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Some results on counting roots of
polynomials and the Sylvester resultant.

Michael Monagan and Baris Tuncer
Department of Mathematics, Simon Fraser University, Burnaby, B.C., V5A 1S6, CANADA.

Abstract. We present two results, the first on the distribution of the roots of a polynomial over the ring of integers
modulo n and the second on the distribution of the roots of the Sylvester resultant of two multivariate polynomials.
The second result has application to polynomial GCD computation and solving polynomial diophantine equations.

Résumé. Nous présentons deux résultats: le premier concerne la distribution des racines d’un polynôme sur l’anneau
des entiers modulo n et le deuxième concerne la distribution des racines du déterminant de Sylvester de deux
polynômes multivariés. Ceci est utile pour le calcul de PGCD et la résolution des équations diophantiennes poly-
nomiales.

Keywords. roots of polynomials, finite fields, the Sylvester resultant, unlucky evaluation points

1 Introduction
Let Fq denote the finite field with q elements and let Zn denote the ring of integers modulo n. Let E[X]
denote the expected value of a random variable X and let Var[X] denote the variance of X .

Let f be a polynomial in Fq[x] of a given degree d > 0 and let X be the number of distinct roots of f .
Schmidt proves in Ch. 4 of [9] that E[X] = 1 and for d > 1, Var[X] = 1 − 1/q. This result has been
generalized by Knopfmacher and Knopfmacher in [5] who count distinct irreducible factors of a given
degree of f . The two main results presented in this paper are Theorems 1 and 2 below.

Theorem 1 Let φ(n) = |{ 1≤ i≤n : gcd(i, n) = 1}| denote Euler’s totient function. Let X be a random
variable which counts the number of distinct roots of a monic polynomial in Zn[x] of degree m > 0. Then

(a) E[X] = 1 and
(b) if m = 1 then Var[X] = 0, otherwise Var[X] =

∑
d|n,d 6=n

d
nφ(nd ) =

∑
d|n

d−1
n φ(nd ).

In particular, if n = pk where p is a prime number and k ≥ 1, Var[X] = k(1− 1/p).

Theorem 2 Let f, g be polynomials in Fq[x, y] of the form f = cnx
n +

∑n−1
i=0

∑n−i
j=0 cijx

iyj and g =

dmx
m +

∑m−1
i=0

∑m−i
j=0 dijx

iyj with cn 6= 0 and dm 6= 0, thus of total degree n and m respectively. Let
X be a random variable that counts the number of γ ∈ Fq such that gcd(f(x, γ), g(x, γ)) 6= 1. If n > 0
and m > 0 then

(a) E[X] = 1 and
(b) Var[X] = 1− 1/q.
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Theorems 1 and 2 were found by computation. We give some details on our computations later in
the paper. To prove the results we use a generalization of the Inclusion Exclusion principle (Proposition
1) which allows us to determine E[X] and Var[X] without having explicit formulas for Prob[X = k].
Before proving these results we connect Theorem 2 with the Sylvester resultant and with polynomial GCD
computation and with solving polynomial diophantine equations.

Let F be a field and let A and B be polynomials in F [x0, x1, . . . , xn] with positive degree in x0. The
Sylvester resultant of A and B in x0, denoted resx0

(A,B), is the determinant of Sylvester’s matrix. We
gather the following facts about it into Lemma 1 below. Proofs may be found in Ch. 3 of [3]. Note, in the
Lemma degA denotes the total degree of A.

Lemma 1 Let R = resx0
(A,B)

(i) R is a polynomial in F [x1, . . . , xn] (x0 is eliminated),
(ii) degR ≤ degA degB (Bezout bound).

For A and B monic in x0 and α ∈ Fn

(iii) gcd(A(x0, α), B(x0, α)) 6= 1 ⇐⇒ resx0(A(x0, α), B(x0, α)) = 0 and
(iv) resx0

(A(x0, α), B(x0, α)) = R(α).

Properties (iii) and (iv) connect the roots of the resultant with Theorem 2 and 3.

1.1 Polynomial GCD computation and polynomial diophantine equations.
Our motivation comes from the following problems in computer algebra. Let A,B be polynomials in
Z[x0, x1, . . . , xn] and G = gcd(A,B). Thus A = GÂ and B = GB̂ for some polynomials Â and B̂
called the cofactors of A and B. Modular GCD algorithms compute G modulo a sequence of primes
p1, p2, p3, . . . and recover the integer coefficients of G using Chinese remaindering. The fastest algo-
rithms for computing G modulo a prime p interpolate G from univariate images. Maple, Magma and
Mathematica all currently use Zippel’s algorithm (see [11, 4]). Let us write

A =

k∑
i=0

aix
i
0, B =

l∑
i=0

bix
i
0, and G =

m∑
i=0

cix
i
0

where the coefficients ai, bi, ci ∈ Fp[x1, . . . , xn]. Zippel’s algorithm picks points αi ∈ Fnp , computes
monic univariate images of G

gi = gcd(A(x0, αi), B(x0, αi)),

scales them (details omitted), then interpolates the coefficients ci(x1, . . . , xn) of G from the coefficients
of these (scaled) images.

What if gcd(Â(x0, αj), B̂(x0, αj)) 6= 1 for some j? For example, if Â = x20 + x2 and B̂ = x20 + x2 +

(x1−1) then gcd(Â, B̂) = 1 but gcd(Â(x0, 1, β), B̂(x0, 1, β)) 6= 1 for all β ∈ Fp. The evaluation points
(1, β) are said to be unlucky. We cannot use the images gcd(A(x0, 1, β), B(x0, 1, β)) to interpolate G.
The same issue of unlucky evaluation points arises in our current work in [6] where, given polynomials
a, b, c ∈ Z[x0, x1, . . . , xn] with gcd(a, b) = 1 we want to solve the diophantine equation σa+ τb = c for
σ and τ in Z[x0, x1, . . . , xn] by interpolating σ and τ modulo a prime p from univariate images.

What is the maximum number of unlucky evaluation points that can occur? And what is the expected
number of unlucky evaluation points? We answer the first question for A and B monic in x0. Lemma 1
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implies αj is unlucky if and only ifR(αj) = 0 whereR = resx0
(Â, B̂) ∈ Fp[x1, . . . , xn]. If αj is chosen

at random from Fnp then applying the Schwarz-Zippel lemma (see [10]) we have

Prob[R(αj) = 0 ] ≤ degR

p
.

Applying Lemma 1(ii) we have degR ≤ deg Âdeg B̂ ≤ degA degB. So if the algorithm needs, say, t
images to interpolate G modulo p, then we can avoid unlucky evaluation points with high probability if
we pick p� tdegA degB.

But this is an upper bound – a worst case bound for the GCD algorithm. Researchers in computer
algebra have observed that unlucky evaluation points are rare in practice and that we “never see them”
when testing algorithms on random inputs. Theorems 2 and 3 give first results on the distribution of
unlucky evaluation points. In particular, for coprime Â and B̂ of positive degree, Theorem 3 (page 11)
implies Prob[αj is unlucky ] < 1/p.

2 Results and Proofs
Given a set U and the finite collection of sets Γ = {Ai, i = 0, . . . , n − 1} where each Ai ⊆ U , let us
define C0 = U , Cn+1 := ∅ and, for 1 ≤ k ≤ n,

Ck :=
⋃

i1<···<ik

(Ai1 ∩Ai2 · · · ∩Aik).

Then for 1 ≤ k ≤ n, Ck is the union of all possible intersections of the k−subsets of the collection Γ .
In particular C1 = A0 ∪ A1 ∪ · · · ∪ An−1 and Cn = A0 ∩ A1 ∩ · · · ∩ An−1. Let Bk := Ck − Ck+1 for
0 ≤ k ≤ n. Observe that Ck ⊇ Ck+1, so |Bk| = |Ck| − |Ck+1|. Let us also define

bk := |Bk| and tk :=
∑

i1<···<ik

|Ai1 ∩Ai2 · · · ∩Aik |.

We have t1 =
∑n−1
i=0 |Ai| and t2 =

∑
0≤i<j<n |Ai∩Aj |.We also have bn = tn and bn−1 = tn−1−

(
n
1

)
bn.

Now A0 ∩A1 ∩ · · · ∩An−1 is a subset of
(
n
n−2
)

=
(
n
2

)
sets of the form Ai1 ∩Ai2 ∩ · · · ∩Ain−2 and each

(n−1)-sectionAi1∩Ai2∩· · ·∩Ain−1 is a subset of
(
n−1
n−2
)

=
(
n−1
1

)
sets of the formAi1∩Ai2∩· · ·∩Ain−2

with i1 < i2 < · · · < in−2. Therefore bn−2 = tn−2 −
(
n−1
1

)
bn−1 −

(
n
2

)
bn.

Similarly, since each (n − k + i)-section is a subset of
(
n−k+i

i

)
intersections of (n − k) sets for

i = 1, . . . , k, we have the recursive formula

bn−k = tn−k −
k∑
i=1

(
n− k + i

i

)
bn−k+i for k = 0, . . . , n. (1)

Lemma 2 Following the notation introduced above

bn−k =

k∑
i=0

(−1)i
(
n− k + i

i

)
tn−k+i for k = 0, . . . , n. (2)
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Proof: We will prove the claim by strong induction on k. For k = 0 we have bn = tn. Now assume that
the claim is true for any integer i ≤ k in place of k.

By the recursive formula (1) we have

bn−(k+1) = tn−(k+1) −
(
n−k
1

)
bn−k −

(
n−k+1

2

)
bn−k+1 − · · · −

(
n
k+1

)
bn.

On the other hand by induction we have the following equations

bn = tn
bn−1 = tn−1 −

(
n
1

)
tn

bn−2 = tn−2 −
(
n−1
1

)
tn−1 +

(
n
2

)
tn

...
bn−k = tn−k −

(
n−k+1

1

)
tn−k+1 + · · ·+ (−1)k

(
n
k

)
tn.

It follows that

−
(
n
k+1

)
bn = −

(
n
k+1

)
tn

−
(
n−1
k

)
bn−1 = −

(
n−1
k

)
tn−1 +

(
n−1
k

)(
n
1

)
tn

−
(
n−2
k−1
)
bn−2 = −

(
n−2
k−1
)
tn−2 +

(
n−2
k−1
)(
n−1
1

)
tn−1 −

(
n−2
k−1
)(
n
2

)
tn

...
−
(
n−k
1

)
bn−k = −

(
n−k
1

)
tn−k +

(
n−k
1

)(
n−k+1

1

)
tn−k+1 − · · · (−1)k+1

(
n−k
1

)(
n
k

)
tn.

If we sum all these equalities, then on the right hand side the coefficient of tn is

c(tn) =
∑k
i=0(−1)k−i+1

(
n−k+i
i+1

)(
n
k−i
)
. For d ≤ k one has(

n−d
k−d+1

)(
n
d

)
= (n−d)!

(n−k−1)!(k−d+1)!
n!

(n−d)!d! = n!
(k+1)!(n−k−1)!

(k+1)!
d!(k−d+1)! =

(
n
k+1

)(
k+1
d

)
.

Then c(tn) =
(
n
k+1

)∑k
i=0(−1)k−i+1

(
k+1
k−i
)
= −

(
n
k+1

)
(−1)k = (−1)k+1

(
n
k+1

)
,

where the last equality follows from the fact that(
k+1
0

)
−
(
k+1
1

)
+
(
k+1
2

)
+ · · ·+ (−1)k

(
k+1
k

)
= −(−1)k+1 = (−1)k .

Similarly for s = 1, . . . , k we have c(tn−s) =
∑k−s
i=0 (−1)k−s−i+1

(
n−s−k+i

i+1

)(
n

k−s−i
)

=
(
n−s
k−s+1

)∑k−s
i=0 (−1)k−s−i+1

(
n

k−s−i
)

= (−1)k−s+1
(
n−s
k−s+1

)
.

Now plugging s = k − i in the formula above we get

bn−(k+1) =
∑k
i=0(−1)i+1

(
n−k+i
i+1

)
tn−k+i. 2

Proposition 1 Following the same notation one has for 1 ≤ k ≤ n,∑n
i=0 i

kbi =
∑k
i=1 i

k
[∑k

j=i(−1)j−i
(
j
j−i
)
tj

]
, In particular:
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(a)
∑n
i=0 ibi = t1 =

∑n−1
i=0 |Ai| (Inclusion Exclusion Principle) and

(b)
∑n
i=0 i

2bi = t1 + 2t2 =
∑n−1
i=0 |Ai|+ 2

∑
i<j |Ai ∩Aj |.

Proof: According to Lemma 2 we have

bn = tn
bn−1 = tn−1 −

(
n
1

)
tn

bn−2 = tn−2 −
(
n−1
1

)
tn−1 +

(
n
2

)
tn

...
b2 = t2 −

(
3
1

)
t3 +

(
4
2

)
t4 + · · ·+ (−1)n−3

(
n−1
n−3
)
tn−1 + (−1)n−2

(
n
n−2
)
tn

b1 = t1 −
(
2
1

)
t2 +

(
3
2

)
t3 +

(
4
3

)
t4 + · · ·+ (−1)n−2

(
n−1
n−2
)
tn−1 + (−1)n−1

(
n
n−1
)
tn

If we sum
∑n
i=1 i

kbi, then for 1 ≤ s ≤ n, the coefficient of ts on the right hand side is

c(ts) =
∑s
i=1 i

k
(
s
s−i
)
(−1)s−i.

We claim that c(ts) = 0 for k<s≤n. We prove this by strong induction on k. For k=1 we have

c(ts) =
∑s
i=1 i

(
s
s−i
)
(−1)s−i =

∑s
i=1 i

(
s
i

)
(−1)s−i =

∑s
i=1 s

(
s−1
i−1
)
(−1)s−i

Since s ≥ 2, by substituting m = s− 1 ≥ 1 and j = i− 1

c(ts) = s
∑m
j=0

(
m
j

)
(−1)m−j = s(1− 1)m = 0.

Now assume
∑s
i=1 i

l
(
s
s−i
)
(−1)s−i = 0 for any 1 ≤ l ≤ k and l + 1 ≤ s ≤ n. Then

c(ts) =
∑s
i=1 i

k+1
(
s
s−i
)
(−1)s−i =

∑s
i=1 i

k+1
(
s
i

)
(−1)s−i =

∑s
i=1 si

k
(
s−1
i−1
)
(−1)s−i.

Substituting m = s− 1 ≥ l ≥ 1 and j = i− 1 we obtain

c(ts) = s
∑m
j=0(j + 1)k

(
m
j

)
(−1)m−j = s

∑m
j=0

∑k
l=0

(
k
l

)
jl
(
m
j

)
(−1)m−j

= s
∑k
l=0

(
k
l

)∑m
j=0 j

l
(
m
j

)
(−1)m−j .

Since m = s− 1 ≥ l, we have m ≥ l + 1 and by induction hypothesis each summand∑m
j=0 j

l
(
m
j

)
(−1)m−j =

∑m
j=1 j

l
(
m
m−j

)
(−1)m−j = 0.

Hence c(ts) = 0. On the other hand for 1 ≤ s ≤ k the coefficient of each is on the right hand side
is
∑k
j=i(−1)j−i

(
j
j−i
)
tj . Hence we have the result. In particular, for k = 2 the non-zero terms on the

right-hand-side are t1 −
(
2
1

)
t2 + 22t2 = t1 + 2t2. 2
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Theorem 1 Let φ(n) = |{ 1≤ i≤n : gcd(i, n) = 1}| denote Euler’s totient function. Let X be a random
variable which counts the number of distinct roots of a monic polynomial in Zn[x] of degree m > 0. Then

(a) E[X] = 1 and

(b) if m = 1 then Var[X] = 0, otherwise Var[X] =
∑
d|n,d 6=n

d
nφ(nd ) =

∑
d|n

d−1
n φ(nd ).

In particular, if n = pk where p is a prime number and k ≥ 1, Var[X] = k(1− 1/p).

Remark 1. We found this result by direct computation and using the Online Encylopedia of Integer
Sequences (OEIS) see [7]. For polynomials of degree 2,3,4,5 in Zn[x] we computed E[X] and Var[X] for
n = 2, 3, 4, . . . , 20 using Maple and found that E[X] = 1 in all cases. Values for the variance are given
in the table below.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Var[X] 1

2
2
3 1 4

5
3
2

6
7

3
2

4
3

17
10

10
11

7
3

12
13

25
14 2 2

a(n) 1 2 4 4 9 6 12 12 17 10 28 12 25 30 32

When we first computed Var[X] we did not recognize the numbers. Writing Var[X] = a(n)/n we
computed the sequence for a(n) (see the table) and looked it up in the OEIS. We found it is sequence
A006579 and that a(n) =

∑n−1
k=1 gcd(n, k). The OEIS also has the formula a(n) =

∑
d|n(d− 1)φ(nd ).

Proof: Let Ai be the set of all monic univariate polynomials of degree m > 0 which have a root at
αi ∈ Zn. Then since x−αi is monic, for any f ∈ Ai we have f = (x−αi)q for a unique q ∈ Zn[x] and
we have nm−1 choices for such an f . Hence |Ai| = nm−1.

Let xi := Prob[X = i]. This is the probability that f has exactly i distinct roots, i.e. f ∈ Bi in the
notation introduced in section 1 considering the finite collection of sets Γ = {Ai, i = 0, . . . , n − 1}.
Since we have nm−1 choices for a monic polynomial of degree m in Zn[x] we have xi = bi

nm−1 . Then by
Proposition 1

E[X] =

n∑
i=0

ixi =

n∑
i=0

i
bi
nm

=

∑n
i=0 ibi
nm

=

∑n−1
i=0 |Ai|
nm

=

∑n−1
i=0 n

m−1

nm
=
nnm−1

nm
= 1

To prove (b), if m = 1 then f = x − α for some α ∈ Zn and hence X = 1 and Var[X] = 0. For
m > 1 and α ∈ Z∗n, our first aim is to find |A0 ∩Aα|. Let f ∈ A0 ∩Aα. It may not be the case that f =
x(x− α)q for a unique q ∈ Zn[x], since Zn[x] is not a unique factorization domain in general. However
f = xq1 = (x−α)q2 for unique q1, q2 ∈ Zn[x]. It follows that αq2(0) = 0 mod n. If gcd(α, n) = d then
gcd(αd ,

n
d ) = 1 and hence q2(0) = 0 mod n

d . The general form of q2 = xm−1 + am−2x
m−2 + · · ·+ a0

where ai ∈ Zn for i = 0, . . . ,m − 2. Since q2(0) = a0 mod n
d , there are d choices for a0 and hence

there are dnm−2 choices for q2. Therefore |A0 ∩Aα| = dnm−2.
For a given pair (γ, β) with β > γ, to compute |Aγ ∩ Aβ |, define α := β − γ and consider A0 ∩ Aα.

If f ∈ Aγ ∩ Aβ , then we have f(x) = (x − γ)q3(x) = (x − β)q4(x) for unique q3, q4 ∈ Zn[x]. By
the coordinate translation x 7→ x + γ we have f(x + γ) ∈ A0 ∩ Aα, since f(x + γ) = xq3(x + γ) =
(x− α)q4(x+ γ) where f(x+ γ), q3(x+ γ), q4(x+ γ) are monic and with the same degree before the
translation. This correspondence is bijective and it follows that |Aγ ∩Aβ | = |A0 ∩Aα| = dnm−2.

Let d = gcd(α, n). There are k = φ(nd ) elements β1, . . . , βk in Zn
d

such that gcd(βj ,
n
d ) = 1. If we

define αj := dβj ∈ Zn then gcd(αj , n) = d. For, if s = gcd(αj , n) and d|s then s|αj ⇒ s|dβj ⇒ s
d |βj
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and s
d |
n
d ⇒

s
d |gcd(βj ,

n
d ) ⇒ s

d |1 ⇒ s = d. Now, for each j consider the n − αj pairs of the form
(i, i+ αj) where i = 0, . . . , n− αj − 1. We have |Ai ∩Ai+αj

| = |A0 ∩Aαj
| and

∑
β>γ,d=gcd(β−γ,n)

|Aγ ∩Aβ | =
k∑
j=1

(n− αj)|A0 ∩Aαj | =
k∑
j=1

(n− αj)dnm−2 = dnm−2
k∑
j=1

n− αj

where d = gcd(αj , n) and k = φ(nd ). Since gcd(n, αj) = d ⇐⇒ gcd(n, n − αj) = d we have∑k
j=1 n− αj =

∑k
j=1 αj . Then

2

k∑
j=1

αj =

k∑
j=1

αj +

k∑
j=1

n− αj =

k∑
j=1

n = kn = φ(
n

d
)n =⇒

k∑
j=1

αj =
n

2
φ(
n

d
).

It follows that ∑
β>γ,d=gcd(β−γ,n)

|Aγ ∩Aβ | = dnm−2
k∑
j=1

n− αj = dnm−2
k∑
j=1

αj =
n

2
φ(
n

d
)dnm−2.

Then by Proposition 1 it follows that

Var[X] = E[X2]− E[X]2 = −12 + E[X2]

= −1 +

n∑
i=0

i2xi = −1 +

n∑
i=0

i2
bi
nm

= −1 +

∑n
i=0 i

2bi
nm

= −1 +

∑n−1
i=0 |Ai|+ 2

∑
i<j |Ai ∩Aj |

nm

= −1 +
nnm−1

nm
+

2
∑
d|nd 6=n

n
2φ(nd )dnm−2

nm

= 2
∑

d|nd6=n

n

2
φ(
n

d
)dn−2 =

∑
d|nd 6=n

d

n
φ(
n

d
).

Also, since by Gauss’ Lemma
∑
d|n φ(nd ) = n we have∑

d|n

d− 1

n
φ(
n

d
) =

∑
d|n

d

n
φ(
n

d
)− 1

n

∑
d|n

φ(
n

d
)

= φ(1) +
∑

d|n,d6=n

d

n
φ(
n

d
)− 1

n
n =

∑
d|n,d6=n

d

n
φ(
n

d
).

To prove the last claim, let n = pk where p is a prime number and k ≥ 1. Then

∑
d|n,d 6=n

d

n
φ(
n

d
) =

k−1∑
s=0

ps

pk
φ(
pk

ps
) =

k−1∑
s=0

ps−kpk−s−1(p− 1) = k(1− 1/p).

2
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Theorem 2 Let f, g be polynomials in Fq[x, y] of the form f = cnx
n +

∑n−1
i=0

∑n−i
j=0 cijx

iyj and g =

dmx
m +

∑m−1
i=0

∑m−i
j=0 dijx

iyj with cn 6= 0 and dm 6= 0, thus of total degree n and m respectively. Let
X be a random variable that counts the number of γ ∈ Fq such that gcd(f(x, γ), g(x, γ)) 6= 1. If n > 0
and m > 0 then

(a) E[X] = 1 and
(b) Var[X] = 1− 1/q.

Remark 2. We found this result by computation. For quadratic polynomials f, g of the form f =
x2+(a1y+a2)x+a3y

2+a4y+a5 and g = x2+(b1y+b2)x+b3y
2+b4y+b5 over finite fields of size q =

2, 3, 4, 5, 8, 9, 11 we generated all q10 pairs and computed X = |{α ∈ Fq : gcd(f(x, α), g(x, α)) 6= 1}| .
Magma code for F4 is given in Appendix A. We repeated this for cubic polynomials and some higher
degree bivariate polynomials for q = 2, 3 to verify that E[X] = 1 and Var[X] = 1 − 1/q holds more
generally. For yet higher degree polynomials we used random samples. That E[X] = 1 independent of
the degrees of f and g was a surprise to us. We had expected a logarithmic dependence on the degrees of
f and g.

Proof: Without loss of generality we may assume f and g are monic in x because gcd(f(x, γ), g(x, γ)) =
1 ⇐⇒ gcd(c−1n f(x, γ), d−1m g(x, γ)) = 1. For γ ∈ Fq, let us define Aγ as the set of polynomial pairs
(f, g) ∈ Fq[x, y]2 where f, g are monic in x with total degrees, deg(f) = n > 0 and deg(g) = m > 0
such that gcd(f(x, γ), g(x, γ)) 6= 1. Our first aim is to compute |A0|.

Let (f, g) ∈ A0. Since f and g are monic in x, f(x, 0), g(x, 0) are monic polynomials of degree
n and m respectively in Fq[x]. We have finitely many choices, say s, for non-relatively prime monic
polynomial pairs (hi(x), li(x)) with deg(hi) = n and deg(li) = m with i = 1, . . . , s in Fq[x]2. Let
(f(x, 0), g(x, 0)) = (hi(x), li(x)) for some fixed i where 1 ≤ i ≤ s. In fact s = (qnqm)/q = qn+m−1,
since there are qnqm possible choices for monic polynomial pairs (h, l) in Fq[x] with deg(h) = n,
deg(l) = m and the probability of a given monic pair is non-relatively prime over Fq[x] is 1/q (see [8, 2]
and also [1] for an accessible proof).

Let f(x, y) = xn + cn−1(y)xn−1 + · · · + c1(y)x + c0(y) where cd(y) ∈ Fq[y] of total degree
deg(cn−d(y)) ≤ d and let cn−d(y) = a

(n−d)
d yd + · · ·+ a

(n−d)
0 where a(n−d)i ∈ Fq .

Let hi(x) = xn + α
(i)
n−1x

n−1 + · · ·+ α
(i)
0 with α(i)

v ∈ Fq for 0 ≤ v ≤ n− 1. Then for 1 ≤ d ≤ n, we
have cn−d(0) = a

(n−d)
0 = α

(i)
n−d. It follows that there are qd choices for such cn−d(y) and hence there

are q1q2 · · · qn = qn(n+1)/2 choices for such f(x, y). Similarly there are qm(m+1)/2 choices for g(x, y).
Let us denote these numbers as D = qn(n+1)/2 and R = qm(m+1)/2. Since we have s choices for i,
|A0| = sDR.

On the other hand for a given γ ∈ Fq if (f(x, y), g(x, y)) ∈ A0 then (f(x, y − γ), g(x, y − γ)) ∈ Aγ ,
since f(x, y − γ) is again a bivariate polynomial which is a monic polynomial in x of total degree n
and g(x, y − γ) is again a bivariate polynomial which is monic polynomial in x of total degree m. This
correspondence (coordinate transformation) is bijective. Hence for any γ ∈ Fq, one has |Aγ | = sDR.

For a general polynomial f(x, y) ∈ Fq[x, y] which is monic in x and of total degree n > 0, one has
q2q3 · · · qn+1 = qnD choices. Similarly for a general polynomial g(x, y) ∈ Fq[x, y] which is monic in x
and of total degree m > 0, one has q2q3 · · · qm+1 = qmR choices and therefore there are qn+mDR pairs
(f, g) which are monic in x with total degrees deg(f) = n and deg(g) = m.

Let xi := Prob[X = i]. This is the probability that gcd(f(x, γ), g(x, γ)) 6= 1 for exactly i different
γ’s in Fq, i.e. the probability that (f, g) ∈ Bi in the notation introduced in section 1 considering the finite
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collection of sets Γ = {Aγ , γ ∈ Fq}. Hence xi = bi
qn+mDR . Then by Proposition 1

E[X] =

q∑
i=0

ixi =

q∑
i=0

i
bi

qn+mDR
=

∑q
i=0 ibi

qn+mDR

=

∑q−1
i=0 |Ai|

qn+mDR
=

∑q−1
i=0 sDR

qn+mDR
=

qsDR

qn+mDR
=
qqn+m−1

qn+m
= 1.

To determine the variance of X , our proof assumes a set ordering of the elements of Fq. For this purpose
let us fix a generator α of F∗q and use the ordering 0 < 1 < α < α2 < · · · < αq−2.

For (γ, θ) ∈ F2
q with γ < θ, let us defineAγ,θ as the set of bivariate polynomial pairs (f, g) with f, g are

monic in x with total degrees, deg(f) = n > 0 and deg(g) = m > 0 such that gcd(f(x, γ), g(x, γ)) 6= 1
and gcd(f(x, θ), g(x, θ)) 6= 1. Our first aim is to compute |A0,1|.

Let f, g ∈ A0,1. Since f and g are monic in x, f(x, 0), f(x, 1) are monic polynomials of degree
n and g(x, 0), g(x, 1) are monic polynomials of degree m in Fq[x]. We have finitely many choices for
non-relatively prime monic polynomial pairs (hi(x), li(x)) with deg(hi) = n and deg(li) = m with
i = 1, . . . , s in Fq[x]2.

Let (f(x, 0), g(x, 0)) = (hi(x), li(x)) and (f(x, 1), g(x, 1)) = (hj(x), lj(x)) for some fixed pair (i, j)
where 1 ≤ i, j ≤ s.

Let f(x, y) = xn + cn−1(y)xn−1 + · · · + c1(y)x + c0(y) where cd(y) ∈ Fq[y] of total degree
deg(cn−d(y)) ≤ d and let cn−d(y) = a

(n−d)
d yd + · · ·+ a

(n−d)
0 where a(n−d)i ∈ Fq .

Let hi(x) = xn+α
(i)
n−1x

n−1+ · · ·+α(i)
0 and hj(x) = xn+β

(j)
n−1x

n−1+ · · ·+β(j)
0 with α(i)

v , β
(j)
w ∈ Fq

for 0 ≤ v, w ≤ n− 1. Then for 1 ≤ d ≤ n, we have

cn−d(0) = a
(n−d)
0 = α

(i)
n−d and cn−d(1) = a

(n−d)
d + · · ·+ a

(n−d)
1 + a

(n−d)
0 = β

(j)
n−d.

It follows that there are qd−1 choices for such cn−d(y) and hence there are q0q1 · · · qn−1 = qn(n−1)/2

choices for such f(x, y). Similarly there are qm(m−1)/2 choices for g(x, y). Let us call these numbers
as D1 = qn(n−1)/2 and R1 = qm(m−1)/2. Since we have s2 choices for (i, j) (i and j are need not be
different, |A0,1| = s2D1R1.

On the other hand if (f(x, y), g(x, y)) ∈ A0,1 then for γ, θ ∈ Fq with γ < θ, (f(x, y−γθ−γ ), g(x, y−γθ−γ )) ∈
Aγ,θ, since f(x, y−γθ−γ ) is again a monic polynomial in x of total degree n and g(x, y−γθ−γ ) is again a monic
polynomial in x of total degree m. This correspondence (coordinate transformation) is bijective and
preserves relative primeness. Hence for a given γ, θ ∈ Fq with γ < θ, one has |Aγ,θ| = s2D1R1.

For a general bivariate polynomial f(x, y) ∈ Fq[x, y] which is monic in x and of total degree n, one has
q2q3 · · · qn+1 = q2nD1 choices. Similarly for a general bivariate polynomial g(x, y) ∈ Fq[x, y] which is
monic in x and of total degree m, one has q2q3 · · · qm+1 = q2mR1 choices and therefore the number of
bivariate polynomial pairs in (f, g) which are monic in x with total degrees, deg(f) = n and deg(g) = m
is q2n+2mD1R1. Then with this notation we have xi = bi

q2n+2mD1R1
.

Since we have
(
q
2

)
choices for (γ, θ) with γ < θ, |Aγ,θ| = s2D1R1 for all (γ, θ) with γ < θ and

E[X] = 1, by Proposition 1 we have
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Var[X] = E[X2]− E[X]2 = E[X2]− 12 = −1 +

q∑
i=0

i2xi

= −1 +

q∑
i=0

i2
bi

q2n+2mD1R1
= −1 +

∑q
i=0 i

2bi
q2n+2mD1R1

= −1 +

∑q−1
i=0 |Ai|+ 2

∑
i<j |Ai ∩Aj |

q2n+2mD1R1
= −1 +

∑q−1
i=0 |Ai|

q2n+2mD1R1
+

2
∑
i<j s

2D1R1

q2n+2mD1R1

= −1 +

∑q
i=0 ibi

q2n+2mD1R1
+

2
∑
i<j s

2D1R1

q2n+2mD1R1
= −1 +

q∑
i=0

i
bi

q2n+2mD1R1
+

2
∑
i<j s

2D1R1

q2n+2mD1R1

= −1 +

q∑
i=0

ixi +
2
∑
i<j s

2D1R1

q2n+2mD1R1
= −1 + E[X] +

2
∑
i<j s

2D1R1

q2n+2mD1R1

= −1 + 1 +
2
∑
i<j s

2D1R1

q2n+2mD1R1
=

2
(
q
2

)
s2D1R1

q2nq2mD1R1
=

q(q − 1)q2n+2m−2

q2n+2m

=
q(q − 1)

q2
= 1− 1

q
. 2

Theorem 3 Let f, g ∈ Fq[x1, x2, . . . , xn] be of the form f = clx
l
1 +

∑l−1
i=0 cl−i(x2, . . . , xn)xi and

g = dmx
m
1 +

∑m−1
i=0 dm−i(x2, . . . , xn)xi where cl 6= 0, dm 6= 0, deg cl−i ≤ l−i, and deg dm−i ≤ m−i,

thus f and g have total degree l andm respectively. LetX be a random variable which counts the number
of γ = (γ2, . . . , γn) ∈ Fn−1q such that gcd(f(x1, γ2, . . . , γn), g(x1, γ2, . . . , γn)) 6= 1.
If n > 1, l > 0 and m > 0 then

(a) E[X] = qn−2 and
(b) Var[X] = qn−2(1− 1/q).

It follows from (a) that if γ is chosen at random from Fn−1q then

Prob[ gcd(f(x1, γ2, . . . , γn), g(x2, γ2, . . . , γn) 6= 1 ] =
qn−2

qn−1
=

1

q
.

Proof: A version of the paper with the proof which runs about 3 pages may be found at
http://www.cecm.sfu.ca/~mmonagan/papers/FPSAC16.pdf

2.1 A comparison with the binomial distribution.
Let Y be a random variable from a binomial distribution B(n, p) with n trials and probability p. So
0 ≤ Y ≤ n, Prob[Y = k] =

(
n
k

)
pk(1−p)n−k, E[Y ] = np and Var[Y ] = np(1−p). We noticed that the

mean and variance of X in Theorem 2 is the same as the mean and variance of the binomial distribution
B(n, p) with n = q trials and probability p = 1/q. In Table 1 below we compare the two distributions for

f = x2 + (a1y + a2)x+ (a3y
2 + a4y + a5) and

g = x2 + (b1y + b2)x+ (b3y
2 + b4y + b5)
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in Fq[x, y] with q = 7. Note that there are 710 pairs for f, g. In Table 1 Fk is the number of pairs
for which gcd(f(x, α), g(x, α)) 6= 1 for exactly k values for α ∈ F7. We computed Fk by computing
this gcd for all distinct pairs using Maple. The values for Bk come from B(7, 1/7). They are given by
Bk = 710Prob[Y = k].

k 0 1 2 3 4 5 6 7
Fk 96606636 110666892 56053746 17287200 1728720 0 0 132055
Bk 96018048 112021056 56010528 15558480 2593080 259308 14406 343

Table 1: Data for quadratic (f, g) in F7[x, y]

The two zeros F5 and F6 can be explained as follows. Let R(y) be the Sylvester resultant of f and g.
Then applying Lemma 1 we have R(α) = 0 ⇐⇒ gcd(f(x, α), g(x, α)) 6= 1 for α ∈ Fq. For our
quadratic polynomials f and g, Lemma 1(ii) implies degR ≤ deg f deg g = 4. Hence R(y) can have at
most 4 distinct roots unless f and g are not coprime in F7[x, y] in which case R(y) = 0 and it has 7 roots.
Therefore F5 = 0, F6 = 0 and F7 = 132055 is the number pairs f, g which are not coprime in F7[x, y].
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Appendix A
Below is Magma code for quadratic polynomials over F4. For each pair of quadratic polynomials F,G ∈
F4[x, y] we compute X = |{α ∈ F4 : gcd(F (x, α), G(x, α) 6= 1}|. The code counts Ak the number of
pairs (F,G) with k = X and computes E[X] and Var[X].

q := 4;
Fq<z> := FiniteField(q);
P<x,y> := PolynomialRing(Fq,2);
N := 0; // counter
M := 0; // mean
V := 0; // variance
A := AssociativeArray(); // frequencies

for X in [0..q] do A[X] := 0; end for;

for a in Fq do for b in Fq do
for c in Fq do for d in Fq do for e in Fq do
for r in Fq do for s in Fq do
for t in Fq do for u in Fq do for v in Fq do

if not ( [a,b,c,d,e] gt [r,s,t,u,v] ) then
X := 0;
for y in Fq do

F := x^2+(a*y+b)*x+(c*y^2+d*y+e);
G := x^2+(r*y+s)*x+(t*y^2+u*y+v);
if Gcd(F,G) ne 1 then X := X+1; end if;

end for;
if [a,b,c,d,e] eq [r,s,t,u,v] then

N := N+1; A[X] := A[X]+1;
M := M+X; V := V+(X-1)*(X-1);

else
N := N+2; A[X] := A[X]+2;
M := M+2*X; V := V+2*(X-1)*(X-1);

end if;
end if;

end for; end for; end for; end for; end for;
end for; end for; end for; end for; end for;

"field size", q;
"N", N, q^10;
"frequencies", A[0],A[1],A[2],A[3],A[4];
"mean", 1.0*M/q^10;
"variance", 1.0*V/q^10;
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