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Yang-Baxter basis of Hecke algebra and
Casselman’s problem (extended abstract)

Maki Nakasuji'[l and Hiroshi Naruse¥

LSophia University, Japan
2 University of Yamanashi, Japan

Abstract. We generalize the definition of Yang-Baxter basis of type A Hecke algebra introduced by A.Lascoux,
B.Leclerc and J.Y.Thibon (Letters in Math. Phys., 40 (1997), 75-90) to all the Lie types and prove their duality. As
an application we give a solution to Casselman’s problem on Iwahori fixed vectors of principal series representation
of p-adic groups.

Résumé. Nous généralisons la définition de la base de 1’algeébre de Hecke de Yang-Baxter de type A introduit par
A.Lascoux, B.Leclerc and J.Y.Thibon (Letters in Math. Phys., 40 (1997), 75-90) a tous les types de Lie et prouvons
la dualité. Comme application nous donnons une solution du probleme de Casselman sur les vecteurs fixés par le
sous-groupe d’Iwahori de la série principale des groupes p-adiques.

Keywords. Yang-Baxter basis, Iwahori fixed vector, Casselman’s problem, Demazure-Lusztig operator

1 Introduction

Yang-Baxter basis of Hecke algebra of type A was defined in the paper of Lascoux-Leclerc-Thibon [LLT].
There is also a modified version in [Las|]. First we generalize the latter version to all the Lie types. Then
we will solve the Casselman’s problem on the basis of Iwahori fixed vectors using Yang-Baxter basis and
Demazure-Lusztig type operator. This paper is an extended abstract and the detailed proofs will appear
in [NN].

2 Generic Hecke algebra

2.1 Root system, Weyl group and generic Hecke algebra

Let R = (A,A*, R, R*) be a (reduced) semisimple root data cf. [Deml]. More precisely A ~ Z" is a
weight lattice with rank A = r. There is a pairing < , >: A* Xx A — Z. R C A is aroot system with
simple roots {«; }1<i<, and positive roots R*. R* C A* is the set of coroots, and there is a bijection
R — R*, a — «". We also denote the coroot a* = h,. The Weyl group W of R is generated by
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simple reflections S = {s;}1<i<,. The action of W on A is given by s;(\) = A— < af, A > «; for
A € A. We define generic Hecke algebra Hy, , (W) over Z[t1, t2] with two parameters ¢1,t2 as follows.
Generators are h; = hy,, with relations (h; — ¢1)(h; — t2) = 0 for 1 < ¢ < r and the braid relations

hihj--- = hjh;---, where m, ; is the order of s5;s5; for 1 <1 < j < r. We need to extend the coefficients

—_—— =

to the quotient field of the group algebra Z[A]. An element of Z[A] is denoted as Z cxe™. The Weyl
AEA

group acts on Z[A] by w(e*) = e®*. We extend the coefficient ring Z[t1, t2] of Hy, 4, (W) to
Qtl,tQ (A) = Z[tb t2] ® Q(Z[A])
where Q(Z[A]) is the quotient field of Z[A].
A
Hth,(tg)(W) = Qt17t2 (A) ®Z[t1,tz] Ht17t2 (W)

For w € W, an expression of w = s;, s;, - - - 8;, with minimal number of generators s;, € S is called a
reduced expression in which case we write £(w) = ¢ and call it the length of w. Then h,, = h;, h;, -+ h

is well defined and {h., },cw forms a Qy, +,(A)-basis of Hg(é)(W)

17

2.2 Yang-Baxter basis and its properties

Yang-Baxter basis was introduced in the paper [LLT] to investigate the relation with Schubert calculus.
There is also a variant in [[Las] for type A case. We generalize that results to all Lie types.

For A € A, we define E(\) = e~ — 1. Then E(\ + v) = E(\) + E(v) + E(A\)E(v). In particuar, if
A# 0 50y + B = L
Proposition 1 For A € A, if A\ # 0, let hi(\) := h; + %(*At)z Then these satisfy the Yang-Baxter
relations, i.e. if we write [p, q] := p\ + qu for fixed \,v € A, the following equations hold. We assume
all appearance of [p, q) is nonzero.

hi([1,0])h;([0,1]) h; ([0, 1])hs([1,0]) if mi;=2
hi([1, 0)h; ([1,1])hi([0, 1]) = h;([0,1])hi([1,1])A;([1,0]) if mij=3
hi([1,0])h; ([1,1])hs([1, 2])h; ([0, 1]) hi ([0, 1])ha([1, 2]) A ([1,1])hs([1,0])  if mi; =4
ha([1,0)h; (1, 1])hi([2, 3)) ([0, 1) (1, 3))hy (1, 2])
xh([1,2)hi([1, 3D (0,1)) = xha([2,3) Ay (L DRa([L,0) if mi; =6
Proof: We can prove these equations by direct calculations. |

Remark 1 In [[Chel] I. Cherednik treated Yang-Baxter relation in more general setting. There is also a
related work [Kat] by S. Kato and the proof of Theorem 2.4 in [Kat] suggests a uniform way to prove
Yang-Baxter relations without direct calculations.

We use the Bruhat order x < y on elements z,y € W (cf.[Huml]). Following [Las] we define the
Yang-Baxter basis Y,,, for w € W recursively as follows.
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Yo = 1Yy = Yo (hi + igidy) ifw =w's; > '
Using the Yang-Baxter relation above it is easy to see that Y,, does not depend on a reduced expression
of w. As the leading term of Y,, with respect to the Bruhat order is h,,, they also form a Q, ¢, (A)-basis

{Yy bwew of Hg(/:) (W). We are interested in the transition coefficients p(w, v) and p(w, v) € Qy, 1, (A)
between the two basis {Y,, bwew and {hy bwew , i

Y, = Z p(w,v)hw, and h, = Z;ﬁ(w,v)Yw.
w<v w<v

Take a reduced expression of v e.g. v = s;, - - - 5;, where £ = £(v) is the length of v (cf. [Huml). Then
Y, is expressed as follows.

¢
t1 + 12
(O
j[[l E(B;)
where 3; := s;, -+ s;,_, (o,) for j = 1,...,£. The set R(v) := {f1,...,B¢} C R™ is independent of
the reduced expression of v. The Yang-Baxter basis defined in [LLT] is normalized as follows.

14

4
YT = HL@) szﬂ(E(ﬁj) hi.+1>.
v j:1t1+t2 i} t1+ta 7

Remark 2 The relation to K-theory Schubert calculus is as follows. If we set t1 = 0,to = —1 and
replacing o; by —a;. Then the coefficient of h.,, in Y,FET is the localization 1 (v) at v of the equivariant
K-theory Schubert class V" (cf. [ILSS]).

Let wg be the longest element in WW. Define @, ¢, (A)-algebra homomorphism (2 : Hff (t/; ) Hg (t/: )

by Q2(hw) = huwgwuw,- Let x be the ring homomorphism on Z[A] induced by x(e*) = e~ and extend to

Quy 12 ().

Proposition 2 (Lascoux [Lasl] Lemma 1.8.1 for type A case) Forv € W,

where W acts only on the coefficients.

Proof: When £(v) > 0 there exists s € S such that v = v's > v’. Using the induction assumption on v’,

we get the formula for v. a
Taking the coefficient of h,, in the above equation, we get

Corollary 1

p(wowwg, wovwy) = *[wep(w, v)].
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2.3 Inner product and orthogonality

Define inner product ( , ) on Hg(t‘/:)(W) by (f,g)" = the coefficient of h,, in fg", where g¥ =
3 cwhy-1 if g = 3 cuhy. Itis easy to see that (fhs, 9)? = (f, ghs)! for f,g € Hg({;)(W) and
s € S. There is an involution”: Hg(t[:) — Hgft/;) defined by hi = hi — (t1 +to),t1 = —to, by = —t1. It
is easy to see that ﬁshs = —titao fors € S.

The following proposition is due to A.Lascoux for the type A case [Las|] P.33.

Proposition 3 For all v,w € W,

(hva hwgw)H = 6v,w~

Proof: We can use induction on the length £(v) of v to prove the equation.

We have another orthogonality between Y, and wo(Yygw)-

Proposition 4 (Type A case was due to [LLT] Theorem 5.1, [ILas|] Theorem 1.8.4.)
Forallv,w e W,
(Ym wO(onw))H = 51},w-

Proof: We use induction on ¢(v) and use the fact that if s € S and v € W, then Y, hs = aY,,s + bY for
some a,b € Qy, 1, (7).
O

2.4 Duality between the transition coefficients

Recall that we have two transition coefficients p(w,v), p(w,v) € @y, +,(A) defined by the following
expansions.

Yv = Z p(wa U)hw

w<v
h'u = Z ﬁ(W,’U)Yw
w<v
Below gives a relation between them.
Theorem 1 (Lascoux [Las|] Corollary 1.8.5 for type A case) For w,v € W,

plw,v) = (fl)z(”)%(w)p(vwo, wwp).

Proof: We will calculate (A, wo(Yuyw)) in two ways. As h, = Z p(w,v) Yy,

w<v

(o, wO(onw))H = p(w, )

by the orthogonality on Y, (Proposition 4). On the other hand, as h; + t]}:zrﬁtf = h; — Ifjl(ftg) for 8 € R,

we can expand Y, in terms of izw as follows.
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Y, = Z(—l)z(”)_g(“’) * [p(w, v)]ﬁw.

w<v
So we have .
wo(Yaew) = Z (—=1) =)0 [wp(wov, wow)) Py -

wov<wow

Then using the orthogonality on h,, (Proposition 3) and Corollary 1,
(P, wo(Yapgu )T = (=1) =4 0 [xp(wow, wow)] = (=1) =) p(vwg, wuwy).

The theorem is proved.

2.5 Recurrence relations
Here we give some recurrence relations on p(w, v) and p(w, v).

Proposition 5 (left p) Forw € W and s € S, if sv > v then

plw, sv) = {E(tgs[p(ww)] — t1tes[p(sw, v)] if sw > w
; (t1 +t2) (e + Dslp(w, v)] + s[p(sw,v)] i sw < w.

Proof: By the definition we have Y, = Y;s[Y,] from which we can deduce the recurrence formula. O

We note that by this recurrence we can identify p(w, v) as a coefficient of transition between two bases
of the space of Iwahori fixed vectors cf. Theorem 3 below.

Proposition 6 (right p) Forw € W and s € S, if vs > v then

Gtz p(w,v) — titap(ws, v) if ws > w
p(w,vs) = ¢ 77 ) :
(t1 +12)(5Eay + Dp(w,v) + p(ws,v) if ws <w.
Proof: We can use the equation Y,; = Y, v[Y;] and taking the coefficient of h,,, we get the formula.
a
Proposition 7 (left p) Forw € W and s € S, if sv > v then
_ titty ti+t b+t ~ .
sy = | THEGH0.0) (L BB+ S lpow,0)] o> w
— Basb(w,v) + s[p(sw, v)] if sw < w.
Proof: We can prove the recurrence relation using Corollary 2 below. O

Proposition 8 (right p) Forw € W and s € S, if vs > v then

| {J};ﬁ;ﬁ(w,vH(HJﬂ;iﬂ(Hwg(ttgs))ﬁ(ws,v) ifws > w

p(w, vs) =
" B ) + puss, ) s < w

Proof: We can prove the recurrence relation using Corollary 2 below. a
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3 Kostant-Kumar’s twisted group algebra

Let QF K (W) := Q4, 1, (A)#Z[W] be the (generic) twisted group algebra of Kostant-Kumar. Its element
is of the form Z JuwOw for fi, € Q4 +,(A) and the product is defined by

weWw
(> Fubu)(D ] gudu) = Y Ffuww(gu)duwu-

weW ueWw w,uceW
Define y; € QFK (W) (i=1,...,r) by

t1 4 toe™ t1 +to
7,Bi =
1—e> 1l—e

Y; = Alél + Bl where Al =

Proposition 9 We have the following equations.
(1) (yi —t1)(yi —t2) =0 for i =1,...,r.

(2) ysyj - -+ = y;Y; - - -, where m; j is the order of s;s;.
—— =
mi 4 mi,j
Proof: These equations can be shown by direct calculations. a

By this proposition we can define y,, := y;, - - - y;, for a reduced expression w = s;, ---5;,. These
{Yw }wew become a @y, 1, (A)-basis of Qfﬁi (W).

Remark 3 This operator y; can be seen as a generic Demazure-Lusztig operator. Whent, = —1,t3 = g,
it becomes y? in Kumar’s book[Kuni](12.2.E(9)). We can also set A; which satisfies

(tl —+ tg@iai)(tl —+ tg@ai)

A A =
e (1 —e)(1—e)
For example, if we set A; = % and t1 = q,to = —1 and replace o; by —a;, it becomes Lusztig’s
T, [Lull]. If we set A; = —tllféi'i‘il andty = —1,ty = v and replace o; by —av, it becomes T; in [[BBL]].

We can define a @y, +,(A)-module isomorphism ® : QEX (W) — Hg(/:)(W) by ®(yy) = hu.

ty + toe™P
Let A;, := A;d;. Define A(w) := H 1;_7265 and A, := A(w)d,. Then it becomes that
BeR(w) ~  °
Asil cee Asil = A(w)dy = Ay. In particular, A, ’s satisfy the braid relations. We can show below by

induction on length ¢(w).

Theorem 2 For w € W, we have

P(A,) =Y.
Proof: If w = Si, A51 = AL5L = Yi — BL Therefore (I)(Aél) = hz — BL = hz + tE%(—}(-th) = Y; If
s;w > w, by induction hypothesis we can assume ®(A,) =Y, = Z p(u, w)hy. As D isa Qy, 1, (A)-

u<w
isomorphism, it follows that A, = Z p(u, w)yy. Then Ag,., = Ag, Ay = Ajd; Z p(u, W)y, =

u<lw u<w
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Z silp(u, w)) Ay = Z silp(u, w)|(y; — Bi)yu = Z p(u, s;w)y,. We used the recurrence

u<w u<w u<s;w

relation (Proposition 5) for the last equality. Therefore ®(Ag,,,) = Z p(u, s;w)hy, = Ys,q. The
u<s;w

theorem is proved. O

Corollary 2 (Explicit formula for p(w,v))
Letv = sy, -+ - 5;, be a reduced expression. Then we have

4
) = s ) [1ci@

e=(€1, ,Cg)E{O,l}Z,Sjll ~~~s:§=w j=1

where for e = (€1, ,€0) € {0,1}, Cj(e) := 55552 -+ 551 (§

i1 “io i_j_l

14i; + 0¢,,0B;).

Ej,

Proof: Taking the inverse image of the map ®, the equality h, = > _. p(w,v)Y,, becomes

w<v

yo =3 W, v)Ay =Y plw,v)A(w)d,.

w<v w<v

Asv = s;, -+ 8;, is areduced expression, y, = ys, - Ys;, = (A;; 05, + Biyde) -+ (Ai,0i, + Bi,0¢).
By expanding this we get the formula.
O

Remark 4 Using Theorem 1, we also have a closed form for p(w,v). We have another conjectural
SJormula for p(w, v) using A-chain cf. [Nar].
Example 1 Type As. We use notation A_1 = x(A1), B_1 = *(By), Bia = 1_:}["%
When v = $182581, w = 81, then e = (1,0,0),(0,0,1) and
P(s1,518281) = (A1 B1aB_1 + B1B2 A1) /A1 = B1aB_1 + B1 B2 = B Bia.

When v = 818281, W = S, then ¢ = (0,1,0) and
P(s2,515281) = (B1A2B12)/A2 = B1Bys.
When v = s18251, w = ¢, then ¢ = (0,0,0), (1,0, 1) and

ple,s18281) = B1By By + A1 B2 A_;.

4 Casselman’s problem

In his paper [Casl] B. Casselman gave a problem concerning transition coefficients between two bases in
the space of Iwahori fixed vectors of a principal series representation of a p-adic group. We relate the
problem with the Yang-Baxter basis and give an answer to the problem.
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4.1 Principal series representations of p-adic group and Iwahori fixed vector

We follow the notations of M.Reeder [Rell, Re2]. Let G be a connected reductive p-adic group over a
non-archimedian local field F'. For simplicity we restrict to the case of split semisimple GG. Associated
to [, there is the ring of integer O, the prime ideal p with a generator w, and the residue field with
q = |O/p| elements. Let P be a minimal parabolic subgroup (Borel) of G, and A be the maximal split
torus of P so that A ~ (F™*)" where r is the rank of G. For an unramified quasi-character 7 of 4, i.e. a
group homomorphism 7 : A — C* which is trivial on Ag = A N K, where K = G(O) is a maximal
compact subgtoup of G. Let T = C* @ X*(A) be the complex torus dual to A, where X*(A) is the
group of rational characters on A, i.e. X*(A) = {\ : A — F*, algebraic group homomorphism}. We
have a pairing <, >: A/Ay x T — C* given by < a,z ® X\ >= 2"2(\@)_ This gives an identification
T ~ X" (A) of T with the set of unramified quasi-characters on A (cf. [Buml Exercise 18,19).

Let A C X*(A) be the set of roots of A in G, AT be the set of positive roots corresponding to P and
Y. C AT be the set of simple roots . For aroot o € A, we define e, € X*(T) by

ea(T) =< ho(w), T >
for 7 € T where h,, : F'’* — A is the one parameter subgroup (coroot) corresponding to .

Remark 5 As the definition shows, e, is defined using the coroot o = hy,. So it should be parametrized
by o, but for convenience we follow the notation of [Rell]. Later we will identify e, (o« € A = R*) with
e*(a € R = A*) by the map * : A — R of root data.

W acts on right of X" (A) so that 7% (a) = 7(waw~!) fora € A, 7 € T and w € W. The action of
W on X*(T) is given by (we, )(7) = €wa(T) = eo(7¥) fora € A, 7 € Tand w € W.

The principal series representation (7) of G associated to an unramified quasicharacter 7 of A is
defined as follows. As a vector space over C it consists of locally constant functions on G with values
in C which satisfy the left relative invariance properties with respect to P where 7 is extended to P with
trivial value on the unipotent radical N of P = AN.

I(7) :==Ind%(r) = {f : G — C loc. const. function | f(pg) = 76'/2(p) f(g) forVp € P,¥g € G}.

Here ¢ is the modulus of P. The action of G on I(7) is defined by right translation, i.e. for g € G and

fel(r), (r(9)f)(x) = f(xg).

Let B be the Iwahori subgroup which is the inverse image 7! (P(F,)) of the Borel subgroup P(F,)
of G(F,) by the projection 7 : G(O) — G(F,). Then we define I(7)? to be the space of Iwahori fixed
vectors in I(7), i.e.

() == {f € I() | [(gb) = f(g) for Vb € B,¥g € G}.
This space has a natural basis {¢7 }wew. @7, € I(7)® is supported on PwB and satisfies
wor, (pwb) = 761/2(])) for Vp € P,Vb € B.
4.2 Intertwiner and Casselman’s basis

From now on we always assume that 7 is regular i.e. the stabilizer W, = {w € W | 7% = 7} is trivial.
The intertwining operator A7, : I(7) — I(7") is defined by

AL (F)(g) = /N f(wng)dn
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where N,, := N Nw~'N_w, with N_ being the unipotent radical of opposite parabolic P_ which
corresponds to the negative roots A~. The integral is convergent when |e, (7)| < 1 for all @« € At such
that wa € A~ (cf. [Buml| Proposition 63), and may be meromorphically continued to all 7. It has the
property that for x,y € W with ¢(xy) = £(x) + {(y), then

Ay AL = AL
The Casselman’s basis { T },ew of I(7)? is defined as follows. f7 € I(7)? and

1 ify=w

Apful) = {0 ify # w.

M.Reeder characterizes this using the action of affine Hecke algebra (cf. [Re2|] Section 2). The affine
Hecke algebra H = H(G, B) is the convolution algebra of B bi-invariant locally constant functions on G
with values in C. By the theorem of Iwahori-Matsumoto it can be described by generators and relations.
The basis {Tw}w €Wy s consists of characteristic functions T}, := chp,, g of double coset BwB. Let Hy
be the Hecke algebra of the finite Weyl group W generated by the simple reflections s,, for simple roots
«a € X, As a vector space H is the tensor product of two subalgebras H = © ® Hyy . The subalgebra O is
commutative and isomorphic to the coordinate ring of the complex torus 7" with a basis {6, | a € A/Ao},
where 0, is defined as follows (cf. [Lu2|)). Define A~ := {a € A | |a(a)|r < 1 Va € ¥}. Fora € A,
choose a1,a2 € A~ such that a = alagl. Then 0, = (](Z(‘“)’Z(“?))/QTMTa;1 where for z € G, {(x) is
the length function defined by ¢“(*) = [BaxB : Bl and T, € H is the characteristic function of BxB.

By Lemma (4.1) of [Relll, there exists a unique f7, € I(7),, N I(7)? for each w € W such that

(1)f7(w) = 1 and

(2)m(0q) f1 = 7% (a) fI forall a € A.

Here I(7),, :={f € I(7) | supportof f is contained in |J -, PxP}.

r>w
4.3 Transition coefficients
Let

w = Z o (T)e5,

w<lv

and

Pw = Z b, (T)f -

w<v

The Casselman’s problem is to find an explicit formula for a,, ., (7) and by, ,, (7).

To relate the results in Sections 2 and 3 with the Casselman’s problem, in this subsection we specialize
the parameters t; = —q~ ', to = 1 and take tensor product with the complex field C. For example, the
Yang-Baxter basis Y, will become a @, 1, (A) ® C basis in Ht?(/;) (W)e = Hff({;) (W) ®C. The generic
Demazure-Lusztig operator defined in Section 3 will become
—g e g+

L—exi 77" 1 e’

Y = Alél + Bz where Az =

Then (y; + ¢ ) (y: — 1) = 0.
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Theorem 3 We identify e™ with e, (cf. Remark 5). Then,

aw,v(T) = ﬁ(wvv)(T”tl:—q*l,tz:l

bw,w(T) = p(w, v)(T)]t,=— -1 t,=1-
Proof: b, ,’s satisfy the same recurrence relation (Proposition 5 with t; = —q Lty = 1) as p(w,v)’s

(cf. [Re2] Proposition (2.2)). The initial condition b,, ., = p(w,w) = 1 leads to the second equation. The
first equation then also holds. Note that the b, ,, in [Re2] is our by, .

O
Remark 6 There is also a direct proof that does not use recurrence relation cf. [[NNJ].
Corollary 3 We have a closed formula for a., ., (T) and by, ,,(7) by Corollary 2 and Theoreml.
Corollary 4 Forv € W, we have
1-— q’leﬁ
Dobwo= I 5=
w<v BER(v)
and .
1— o
_g—H)w) _ q
)DIINEITR §
w<v BER(v)
Proof: Whent; = —q~!,t, = 1, we can specialize h; to 1 and we get the first equation from the definition
—1 3 — —1 3 —
of Y,, since 1+ (lz‘ie[,)e[ = 1_1‘1761;[3 . We can also specialize h; to —¢g~! and —¢~ '+ (1*1‘176[,)8[ = 11:‘18;
gives the second equation. a

Remark 7 The left hand side of the first equation in Corollary 4 is m(e,v™") in [BN]. So this gives
another proof of Theorem 1.4 in [BNJ].

4.4 Whittaker function

M.Reeder [Re2]| specified a formula for the Whittaker function W, (f7) and using b,, ,,, he got a formula
for Wy (¢1). Fora € A, let \, € X*(T) be

Na(z @ p) = 20D for 7 € C*, e X*(A).
Formally the result of M.Reeder [Re2]] Corollary (3.2) is written as follows. Forw € Wanda € A™,

— g lef
Wiew)a) =0"%@) Y buyy [N [ Sl | ecim)

w<y BERT—R(y)

Then using Corollary 3, we have an explicit formula of W(p,,)(a).
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4.5 Relation with Bump-Nakasuji’s work

Now we explain the relation between this paper and Bump-Nakasuji [BN]]. First of all, the notational
conventions are slightly different. Especially in the published [BN] the natural base and intertwiner are
differently parametrized. The natural basis ¢,, in [BN] is our ¢,,—1. The intertwiner M, in [BN] is our
A—1 so that if £(wiwg) = L(wr) + L(wa), Muy,wy, = My, © My, while Ay, = Awy Aw, -

In the paper [BN], another basis {1, }wew for the space I(7)Z was defined and comparerd with the
Casselman’s basis. They defined 1, := > -, ¢ and expand this as ¢, = > .. m(w,v)f, and
conversely f,, = >, <, M(w, ), . They observed that the transition coefficients m(w, v) and m(w, v)
factor under certain condition. Let S(w,v) := {a € RT|w < sqv < v} and §'(w,v) := {a € Rt |w <
sqw < v}. Then the statements of the conjectures are as follows.

Conjecture 1 (/BN Conjecture 1.2) Assume that the root system R is simply-laced. Suppose w < v and
[S(w,v)] = £(v) — l(w), then

-1,

m(w,v) = H Bl B ay

1—2¢
a€S(w,v)

Conjecture 2 (/BN Conjecture 1.3) Assume that the root system R is simply-laced. Suppose w < v and
|S! (w,v)| = £(v) — £(w), then

- (v)—(w) 1—q'2*

m(w,v) = (=1)%~* H _—

aeS’ (w,v)

1—2z2¢
Proposition 10 Conjecture 1.2 and Conjecture 1.3 in [[BN] are equivalent.

Proof: We can show m(w,v) = 3, ..., p(z,v) and m(w,v) = 3, .., (=1) 7@ j(w, z). Then
it follows by the Theorem 1 that 71(w, v) = (—1)“) = m(vwg, wwo). As S (w,v) = S(vwe, wwg)
we get the desiered conclusion. O
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