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The twist for positroids

Greg Muller1† and David E Speyer1‡

1Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043 USA

Abstract. There are two reasonable ways to put a cluster structure on a positroid variety. In one, the initial seed is a
set of Plücker coordinates. In the other, the initial seed consists of certain monomials in the edge weights of a plabic
graph. We will describe an automorphism of the positroid variety, the twist, which takes one to the other. For the big
positroid cell, this was already done by Marsh and Scott; we generalize their results to all positroid varieties. This
also provides an inversion of the boundary measurement map which is more general than Talaska’s, in that it works
for all reduced plabic graphs rather than just Le-diagrams. This is the analogue for positroid varieties of the twist map
of Berenstein, Fomin and Zelevinsky for double Bruhat cells. Our construction involved the combinatorics of dimer
configurations on bipartite planar graphs.

Résumé. Deux méthodes sont bien connues pour munir d’une structure amassée une variété positroı̈de. La première
utilise comme graine initiale un ensemble de coordonnées plückeriennes. Dans la seconde, la graine initiale est com-
posée de certains monômes dans les poids des arêtes d’un graphe planaire bicolore. Nous décrivons un automorphisme
de la variété positroı̈de, le torsion, qui prend l’une à l’autre. Pour la grosse cellule positroı̈de, cela a déjà été fait par
Marsh et Scott; nous généralisons leurs résultats à toute variété positroı̈de. Notre automorphisme fournit aussi une
application inverse de la fonction de mesure des bords, plus générale que celle de Talaska : la nôtre s’applique a tous
les graphes planaires bicolores réduits, plutôt que seulement les Le-diagrammes. Notre construction est l’analogue
pour les variétés positroı̈des de la fonction de torsion de Berenstein-Fomin-Zelevinsky pour les doubles cellules de
Bruhat. Notre approche utilise la combinatoire des configurations de dimères sur les graphes planaires bicolores.

Keywords. Positroid, planar bipartite graph, boundary measurement map, cluster algebra

1 Informal summary
The Grassmannian of k-planes in Cn admits a decomposition into open positroid varieties Π○(M), anal-
ogous to the decomposition of a semisimple Lie group into double Bruhat cells [FZ99]. Postnikov [Pos06]
showed that an appropriate choice of reduced graph G defines a boundary measurement map

(C×)Edges(G)/GaugeÐ→ Π○(M)

Among other properties, this map can be used to parametrize the ‘totally positive part’ of Π○(M).
Scott [Sco06] demonstrated that each face in the reduced graph G determines a homogeneous coordi-

nate on Π○(M). Taking all of the faces of G, we obtain a collection of coordinates which collectively
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form a ‘cluster’ in a conjectural cluster structure on Π○(M). These homogeneous coordinates collectively
define a rational coordinate chart, the face Plücker map:

Π○(M) ÐÐ→ CFaces(G)/Scaling

Despite the fact that these two maps are both defined by the same combinatorial input (a choice of reduced
graph), the relation between them has been elusive.

Moreover, the results of Postnikov and Scott are weaker than we have stated in the two proceeding para-
graphs. Postnikov only shows that the boundary measurement map exists as a rational map, which is well
defined on (R>0)Edges(G)/Gauge. Scott does not show that coordinates of the face Plücker map generate
the function field of Π○(M), or even that they are nonzero, as one would hope for rational coordinates!(i)

In fairness, at the time Postnikov and Scott were working, the algebraic structure on Π○(M) had not been
defined, so these questions would have been difficult to formulate. However, with our current knowledge,
these omissions are a major gap in our understanding.

In this paper, we relate the two maps by introducing a twist automorphism τ⃗ of each open positroid
variety. The main theorem of this paper then states that the composition

(C×)Edges(G)/GaugeÐ→ Π○(M) τ⃗Ð→ Π○(M) ÐÐ→ CFaces(G)/Scaling

is given by a monomial in each coordinate, which is defined by a distinguished matching on G. Further-
more, the composite map of tori is an isomorphism.

As a consequence, we deduce that the boundary measurement map is a well defined map from the torus
(C×)Edges(G)/Gauge to Π○(M). We also learn that the face Plücker map is well defined on an open torus,
and gives rational coordinates on Π○(M). Thus, we show that the statements of the first two paragraphs
are correct after all. Furthermore, we obtain explicit birational inverses to these maps.

This abstract explains the definitions necessary to formulate all of our results in detail, and explains
their consequences. The proofs will appear in a separate manuscript.

2 Notations
We use the following standard notations for combinatorial sets:

[n] ∶= {1,2, ..., n}

([n]
k

) ∶= {I ⊂ [n] ∣ ∣I ∣ = k}, the set of k-element subsets of [n].

We write G(k,n) for the Grassmannian of k-planes in Cn. For V a C-vector space, P(V ) is the
projective space of lines in V . We will write Gm for the nonzero complex numbers, considered as an
abelian group. For any finite set X , we write CX for the C-vector space with basis labeled by X , and
write RX and GXm similarly.

For a k × n matrix A and a ∈ [n], let Aa denote the ath column of A. Given a k-element set I ⊂ [n],
write it as I = {i1 < i2 < ⋯ < ik} and define the Ith maximal minor of A by

∆I(A) ∶= det(Ai1 ,Ai2 , ...,Aik)
that is, the determinant of the matrix with columns Ai1 ,Ai2 , ...,Aik .
(i) Since Π○(M) and CFaces(G)/Scaling have the same dimension, a coordinate of zero would imply that face Plücker map is not an

inclusion almost everywhere.
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3 Positroids and positroid varieties
The definitions in this section can all be found in Knutson, Lam and Speyer [KLS13], and are due either
to those authors or to Postnikov [Pos06].

Given a k-dimensional subspace V ⊂ Cn, the corresponding matroid is the collection of k-element
subsets(ii)

M = {I ⊂ [n] ∣ the projection Cn → CI restricts to an isomorphism V
∼Ð→ CI}

The GrassmannianG(k,n) can then be decomposed into pieces, each parametrizing those subspaces with
a fixed matroid. Unfortunately, this decomposition is incredibly poorly-behaved; its many transgressions
are explored elsewhere [Mnë88], [Stu87], [GGMS87]. We focus on a related decomposition of G(k,n)
which is much nicer.

Positroids are a special class of matroid with many equivalent characterizations. The shortest defini-
tion [Pos06] is that a positroid is a matroidM with a ‘totally non-negative’ representation. That is, there
exists a (non-unique) subspace Rk ↪ Rn with matroid M, such that, for each k-element I ⊂ [n], the
determinant of the projection Rk ↪ Rn → RI is a non-negative real number. Every matroid M has a
positroid envelope; the unique smallest positroid containingM [KLS13, Section 3].

Given a positroidM, the (open) positroid variety Π○(M) is the subvariety of G(k,n) parametrizing
subspaces whose matroid has positroid envelopeM. So we obtain a stratification

Gr(k,n) = ⊔
positroidsM

of rank k on [n]

Π○(M)

which groups together matroid strata with the same positroid envelope. This decomposition of G(k,n)
arises naturally from several different perspectives and the positroid varieties avoid many of the patholo-
gies exhibited by the matroid strata.

While the Grassmannian and its decomposition are the intrinsically interesting objects, the results of
this paper will be most easily stated on the affine cone G̃(k,n) over the Plücker embedding of the Grass-
mannian. Denote by Π̃○(M) the lift of a positroid variety Π○(M) to G̃(k,n) ∖ {0}.

We write Π̃(M) for the closure of Π̃○(M) in C(
[n]
k
); we write Π(M) for the closure of Π○(M) in

G(k,n). The origin of C(
[n]
k
) is in every Π̃(M) and in no Π̃○(M).

4 The boundary measurement map
Let G be a graph embedded in a disc, with a 2-coloring of its internal vertices as either black or white
(Figure 1a). We require that each boundary vertex is adjacent to one white vertex and no other vertices. Let
n denote the number of boundary vertices, and index the boundary vertices as `1, `2, ..., `n in a clockwise
order.

A matching of G is a collection of edges in G which cover each internal vertex exactly once. For a
matching M , we let ∂M denote the subset of the boundary vertices covered by M , which we identify
with a subset of [n] ∶= {1,2, ..., n} (Figure 1b). That is,

∂M ∶= {i ∶ `i is covered by M} ⊂ [n]
(ii) Throughout, a matroid is a collection of ‘bases’, rather than ‘independent sets’ or other conventions.
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`2

`3 `4

`5

`6`1

(a) A 2-colored graph embedded in the disc.

`2

`3 `4

`5

`6`1

(b) A matching with boundary 356.

Fig. 1: A graph and a matching.

The cardinality k of ∂M is constant for any matching of G, and given by

k ∶= (# of white vertices) − (# of black vertices)

As long as G admits a matching, the graph G determines a positroid by

M ∶= {I ⊂ [n] ∣ there exists a matching M with ∂M = I}

A graph G as above is reduced if the number of faces of G (that is, components of the complement in the
disc) is minimal among all graphs with the same positroid as G.

The matchings of G with a fixed boundary may be collected into a partition function as follows. Let
{ze} be a set of formal variables indexed by edges e ofG. For a matchingM ofG, define zM ∶=∏e∈M ze,
and for a k-element subset I of [n], define

DI ∶= ∑
matchings M

with ∂M=I

zM

Plugging complex numbers into the formal variables realizes DI as a regular function CE → C, where E
denotes the set of edges of G. Running over all k-elements subsets of [n], the partition functions define a
regular map

CE Ð→ C(
[n]
k
)

which we refer to as the boundary measurement map. The partition functions are not algebraically
independent, so this map lands in a subvariety.

Theorem 4.1 For any graph G as above, the partition functions satisfy the Plücker relations. Therefore,
the map CE → C(

[n]
k
) with coordinates {DI} has image contained G̃(k,n) ⊂ C(

[n]
k
).

The correct attribution for this result is difficult; it can be found explicitly in Thomas Lam’s lecture
notes [Lam15] but is already implicit, to various degrees, in [PSW09], [Tal08], [Kuo06] ,[Kuo04], [Pos06]
and [Kas67]. The second author’s note [Spe15] gives a quick proof of this result.
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The boundary measurement map is almost never injective because of the following gauge transforma-
tions: if v is an internal vertex ofG, (ze) is a point of CE , and t is a nonzero complex number, then define
a new point (z′e) of CE by

z′e =
⎧⎪⎪⎨⎪⎪⎩

tze v ∈ e
zE otherwise

.

Since each matching of G contains exactly one edge covering v, we know that (z′)M = t(zM) and that
DI(z′) = tDI(z).

The gauge transformations can be encoded more elegantly as follows. The group GEm acts on CE
by scaling the individual coordinates; in this way, GEm may be identified with ways to assign a nonzero
‘weight’ to each edge. Letting V denote the set of internal vertices of G, the action of GVm by gauge
transformations is equivalent to a regular map of groups

GVm Ð→ GEm

where the coordinate at each edge is the product of the coordinates at its endpoints.
Let GV −1m denote the subgroup of GVm such that the product of the coordinates is 1; equivalently, this is

the subgroup of the gauge group which leaves the partition functions invariant.
Before this paper, the following was known but not written explicitly.

Proposition 4.2 For a graph G with positroidM, the map GEm → C(
[n]
k
) given in Plücker coordinates by

the partition functions DI factors through GEm/GV −1m and lands in Π̃(M).

We will improve this to:

Proposition 4.3 For a reduced graph G with positroidM, the map GEm → C(
[n]
k
) given in Plücker coor-

dinates by the partition functions DI factors through GEm/GV −1m and lands in Π̃○(M), giving a map.

D̃ ∶ GEm/GV −1m Ð→ Π̃○(M)

The map D̃ descend to a well-defined quotient map

D ∶ GEm/GVm Ð→ Π○(M)

Moreover, the maps D and D̃ are open inclusions.

We will refer to the maps D and D̃ as boundary measurement maps. These are equivalent to the boundary
measurement map of Postnikov [Pos06].

Example 4.4 Consider the graph G in Figure 1a. Of all the subsets of [6] in ([6]
3
), only {1,2,3} is not

the boundary of a matching. The open positroid variety Π○(M) is defined insideG(3,6) by the vanishing
of the Plücker coordinate ∆123 and the non-vanishing of ∆124,∆234,∆345,∆456,∆156, and ∆126.(iii) As
a consequence, the closure Π(M) is the Schubert divisor in G(3,6).

(iii) The non-vanishing of these Plücker coordinates removes subspaces that have a smaller positroid envelope thanM.
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Fig. 2: A general set of edge weights.

Let us describe a general point in GEm by assigning an unknown weight in Gm to each edge in G, as in
Figure 2. As a consequence of Theorem 4.1, there exists a 3 × 6 matrix such that, for any I ∈ ([6]

3
), the

minor with columns in I is equal to DI . One such matrix is given below in (1).(iv)

⎡⎢⎢⎢⎢⎢⎣

1 0 −aep
bks

0 fmop
klns

klqu+fpru
klst

0 1 adk+aej
bik

0 − fjmo
ikln

− fjru
iklt

0 0 0 bciklnst bikost(hl + gm) bgiknrsu

⎤⎥⎥⎥⎥⎥⎦
(1)

The boundary measurement map D for G is the map which sends the edge weights given in Figure 2 to
the row-span of the matrix in (1). The content of Proposition 4.3 is that the map D is unaffected by the
gauge action (for example, replacing b, d, and e by λb, λd, and λe), and that the image lands in Π○(M).

5 Plücker coordinates associated to faces
In [Pos06], Postnikov showed how a reduced graph determines a collection of strands: oriented curves in
the disc beginning and ending at boundary vertices of G (Figure 3a).

The strands do not self-intersect (except possibly at the boundary), so each one subdivides the disc
into two components. The orientation of a strand distinguishes these components as the ‘left side’ and
the ‘right side’. Each face of G is on the left side of exactly k-many strands, where k again denotes the
number of white vertices minus the number of black vertices.

There are two natural ways to use a collection of k-many strands to determine a k-element subset of
[n]: identify each strand either with the index of its source vertex, or with the index of its target vertex.
In this paper we will be forced to work with both conventions.

Given a face f of G, define the following two k-element subsets of [n] (see Figures 3b and 3c).

●←

I (f) ∶= {i ∈ [n] ∣ f is to the left of the strand ending at `i}
●→

I (f) ∶= {i ∈ [n] ∣ f is to the left of the strand starting at `i}
(iv) Note that such a matrix is only determined up to the left action of SL3(C); however, its row-span is uniquely determined.
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(a) The strands of the graph.

345

456

156

126

124

234

346

246

256

(b) Target-labeling of the faces.

126

236

234

345

456

156

136

356

235

(c) Source-labeling of the faces.

Fig. 3: Two ways to associate a k-element subset of [n] to a face.

For any k-element subset I of [n], let ∆I denote the Plücker coordinate on G̃(k,n) indexed by I . Hence,
each face f in G determines two Plücker coordinates, given by ∆●→

I (f)
and ∆●←

I (f)
.

Letting F denote the set of faces of G, this determines a pair of regular maps
●←

F ∶ Π̃○(M)Ð→ CF

●→

F ∶ Π̃○(M)Ð→ CF

where the coordinate corresponding to a face is the appropriate Plücker coordinate.
It is anticipated that the Plücker coordinates (∆●→

I (f)
)f∈F form a cluster for a cluster structure on

Π̃○(M). In particular, this would imply:

Proposition 5.1 Let T be the open subset of Π̃○(M) where the Plücker coordinates (∆●→

I (f)
)f∈F are

nonzero. Then
●→

F provides an isomorphism T → GFm. The analogous result holds for
●←

I (f) and
●←

F .

While we do not construct a cluster structure on Π̃○(M) (see [Lec14] for the best current results), we
do establish Proposition 5.1 as a consequence of our combinatorial results.

6 Extremal matchings and a basis of gauge invariant characters
We explained above the importance of thinking of the boundary measurement map as a function on
GEm/GV −1m . We will now give a basis of characters for this quotient torus. Since G is a planar graph
embedded in a disc, #E − (#V − 1) = #F , so we should expect one character for each face of G. Note
that, if M is any matching of G, and z ∈ GEm, then zM =∏e∈M ze descends to the quotient GEm/GV −1m .

For every face f of G, we define a matching
Ð→
M(f) as follows: An edge e of G appears in

Ð→
M(f) if and

only if the face f is contained in the “downstream wedge” bounded by the two half strands flowing out of
e and the edge of the disc; see Figure 4.

Proposition 6.1 The set of edges
Ð→
M(f) is a matching of G, with boundary

●→

I (f). The list of characters

(z
Ð→
M(f))f∈F is a basis of the character lattice of GEm/GV −1m .
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e

Downstream
wedge

e

Downstream
wedge

e

Downstream
wedge

Fig. 4: The downstream wedge of an edge e

We similarly define matchings
←Ð
M(f) using upstream edges, with boundaries

●←

I (f), for which the
analogous result holds.

Example 6.2 The matching given in Figure 1b is the matching
Ð→
M(f), where f is the interior hexagonal

face. The boundary 356 of
Ð→
M(f) coincides with the source-labeling of f , as shown in Figure 3c.

Let
Ð→
M and

←Ð
M be the monomial maps GEm Ð→ GFm where the f -coordinate of

←Ð
M(z) is z−

←Ð
M(f) and the

f -coordinate of
Ð→
M(z) is z−

Ð→
M(f).

Corollary 6.3 For a reduced graph G, the maps
←Ð
M and

Ð→
M descend to well-defined isomorphisms

GEm/GV −1m

∼Ð→ GFm

We will introduce some notations to discuss the inverse maps to
Ð→
M and

←Ð
M. Let f be a face and e an

edge of G. We say that e is an internal edge if both the endpoints of e are interior to G, and a boundary
edge if one of those endpoints is on the boundary. Define

∂fe ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 e is an internal edge in the boundary of f
1 e is an external edge, and f is directly downstream from e
0 otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Let
Bf ∶= # of edges e in the boundary of f such that f is downstream from e

When f is an internal face, Bf is always half the total number of edges in the boundary of f ; if f is a
boundary face then Bf is this quantity either rounded up or down.

Let x ∈ GFm, we write the coordinates of x as xf for f ∈ F . Then (Ð→M)−1(x) is a point of the quotient
torus GEm/GV −1m . It does not make sense to ask for the coordinates of a point in a quotient torus, but it
does make sense to ask for the evaluation of any gauge invariant character at (Ð→M)−1(x). Particularly, if

M is any matching of G, it makes sense to compute ((Ð→M)−1(x))
M

.



The twist for positroids 919

Proposition 6.4 Using the above notations,

((Ð→M)−1(x))
M

= ∏
f∈F

x
#{e∈M ∶ ∂fe=1}−Bf+1
f .

If we want to consider
←Ð
M−1 instead, we simply need to change the word “downstream” to “upstream” in

the definitions of ∂fe and Bf .

7 The twists of a positroid variety
We now define a pair of mutually inverse automorphisms τ⃗ and ⃗τ of Π̃○(M), called the right twist and
left twist, respectively. The definitions of the twists are elementary, and use none of the combinatorics or
geometry we have built up so far.

Let A denote a k × n matrix of rank k. In this introduction, assume for simplicity that A has no zero
columns. Let Ai denote the ith column of A, with indices taken cyclically; that is, Ai+n = Ai. The right
twist τ⃗(A) of A is the k × n matrix such that, for all i, the ith column τ⃗(A)i satisfies the relations

⟨τ⃗(A)i ∣ Ai⟩ = 1, and

⟨τ⃗(A)i ∣ Aj⟩ = 0 if Aj is not in the span of {Ai,Ai+1, ...,Aj−1}
Similarly, the left twist of A is the k × n matrix ⃗τ(A) defined on columns by the relations

⟨ ⃗τ(A)i ∣ Ai⟩ = 1, and

⟨ ⃗τ(A)i ∣ Aj⟩ = 0 if Aj is not in the span of {Ai,Ai−1, ...,Aj+1}
The reader is cautioned that these operations are only piecewise continuous on the space of matrices.

Example 7.1 Each of the following matrices is the right twist of the matrix to its left, and the left twist of
the matrix to its right.

⎛
⎜
⎝

1 0 1 0 1
−1 1 0 0 0
1 −1 0 1 1

⎞
⎟
⎠

⎛
⎜
⎝

1 0 1 −1 0
0 1 1 0 1
0 0 0 1 1

⎞
⎟
⎠

⎛
⎜
⎝

1 −1 0 0 0
0 1 1 −1 0
1 −1 0 1 1

⎞
⎟
⎠

τ⃗ τ⃗

⃗τ⃗τ

As the example suggests, the two twists are inverse to each other.

Theorem 7.2 If A is a k × n matrix of rank k, then τ⃗( ⃗τ(A)) = ⃗τ(τ⃗(A)) = A.

The set of k × n matrices of rank k naturally projects onto G̃(k,n) and G(k,n), in the latter case
sending a matrix to the span of its rows. The twists descend to well-defined maps on these spaces as well.
The twists become continuous when restricted to an individual positroid variety. More specifically:

Theorem 7.3 For each positroid M, the twists τ⃗ and ⃗τ restrict to mutually inverse, regular automor-
phisms of Π̃○(M) and Π○(M).

In the example, the reader can check that columns {1,2,3} are linearly dependent in all three matrices,
as are columns {3,4,5}; this reflects that the positroid corresponding to to the given matrices is, in each
case, all 3-element subsets of [5] except for those two.
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8 The main theorem
We are now in a position to state the main theorem.

Theorem 8.1 Let G be a reduced graph with positroid M. The following diagram commutes, where
dashed arrows denote rational maps.

GFm GEm/GV −1m GFm

Π̃○(M) Π̃○(M) Π̃○(M)

Ð→
∂

Ð→
M

←Ð
∂

←Ð
M

●←

F D̃
●→

F
τ⃗ τ⃗

⃗τ⃗τ

More specifically, the diagram commutes as a diagram of rational maps, and any composition of maps
beginning in the top row is regular.

The morphisms in this diagram either commute or anticommute with the Gm action on each variety,
and so the diagram descends to a commutative diagram on the quotients GFm/Gm, GEm/GVm and Π○(M).

As a corollary of Theorem 8.1, we obtain a combinatorial formula for the Plücker coordinates of a
twisted point as a Laurent polynomial in the Plücker coordinates of the original point. Specifically, for
any point x ∈ Π̃○(M), and any k-element subset J of [n], we obtain the following formula for the Plücker
coordinate ∆J of τ⃗(x):

∆J(τ⃗(x)) = ∑
matchingsM
with ∂M=J

∏
f∈F

∆●→

I (f)
(x)#{e∈M ∶ ∂fe=1}−Bf+1.

The notations in the above formula were introduced shortly before Proposition 6.4, and this formula is an
immediate consequence of that result.

We obtain Proposition 4.3 as a corollary:
←Ð
∂ ○

●←

F ○ τ⃗ gives a left inverse to D, showing that D is an open

immersion. Similarly, τ⃗ ○D ○←Ð∂ is a right inverse to
●←

F which can be used to establish Proposition 5.1.

Example 8.2 Let us consider the theorem in the running example of Figure 1a. The boundary measure-
ment map D sends the edge weights in Figure 2 to the row-span of the matrix in (1). The right twist of this
matrix is given below in (2).

⎡⎢⎢⎢⎢⎢⎢⎣

1 dks+ejs
eip

bjs
adp

hrs
cmq

0 0

0 1 bi
ad

fhipr+ikq(hl+gm)

cfjmq
gikn
fhjo

0

0 0 0 1
bciklnst

1
bhiklots

1
bgiknrsu

⎤⎥⎥⎥⎥⎥⎥⎦

(2)

To determine the value of
●→

F at the point in Π○(M) defined by this matrix, we compute the nine minors
with columns given by the source labels of faces in G (cf. Figure 3c).
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∆156 = 1
bfhjorsu

∆126 = 1
bgiknrsu

∆236 = 1
aegipnru

∆234 = 1
aceilpnt

∆345 = 1
acdfmopt

∆456 = 1
bcfjmpqu

∆136 = 1
adgknrsu

∆356 = 1
adfhporu

∆235 = 1
aehilpot

We see that, for each face f inG, the value of ∆●→

I (f)
on the matrix in (2) is the reciprocal of the product

of the edge weights in the extremal matching
Ð→
M(f). This is equivalent to the equality

Ð→
M =

●→

F ○ τ⃗ ○D, and
thus the commutativity of the right square in Theorem 8.1.

9 Earlier work
The twist map was constructed earlier by Marsh and Scott [MS13] for the largest positroid variety, al-
though they only give explicit formulas for the composite map above whenG is a certain standard reduced
graph known as a Le diagram. Talaska [Tal11] provided a birational inverse to the boundary measurement
map when G is a Le diagram; her inverse was not formulated in terms of a twist map and seems unlikely
to generalize to other reduced plabic graphs. Any double wiring diagram for a type A double Bruhat cell
can be converted to a reduced plabic graph for a corresponding positroid variety; in this setting, the twist
map was defined by Berenstein, Fomin and Zelevinsky, and it was proved that an analogous composite
map is an isomorphism of tori.

Our result build on the above results, but are stronger than any of them, because they work for all
positroid varieties and all reduced plabic graphs, which none of the above results do. We also hope that
the unified presentation in this paper clarifies the nature of the previous results.
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