decomposition of i4 is as follows; µM = (8, 9, 11, 10), µcycle = (6, 5, 3, 4, 7, 3, 5, 6), µB = (1, 2),
µC = (5, 6, 3, 7, 4, 3, 6, 5), and µI = (12, 9, 10, 11).
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