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An equivalence of multistatistics on
permutations

Arthur Nunge1†

1Laboratoire d’informatique Gaspard Monge, Université Paris-Est Marne-la-Vallée, 5 Boulevard Descartes, Champs-
sur-Marne, France

Abstract. We prove a conjecture of J.-C. Novelli, J.-Y. Thibon, and L. K. Williams (2010) about an equivalence of two
triples of statistics on permutations. To prove this conjecture, we construct a bijection through different combinatorial
objects, starting with a Catalan based object related to the PASEP.

Résumé. Nous prouvons une conjecture de J.-C. Novelli, J.-Y. Thibon et L. K. Williams de l’article (2010) à propos
d’une équivalence de statistiques sur les permutations. Pour prouver cette conjecture, nous construisons une bijection
passant par différents objets combinatoires en commençant par un objet de type Catalan relié au PASEP.
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1 Introduction
The algebra of noncommutative symmetric functions Sym [4] has been studied in algebraic combinatorics
during the past twenty years. It contains many purely combinatorics problems as, for example, the explicit
description of the relations between different bases through their transition matrices. In this paper we shall
be interested in the basis introduced by Tevlin in [7], the so-called monomial basis of Sym, for which the
transition matrices M(n) with the ribbon basis have been described in [5].

The authors proved that M(n)
I,J is equal to the number of permutations satisfying GC(σ) = I and

Rec(σ) = J where GC and Rec are two statistics that will be recalled later. Some properties of this basis
correspond to combinatorial properties of the PASEP (Partially ASymmetric Exclusion Process) which is
a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice which
is studied through the combinatorial object of permutation tableaux [2]. More precisely, in the study of
the basis of Tevlin, the sum of the coefficients of the rows of the transition matrices corresponds to the
number of permutation tableaux of given shapes.

In the PASEP context there exists a natural q-statistic on the permutation tableaux that becomes the
number of 31-2 patterns on permutations (denoted by tot) thanks to a well-known bijection. This statistic
allows us to define a q-analog of the basis of Tevlin as the functions whose transition matrices M(n)(q)

with the ribbon basis are such that M(n)
I,J(q) is the sum of the qtot(σ) for all σ satisfying GC(σ) = I and

Rec(σ) = J .
†Email: arthur.nunge@u-pem.fr.
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In [6], the authors studied those matrices in an algebraic way. However, the statistics GC and tot on
permutations were not appropriate for an algebraic study. So the authors of [6] built suitable matrices
M̃(n)(q) for their algebraic purpose through other statistics on permutations also recalled later. M̃(n)

I,J(q)

is the sum of the qα(σ) for all σ satisfying LC(σ) = I and Rec(σ) = J . They conjectured that their
matrices are the same as the M(n)(q), or equivalently that the triples of statistics (GC,Rec, tot) and
(LC,Rec, α) are equidistributed.

The aim of this paper is to prove this conjecture bijectively. As the triple of statistics (LC,Rec, α) has a
natural description on subexcedent functions, in order to gain in readability, we construct a bijection from
permutations to subexcedent functions sending the triple of statistics (GC,Rec, tot) to (LC,DC, α). The
bijection is described as a succession of bijections through different combinatorial objects:

P
ψFV←→WDP

ψ←→WDP
φ2←→ DWSF

φ1←→ SF (1)

where P, WDP, DWSF, and SF are respectively Permutations, Weighted Dyck Paths, Decreasing Weighted
Subexcedent Functions, and Subexcedent Functions which are all recalled or defined below. In Section 3
we shall describe the bijections ψFV and ψ which are natural bijections to obtain objects on which the
statistics GC and tot are naturally defined. The object obtained is a pair consisting of a Catalan object
and a weight. In Section 4 we begin by constructing a Catalan object associated with a weight from
subexcedent functions through φ1 and then describe φ2, a Catalan bijection between decreasing subexce-
dent functions and Dyck paths. In Section 5 we prove the global result and give some properties associated
with the global bijection.

2 Notations and background
2.1 Permutations, compositions, and subexcedent functions
Let us first fix our notations concerning permutations.

A recoil of a permutation σ is a value i such that i + 1 is on the left of i. The recoil set of σ is the set
of the values of recoils. A 31-2 pattern of σ is a pair (i, j) such that j > i + 1 and σi+1 < σj < σi. We
denote by tot(σ) the number of 31-2 patterns of σ. For example, tot(528713649) = 5.

A composition of an integer n is a sequence I = (i1, . . . , ir) of positive integers of sum n. In this
case we write I |= n. The integer r is called the length of the composition. The descent set of I is
Des(I) = {i1, i1 + i2, . . . , i1 + · · ·+ ir−1}. The recoil composition Rec(σ) of a permutation σ ∈ Sn is
the composition of n whose descent set is the recoil set of σ.

The major index maj(I) of a composition is the sum of the values in the descent set of I .
The Genocchi descent set [5] of a permutation σ ∈ Sn is the set of values immediately followed

by a smaller value (it is sometimes called descent top). The Genocchi composition of descents (or G-
composition, for short) GC(σ) of a permutation is the integer composition I of n whose descent set
is {d − 1 | d ∈ GDes(σ)}. For example, with σ = 528713649, we have GDes = {5, 6, 7, 8} and
GC(σ) = (4, 1, 1, 1, 2).

A subexcedent function of size n is a word u of size n on the alphabet of nonnegative integers such
that for each i ∈ {1, . . . , n} we have ui ≤ n − i. We denote by SFn the set of subexcedent functions
of size n. They are enumerated by n! and in bijection with permutations through the Lehmer code. The
statistic LC is defined on a subexcedent function u as follows.
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• Set S = ∅ and read u from right to left. At each step, if the entry k is strictly greater than the size
of S, add the (k − |S|)-th element of the sequence [1, n] not considering the elements of S.

• The set S is the descent set of a composition C, and LC(σ) is the mirror image C of C.

This definition corresponds to the definition of LC in [6] after applying the Lehmer code on the inverse
of the permutation.

For example, with u = 315503200, S is ∅ at first, then the set {2} at the third step as the third letter
from the right is a 2 and S was empty, then {2, 3} (fourth step), then {2, 3, 5} (sixth step), then {2, 3, 4, 5}
(seventh step). Hence C is (2, 1, 1, 1, 4), so that LC(u) = (4, 1, 1, 1, 2).

From the same bijection between permutations and subexcedent functions, we define the number of in-
versions of a subexcedent function as the sum of its values. We also define the descent set of a subexcedent
function as

Des(u) = {i ∈ {1, . . . , n− 1} | ui > ui+1} (2)

and the descent composition of u (denoted by DC(u)) as the composition of size n whose descent set is
Des(u). One can check that DC(315503200) = (1, 3, 2, 1, 2).

2.2 The Françon-Viennot bijection
The Françon-Viennot bijection, first described in [3], is a bijection between permutations and Laguerre
histories. We shall describe a bijection between permutations and weighted Dyck paths (defined below)
that can be obtained from the version of Corteel of the Françon-Viennot bijection described in [1] through
a simple bijection between colored Motzkin paths and Dyck paths.

Definition 2.1 A weighted Dyck path of size n is a Dyck path with n up and n down steps and a word w
of size n called the weight. for all i, the weight satisfies wi ≤ (hi − 1)/2 where hi is the height of the
Dyck path between the (2i− 1)-th and 2i-th steps.

Figure 1 shows an example of a weighted Dyck path. We denote by Di the i-th step of the Dyck path.
For a better readability we grouped the steps two by two between vertical dashed lines and only wrote
strictly positive wi above steps D2i−1 and D2i. In this representation, hi is exactly the height of the point
between steps D2i−1 and D2i.

2 2

1

Fig. 1: A weighted Dyck path of size 9.

It is difficult to directly show that the weighted Dyck paths are enumerated by n! but the Françon-
Viennot bijection ψFV proves that it is the case for Laguerre histories so we obtain the result for weighted
Dyck paths with the bijection described below.



962 Arthur Nunge

In the following algorithm, we compare each value of a permutation σ with its two neighbors. We use
the convention σ0 = 0 and σn+1 = n+ 1.

Algorithm 2.2 (Françon-Viennot) Let σ ∈ Sn, j ∈ {1, . . . , n} and k = σj , then in the Dyck path of
ψFV (σ) we have

• D2k−1 = D2k = / if σj is a valley, i.e., σj−1 > σj < σj+1,

• D2k−1 = D2k = \ if σj is a peak, i.e., σj−1 < σj > σj+1,

• D2k−1D2k = /\ if σj is a double rise, i.e., σj−1 < σj < σj+1,

• D2k−1D2k = \/ if σj is a double descent, i.e., σj−1 > σj > σj+1.

The weight is constructed as follows: wk is equal to the number of 31-2 patterns where k represents the 2.

For example, if we consider σ = 528713649, its image by ψFV is the weighted Dyck path of Figure 1.
One can check that the values 1, 2, and 4 are peaks for σ, the values 5, 6, and 8 are valleys, and so on.
The 31-2 patterns are 52-3, 71-3, 52-4, 71-4, and 71-6 so that the weight is indeed (0, 0, 2, 2, 0, 1, 0, 0, 0).

Let us also describe the reverse algorithm constructing a permutation from a weighted Dyck path
(D,w).

Algorithm 2.3 The permutation σ is built iteratively by

• Initialization: σ = ◦;

• At the k-th step of the algorithm, replace the (wk + 1)-th ◦ of σ by:

– ◦k◦ if D2k−1 = D2k = /,

– k◦ if D2k−1D2k = /\,

– ◦k if D2k−1D2k = \/,

– k if D2k−1 = D2k = \;

• The final permutation is obtained by removing the last ◦.

For the weighted Dyck path of Figure 1, the previous algorithm gives us:

σ = ◦ → ◦ 1 ◦ → ◦ 2 ◦ 1 ◦ → ◦ 2 ◦ 13 ◦ → ◦ 2 ◦ 13 ◦ 4◦ → 52 ◦ 13 ◦ 4◦

→ 52 ◦ 13642 ◦ → 52 ◦ 713642 ◦ → 528713642 ◦ → 528713649 ◦ → 528713649.

3 Permutations to weighted Dyck paths
Let us describe what happens to the three statistics on permutations through the Françon-Viennot bijection.
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3.1 The statistics through the Françon-Viennot bijection
Definition 3.1 Let (D,w) be a weighted Dyck path of size n.

• The total weight of (D,w) (noted tw(D,w)) is the sum of the values of w.

• The descent set of (D,w) is

Des(D,w) = {i | wi > wi+1} ∪ {i | wi = wi+1, D2i = /} (3)

and the descent composition DC(D,w) is the composition of n whose descent set is Des(D,w).

• The Genocchi descent set of (D,w) is

GDes(D,w) = {i ∈ [2, n] | D2i−1 = \} (4)

then, as for permutations, the Genocchi composition of descent of (D,w) (noted GC(D,w)) is the
composition of n whose descent set is {d− 1 | d ∈ GDes(D,w)}.

On the weighted Dyck path (D,w) of Figure 1 we have tw(D,w) = 5. The positions i such that
D2i−1 = \ are GDes(D,w) = {5, 6, 7, 8} so that GC(D,w) = (4, 1, 1, 1, 2) and one can check that
DC(D,w) = (1, 3, 2, 1, 2).

Lemma 3.2 Let σ be a permutation of size n and (D,w) = ψFV (σ). We have the following properties:

• tw(D,w) = tot(σ);

• GC(D,w) = GC(σ);

• DC(D,w) = Rec(σ).

Proof: The first two assertions come directly from our description of ψFV . To prove the last one, it is eas-
ier to work with ψ−1FV constructing a permutation σ from a weighted Dyck path (D,w), see Algorithm 2.3.
Let k ∈ {1, . . . , n− 1}. If wk < wk+1, then k is to the left of k + 1 in σ so it is not a recoil for σ. Using
the same idea, if wk < wk+1 then k is a recoil for σ. Now, when wk = wk+1, we have a recoil in k if and
only if there is a new ◦ on the left of k when we place it in σ which happens if and only if D2k = /. 2

We now have a representation of the triple of statistics on the weighted Dyck paths but the definition of
GC on those objects is not very natural because we need to consider the composition on a modified set.
To simplify the second part of the construction, we transform the Dyck paths to obtain a more suitable
statistic.

3.2 An involution on Dyck paths
Definition 3.3 Let D be a Dyck path of size 2n. The Dyck path ψ(D) is obtained by sending every pair
of steps /\ or \/ at positions 2i, 2i+ 1 to one another.

We extend this definition to weighted Dyck paths by carrying the weight. Note that it is an involution.
An example is given in Figure 2 where we apply ψ to the weighted Dyck path of Figure 1.

Let us introduce the new statistics on weighted Dyck paths corresponding to DC and GC after applying
ψ.
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2 2

1
ψ

2 2

1

Fig. 2: An example of ψ.

Definition 3.4 Let us define GC0 and DC0 which are close to GC and DC.

• The Genocchi descent set of type 0 of a weighted Dyck path of size n is

GDes0(D,w) = {i ∈ [1, n− 1] | D2i = \} (5)

and the Genocchi composition of descent of type 0 as the composition of n whose descent set is
GDes0(D,w).

• The descent set of type 0 of (D,w) is

Des0(D,w) = {i | wi > wi+1} ∪ {i | wi = wi+1, D2i+1 = /} (6)

and the descent composition of type 0 (noted DC0(D,w)) is the composition of n whose descent
set is Des0(D,w).

Lemma 3.5 Let (D,w) be a weighted Dyck path, then

• tw(ψ(D,w)) = tw(D,w);

• GC0(ψ(D,w)) = GC(D,w);

• DC0(ψ(D,w)) = DC(D,w).

Proof: As ψ does not change the weight of the Dyck path, the total weight is carried. For the other two
statistics, one proves the claim by studying different cases depending on which steps are at positions 2i
and 2i+ 1. 2

4 Subexcedent functions to weighted Dyck paths
The aim of this section is to build a bijection from subexcedent functions to weighted Dyck paths sending
the triple (LC,DC, inv −maj(LC)) to (GC0,DC0, tw) where the statistic inv −maj(LC) corresponds
to the statistic α in the introduction. To do this, we construct a bijection from subexcedent functions to
an intermediate object: decreasing weighted subexcedent functions which are represented by a Catalan
object and a weight, and then construct a Catalan bijection between decreasing subexcedent functions and
Dyck paths.
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4.1 Subexcedent functions to decreasing weighted subexcedent functions
Definition 4.1 Let us define a decreasing subexcedent function of size n and a weight for it.

• A subexcedent function u of size n is decreasing if the word obtained by removing all its zeroes is a
strictly decreasing word.

• A weight of a decreasing subexcedent function is a wordw of size n such that for all k ∈ {1, . . . , n},
wk is smaller than or equal to the number of i < k such that 0 < ui < n − k (i.e., the number of
positive values on the left of k that could be at position k).

For example, the subexcedent function u = 540300200 is decreasing. For the associated weight, we
can define a maximum weight as the weight for which each value is maximum. The maximum weight
of u is 012221000 so the weight 002201000 is acceptable whereas 000002000 is not.

We say that a value of a subexcedent function is weighted if the corresponding weight is nonzero.

Remark 4.2 The decreasing subexcedent functions are indeed Catalan objects since one can build a
bijection with nondecreasing parking functions, the nondecreasing words whose i-th value is smaller
than or equal to i and whose first value is equal to one. First, reverse the subexcedent function, add one
to all values and then replace the 1 values except the first one by their left neighboring value.

4.1.1 Description of the bijection φ1 between subexcedent functions and de-
creasing weighted subexcedent functions

Our bijection φ1 can be described as an algorithm sorting a subexcedent function by moving successively
the greatest value to its left.

Algorithm 4.3 Let u be a subexcedent function of size n. Set weight w to 0n.

• Step 1: define the pivot as the greatest value in u such that one of its occurrences has smaller or
equal nonzero values to its left. If the pivot is not defined, the algorithm stops. Otherwise, let k be
the position of the rightmost occurrence of the pivot in u.

• Step 2: among the values smaller than or equal to the pivot on its left, let i be the position of the
rightmost occurrence of the greatest one. Modify the subexcedent function by decrementing ui by 1
and then swapping ui with uk. Modify the weight by incrementing wk. Go back to Step 1.

Let us give an example with u = 315503200. Our algorithm follows the steps:

• u = 315503200, P = 000000000, then pivot = 5, k = 4 and i = 3;

• u = 315403200, P = 000100000, then pivot = 5, k = 3 and i = 1;

• u = 512403200, P = 001100000, then pivot = 4, k = 4 and i = 3;

• u = 514103200, P = 001200000, then pivot = 4, k = 3 and i = 2;

• u = 540103200, P = 002200000, then pivot = 3, k = 6 and i = 4;

• u = 540300200, P = 002201000 and the algorithm stops.
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At the end, φ1(315503200) = (540300200, 002201000).

Proposition 4.4 The map φ1 is a well-defined function from subexcedent functions to decreasing subexce-
dent functions.

Proof: It is clear that φ1 is well-defined for every subexcedent function u and that the algorithm stops (for
each pivot we have at most n− 1− pivot swaps).

The result is decreasing in the sense of Definition 4.1 because the algorithm sorts the subexcedent
function.

To prove that the result is a decreasing weighted subexcedent function, we need to prove that the weight
respects the constraints of Definition 4.1. Each value at position j in the weight was increased at most
once per pivot that ended on its left which makes even fewer values than the number of values on the left
of j at the end of the algorithm. Moreover, it was increased only if the pivot was at position j, which
is possible only if the pivot is smaller than or equal to n − j. Finally w respects the constraints of the
definition. 2

Lemma 4.5 Consider Step 2 in Algorithm 4.3. After the exchange, we can find which values were
swapped.

The position of the pivot is the rightmost position such that there exists a strictly smaller weighted value
to its right, i.e., the rightmost position i such that there exists k > i with wk > 0 and ui > uk.

The pivot swapped with the nearest weighted value to its right whitch is always strictly smaller than the
pivot.

Proof: We start by proving the second part of the lemma. We prove by induction on each different pivot
that, with the notations of Algorithm 4.3, for all i < j < k, we have wj = 0. For the first pivot there is no
problem as there is no weighted value to its left.

Assume the property is true when we change the value of the pivot. The weighted values are necessarily
greater than or equal to the values on their left (up to the position where the previous pivot ended) so the
new pivot must swap with all these weighted values. This ends the proof of this part of the lemma.

We also prove the other part of the lemma by induction. After the first exchange, the property is
necessarily satisfied because of Step 2 of the algorithm. Assume that the property is true just after the
exchange and for all the previous exchanges. There are two possibilities.

• If the pivot is not the same as in the previous Step 2, there is no weighted values to its right since
it is the greatest value after the previous pivot and it begins at the starting position of the previous
pivot or to its right. As there is no weighted values to its right, after its exchange, the pivot is the
first greater value on the left of the rightmost weighted value.

• If the pivot stays the same, the property also holds since after the exchange, with the notations
of Algorithm 4.3, uk is smaller than or equal to each weighted value to its right since the pivot
swapped with all these weighted values. Moreover, each value between ui and uk is smaller than
or equal to uk.

Those cases prove that the property is true after each exchange. 2

The previous lemma shows that the map φ1 is injective by proving that we can find the previous pivot
and the value with which value it is swapped at each step. We shall admit for now that decreasing weighted
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subexcedent functions are enumerated by n! (which will be proved in the next section) which proves the
following proposition:

Proposition 4.6 The map φ1 is a bijection.

Note that the inverse map comes straightforward from Lemma 4.5.

4.1.2 The statistics through φ1

Let us first define the new statistics on the decreasing weighted subexcedent functions.

Definition 4.7 Let (u,w) be a subexcedent function of size n.

• The number of inversions inv(u,w) is the sum of the values of u and w.

• The descent set of (u,w) is

Des(u,w) = {i | wi > wi+1} ∪ {i | wi = wi+1, ui > ui+1} (7)

and its descent composition DC(u,w) is the composition of n whose descent set is Des(u,w).

• The statistic LC on (u,w) is the composition LC(u).

Remark 4.8 We shall make some remarks on the previous definitions.

1. The previous definitions are still correct if the weighted subexcedent function is not decreasing.
Moreover, if we associate a null weight with a subexcedent function, those definitions give the same
statistics than the usual ones on subexcedent functions.

2. Note that on a decreasing subexcedent function, the mirror composition of the statistic LC exactly
corresponds to the composition whose descent set is the set of values of u. By defining the total
weight statistic on the decreasing weighted subexcedent function as the sum of the values of its
weight, we have directly tw(u,w) = inv(u,w)−maj(LC(u,w)).

Lemma 4.9 Let u be a subexcedent function, then:

• tw(φ1(u)) = inv(u)−maj(LC(u));

• DC(φ1(u)) = DC(u);

• LC(φ1(u)) = LC(u).

To prove the last point of this lemma we shall consider the exchanges of Algorithm 4.3 as a succession
of elementary exchanges described by the following algorithm where i and k come from the notations of
Algorithm 4.3.

Algorithm 4.10 Set j1 equal to i and j2 equal to k.

• Step 1: If j1 = k − 1, go to step 2. Increment uj1+1 and then swap uj1 and uj1+1. Set j1 = j1 + 1
and redo Step 1.

• Step 2: If j2 = i, the algorithm stops. Decrement uj2−1 and then swap uj2 and uj2−1. Set
j2 = j2 − 1 and redo Step 2.
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For example, if at some point of Algorithm 4.3, we have u = . . . 4106 . . . and we have to exchange 6
with 4, the exchanges of Algorithm 4.10 would be:

• we begin with Step 1:

– u = . . .2406 . . .;

– u = . . . 2146 . . .;

• and then apply Step 2:

– u = . . . 2163 . . .;

– u = . . . 2603 . . .;

– u = . . .6103 . . .

Proof of Lemma 4.9: The proof of this lemma is based on the first point of Remark 4.8 and works by
proving that the statistics inv, DC and LC do not change at each exchange of Algorithm 4.3.

The inv statistic is not modified since each decrementation of a value of u is balanced by a incremen-
tation of a value of w.

In order to prove that the descent set of a weighted subexcedent function does not change when we are
doing an exchange of Algorithm 4.3, we have to study different cases depending on whether there is a
descent at positions i − 1, i, k − 1, and k or not. Let (u(1), w(1)) be the weighted subexcedent function
before the exchange and (u(2), w(2)) the one after. For positions k and i− 1, one proves that (u(1), w(1))
has a descent in those positions if and only if it is the case for (u(2), w(2)). For the other positions one
has to pay attention whether i = k − 1 or not to prove the same property for both weighted subexcedent
functions.

To prove that the statistic LC does not change at each step we prove that it is also true after each ele-
mentary exchange of Algorithm 4.10. Note that in both steps of the algorithm, the subexcedent functions
before and after the exchange are two subexcedent functions u(1) and u(2) which differ only at positions
j and j + 1. Moreover, if u(1) = . . . ab . . . with a > b, u(2) = . . . b + 1a . . ., so we just have to prove
that two such subexcedent functions satisfy LC(u(1)) = LC(u(2)). To prove this property, one studies
different cases depending on whether a and b add a value or not during the computation of LC(u(1)). 2

4.2 Decreasing weighted subexcedent functions to weighted Dyck paths
Let us now describe the final bijection between decreasing weighted subexcedent functions and weighted
Dyck paths. To describe it we construct a Dyck path from a decreasing subexcedent function and carry
the weight. Then we show that it sends the triple of statistics of the decreasing weighted subexcedent
functions to the triple of statistics of the weighted Dyck paths.

4.2.1 Description of the bijection φ2 between decreasing weighted subexce-
dent functions and weighted Dyck paths

The map φ2 on a decreasing weighted subexcedent function of size n is constructed by carrying the weight
and constructing the Dyck path D from the decreasing subexcedent function u as follows.
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Algorithm 4.11 Set D1 := / and D2n := \. Then, for each i in {1, . . . , n− 1},

• set D2i := \ if n− i is a value in u and D2i := / otherwise;

• set D2i+1 := \ if ui = 0 and D2i+1 := / otherwise.
An example is given Figure 3. The positions of the zeroes in the subexcedent function are {3, 5, 6, 8, 9}

which correspond to the positions i such that D2i+1 = \. The values correspond to n− i where i are the
positions where D2i = \.

φ2(540300200, 002201000) =

2 2

1

Fig. 3: An example of φ2.

Lemma 4.12 In the path D constructed in Algorithm 4.11, let hi be the height between D2i−1 and D2i.
Then, for all i, we have (hi − 1)/2 equal to the number of values smaller than or equal to n − i in u to
the left of i.

Proof: We prove this lemma by induction. For i = 1, we have (h1 − 1)/2 = 0 and the property holds.
Assume the property for a given i. To see that the property holds for i + 1, one proves it by studying
different cases depending on whether ui+1 is equal to zero or not and n− i− 1 is in u or not. 2

Proposition 4.13 The map φ2 is well-defined from decreasing weighted subexcedent functions to weighted
Dyck paths and is a bijection.

Proof: The image of a decreasing weighted subexcedent function is a path. Lemma 4.12 proves that
the height of the path is always nonnegative and that hn = 1. As D2n = \, the path is a Dyck path.
Lemma 4.12 also gives us that the constraints on the weight of a decreasing weighted subexcedent function
correspond to the constraints of its image.

As the constraints for the weights correspond exactly from one object to the other, we only need to
prove that φ2 is a bijection from decreasing subexcedent functions to Dyck paths to prove that φ2 is a
bijection on the weighted objects.

As decreasing subexcedent functions and Dyck paths are both enumerated by the Catalan numbers, we
only need to prove that this map is injective. The only way to have the same image from two decreasing
subexcedent functions is that the nonzero values and their positions are fixed, but as the subexcedent
functions are decreasing, there is no choice in the order of those values. 2

Note that by proving that φ2 is a bijection we proved that decreasing weighted subexcedent functions
are enumerated by n! so it finishes the proof of Proposition 4.6.

4.2.2 The statistics through φ2

Lemma 4.14 Let (u,w) be a decreasing weighted subexcedent function. We have

• tw(u,w) = tw(φ2(u,w));
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• LC(u,w) = GC0(φ2(u,w));

• DC(u,w) = DC(φ2(u,w)).

Proof: As the weight is carried, we have tw(u,w) = tw(φ2(u,w)). For the descent set, as the weight is
carried and the positions of the zeroes in u correspond to the \ steps at odd positions in D, we also have
DC(u,w) = DC(φ2(u,w)). Moreover, LC(u,w) is the mirror composition of the composition whose
descent set is the nonzero values in u and GC0(D,w) is related to the \ steps at even positions in D, so
that we also have LC(u,w) = GC0(φ2(u,w)). 2

5 Final result
Theorem 5.1 Let I and J be two compositions of n, we have∑

u∈SFn

DC(u)=I
LC(u)=J

qinv(u)−maj(J) =
∑
σ∈Sn

Rec(σ)=I
GC(σ)=J

qtot(σ). (8)

Proof: To prove this theorem we apply successively the bijections defined in the previous sections to
construct a permutation from a subexcedent function and we conclude by applying Lemmas 4.9, 4.14,
3.5, and 3.2 to prove the statistics correspondence. 2

Remark 5.2 This theorem proves Conjecture 6.2 of [6]. The other conjectures of [6] are directly obtained
from this one.

Proposition 5.3 Define the left to right maximums of a permutation as the values with only smaller
values to their left. In addition to carry the recoil composition of a permutation, the global bijection on
permutations carries also the left to right maximums.

One proves this proposition by studying the statistic of left to right maximums through the bijections.
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[3] J. FRANÇON and X. G. VIENNOT, Permutations selon leurs pics, creux, doubles montées et double
descentes, nombres d’Euler et nombres de Genocchi, Disc. Math. 28(1) (1979), 21–35.

[4] I. M. GELFAND, D. KROB, A. LASCOUX, B. LECLERC, V. S. RETAKH, and J.-Y. THIBON, Non-
commutative symmetric functions, Adv. in Math. 112 (1995), 218–348.

[5] F. HIVERT, J.-C. NOVELLI, L. TEVLIN and J.-Y. THIBON, Permutation statistics related to a class
of noncommutative symmetric functions and generalizations of the Genocchi numbers, Sel. math.,
New ser. 15 (2009), 105–119.

[6] J.-C. NOVELLI, J.-Y. THIBON and L. WILLIAMS, Combinatorial Hopf Algebras, Noncommutative
Hall-Littlewood Functions, And Permutation tableaux, Adv. Math. 224 (2010) 1311–1348.

[7] L. TEVLIN, Noncommutative monomial symmetric functions, Proc. FPSAC’07, Tianjin, China.


	Introduction
	Notations and background
	Permutations, compositions, and subexcedent functions
	The Françon-Viennot bijection

	Permutations to weighted Dyck paths
	The statistics through the Françon-Viennot bijection
	An involution on Dyck paths

	Subexcedent functions to weighted Dyck paths
	Subexcedent functions to decreasing weighted subexcedent functions
	Description of the bijection 1 between subexcedent functions and decreasing weighted subexcedent functions
	The statistics through 1

	Decreasing weighted subexcedent functions to weighted Dyck paths
	Description of the bijection 2 between decreasing weighted subexcedent functions and weighted Dyck paths
	The statistics through 2


	Final result

