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A two-sided analogue of the Coxeter complex

T. Kyle Petersen1†

1 DePaul University, Chicago, IL, USA

Abstract. For any Coxeter system (W,S) of rank n, we introduce an abstract boolean complex (simplicial poset)
of dimension 2n − 1 which contains the Coxeter complex as a relative subcomplex. Faces are indexed by triples
(J,w,K), where J and K are subsets of the set S of simple generators, and w is a minimal length representative
for the double parabolic coset WJwWK . There is exactly one maximal face for each element of the group W . The
complex is shellable and thin, which implies the complex is a sphere for the finite Coxeter groups. In this case,
a natural refinement of the h-polynomial is given by the “two-sided” W -Eulerian polynomial, i.e., the generating
function for the joint distribution of left and right descents in W .

Résumé. Pour tout système de Coxeter (W,S) de rang n, nous introduisons un complexe booléen (poset simplicial) de
dimension 2n− 1 qui contient le complexe de Coxeter comme sous-complexe relatif. Les faces sont indexées par les
triplets (J,w,K), où J et K sont des sous-ensembles de l’ensemble S de générateurs simples, et w est un représentant
de la longueur minimale pour le double coset parabolique WJwWK . Il y a exactement une face maximale pour
chaque élément du groupe W . Le complexe est épluchanble et maigre, ce qui implique que le complexe est une
sphère pour les groupes de Coxeter finis. Dans ce cas, un raffinement naturel du h-polynomial est donné par le
polynôme W -Eulérien “deux côtés”, à savoir, la fonction génératrice pour la distribution conjointe des descentes
gauche et à droite dans W .

Keywords. Coxeter group, Coxeter complex, Eulerian polynomial, contingency table

1 Introduction
Coxeter groups were developed to study symmetries of regular polytopes, and they play a major role in
the study of Lie algebras (the Weyl group of a root system is a Coxeter group). The Coxeter complex
is a simplicial complex associated with the reflection representation of the group, but which can also be
defined abstractly via cosets of parabolic subgroups. The goal of this paper is to provide a “two-sided”
analogue of the Coxeter complex by considering double cosets of parabolic subgroups.

Before turning to the new construction, let us recall some definitions and important properties of the
usual Coxeter complex. We assume the reader has some familiarity with the study of Coxeter groups. See
Humphreys’ book [14] or Björner and Brenti’s book [6] for background.

Fix a finitely generated Coxeter system (W,S), and let WJ denote the standard parabolic subgroup
generated by a subset of simple generators J ⊆ S. It is well known that the set of cosets of parabolic
subgroups forms an abstract simplicial complex known as the Coxeter complex, and denoted by

Σ = Σ(W,S) = {wWJ : w ∈W,J ⊆ S}.
†Email: tpeter21@depaul.edu. Supported by a Simons foundation collaboration grant.
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The faces of Σ are ordered by reverse inclusion of cosets, i.e.,

wWJ ≤Σ w′WJ′ if and only if wWJ ⊇ w′WJ′ .

Note that this means maximal elements are singleton sets: wW∅ = {w}, and there is a unique minimal
element: wWS = W . Some well-known features of the Coxeter complex are highlighted in the following
result, most of which can be found in work of Björner [5] (see also Abramenko and Brown [1, Chapter
3]), though most of these facts were known earlier. See, e.g., Bourbaki [7].

Theorem 1 For any Coxeter system (W,S) with |S| = n <∞ we have the following.

1. The Coxeter complex Σ is a balanced simplicial complex of dimension n− 1.

2. The facets (maximal faces) of Σ are in bijection with the elements of W .

3. The Coxeter complex is shellable and any linear extension of the weak order on W gives a shelling
order for Σ.

4. If W is infinite then Σ is contractible.

5. If W is finite,

(a) the geometric realization of Σ is a sphere, and

(b) the h-polynomial of Σ is the W -Eulerian polynomial,

h(Σ; t) =
∑
w∈W

tdes(w),

where des(w) denotes the number of descents of the element w.

We will try to emulate all these properties for a “two-sided” version of the Coxeter complex, denoted
Ξ = Ξ(W,S). Our main results are summarized as follows.

Theorem 2 For any Coxeter system (W,S) with |S| = n <∞, we have the following.

1. The complex Ξ is a balanced boolean complex of dimension 2n− 1.

2. The facets (maximal faces) of Ξ are in bijection with the elements of W , and the Coxeter complex
Σ is a relative subcomplex of Ξ.

3. The complex Ξ is shellable and any linear extension of the two-sided weak order on W gives a
shelling order for Ξ.

4. If W is infinite then Ξ is contractible.

5. If W is finite,

(a) the geometric realization of Ξ is a sphere,
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(b) a refined h-polynomial of Ξ is the two-sided W -Eulerian polynomial,

h(Ξ; s, t) =
∑
w∈W

sdesL(w)tdesR(w),

where desL(w) denotes the number of left descents of w and desR(w) denotes the number of
right descents of the element w.

The main contrasts between Ξ and Σ lie in the fact that Ξ is roughly twice the dimension of Σ and in
the fact that Ξ is not a simplicial complex. While all the faces of Ξ are simplices, many of these simplices
share the same vertex set.

We remark that our approach in this work is combinatorial, not geometric. There are two different
approaches to proving the topological results for the Coxeter complex listed in Theorem 1. One way (fol-
lowing Bourbaki [7]) is to relate the faces of the Coxeter complex to the faces of the reflection hyperplane
arrangement for the Coxeter group. Thus the topology of the Coxeter complex is manifest in the ambient
space. On the other hand, Björner showed in [5] how to use poset-theoretic tools to study the topology of
the complex with only the abstract definition of the face poset.

The approach of this paper mirrors that of Björner. We define the face poset of Ξ abstractly, and use
Björner’s techniques to deduce Theorem 2. We hope to uncover a more geometric description of Ξ in the
future.

2 A two-sided Coxeter complex
Fix a Coxeter system (W,S) with |S| = n. We call the elements s ∈ S the simple generators of W .
Every element w ∈ W can be written as a product of elements in S, w = s1 · · · sk, and if this expression
is minimal, we say the length of w is k, denoted `(w) = k. An expression of minimal length is called a
reduced expression.

The weak order is an important partial order on W . The weak order comes in two equivalent types:
“left” and “right” weak order. The left weak order is the transitive closure of the relations u <L su, where
s ∈ S and `(su) = `(u)+1. Similarly, the covers for the right weak order are of the form u <R us where
`(us) = `(u) + 1. We denote the left weak order by u ≤L v and the right weak order by u ≤R v. The
“two-sided” weak order is the transitive closure of both types of cover relations, denoted by u ≤LR v.

The left (resp. right) descent set of an element w is the set of all simple generators that correspond to
downward covers in left (resp. right) weak order. We denote the left and right descent sets by DesL(w)
and DesR(w), respectively, i.e.,

DesL(w) = {s ∈ S : sw <L w} and DesR(w) = {s ∈ S : ws <R w}.

We define the corresponding ascent sets as the complements of the descent sets in S:

AscL(w) = S −DesL(w) = {s ∈ S : sw >L w},

and
AscR(w) = S −DesR(w) = {s ∈ S : ws >R w}.

Given a subset of simple generators, J ⊆ S, let WJ denote the group generated by the elements of J ,
i.e., WJ = 〈s : s ∈ J〉. This group is a Coxeter group in its own right, and we call such a subgroup
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a standard parabolic subgroup. The Coxeter complex arises when considering the quotients of the form
W/WJ . As such, the faces of the Coxeter complex are identified with left cosets of parabolic subgroups
wWJ . For our two-sided analogue we consider elements from all double quotients WI\W/WJ , so the
faces will be related to double cosets of parabolic subgroups WIwWJ , where I and J are subsets of S.

An essential fact about cosets of parabolic subgroups is that each coset wWJ has a unique element of
minimal length, call it u, such that J ⊆ AscR(u), or DesR(u) ⊆ S − J . In fact, the same is true for
double cosets, and we record this in the following lemma, which can be found in [7, Chapter 4, Exercise
1.3].

Lemma 1 Each double coset WIwWJ has a unique element of minimal length, call it u, such that

I ⊆ AscL(u) and J ⊆ AscR(u).

Moreover, for each v ∈WIwWJ , u is below v in the two-sided weak order: u ≤LR v.

Let IW J denote the set of minimal representatives for WI\W/WJ , i.e.,

IW J = {w ∈W : I ⊆ AscL(w) and J ⊆ AscR(w)}.

If I = ∅ we have ∅W J = W J is the set of left coset representatives.
With the lemma in mind, we could just as easily replace the cosets wWJ in the definition of Σ with

pairs (w, J) such that w ∈W J . Extending this idea, we make the following definition.
Let

Ξ = {(I, w, J) : I, J ⊆ S and w ∈ IW J}.

We partially order the elements of Ξ by reverse inclusion of the index sets I and J as well as the corre-
sponding double coset, i.e.,

(I, w, J) ≤Ξ (I ′, w′, J ′) if and only if


I ⊇ I ′,
J ⊇ J ′, and
WIwWJ ⊇WI′wWJ′ .

We will refer to the Ξ as the two-sided Coxeter complex.

2.1 Ξ is a balanced boolean complex
The maximal elements in Ξ are those of the form (∅, w, ∅), and there is a unique minimum, (S, e, S).
The rank one elements are those of the form (S − {i}, e, S) and (S, e, S − {k}), i.e., those obtained by
omitting a single element from S on either the left or on the right.

We will now prove that lower intervals in the poset Ξ are isomorphic to boolean algebras. Since the
face poset of a simplex is the boolean algebra on its vertex set, a poset with this property is known as a
simplicial poset, or as a boolean complex.

Proposition 1 The poset Ξ is a simplicial poset. In particular, the interval below the element (I, w, J) ∈
Ξ isomorphic to the set of all subsets of (S − I)× (S − J).
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Proof: Fix an element F = (I, w, J) of Ξ and consider any element below F in the partial order, i.e.,
suppose we have an element (I ′, w′, J ′) ≤Ξ F . Then by definition, S ⊇ I ′ ⊇ I and S ⊇ J ′ ⊇ J , so
(I ′ − I, J ′ − J) is an element of (S − I)× (S − J).

To finish the proof we must show that every pair of subsets (I ′ − I, J ′ − J) in (S − I) × (S − J)
corresponds to a unique element below F .

Suppose (I ′ − I, J ′ − J) is a pair of subsets in (S − I) × (S − J), i.e., S ⊇ I ′ ⊇ I and S ⊇
J ′ ⊇ J . If C = WI′vWJ′ is a coset that contains WIwWJ , then in particular w ∈ C and we can write
C = WI′wWJ′ . Thus for fixed I ′ and J ′, there is one such coset. By Lemma 1 there exists a unique
element w′ ∈ C such that DesL(w′) ⊆ S − I ′ and DesR(w′) ⊆ S − J ′. This identifies the unique triple
G = (I ′, w′, J ′) such that G ≤Ξ F , completing the proof. 2

Proposition 1 means that each element of Ξ can be thought of as an abstract simplex. As such, we will
refer to the elements as faces. We say a face (I, w, J) is represented by w. While each face of Ξ is a
simplex, it is not a simplicial complex, since distinct faces may share the same vertex set. In fact, we will
see that for any (W,S), Ξ has the property that every facet (maximal face) has the same vertex set.

The dimension of a face is given by one less than its rank in the poset, i.e., if F = (I, w, J),

dimF = |S − I|+ |S − J | − 1.

In particular, if |S| = n, then Ξ has 2n vertices, each of the form (S − {i}, e, S) or (S, e, S − {j}). The
facets are of the form (∅, w, ∅) and so dim Ξ = 2n− 1. Since there are only 2n vertices, we see that Ξ is
trivially balanced, i.e., we can assign colors 2n colors to the vertices so that no face has two vertices of
the same color. Along with Proposition 1 we have now established part (1) of Theorem 2.

2.2 Σ is a relative subcomplex of Ξ
We have already mentioned that maximal faces of Ξ are in bijection with elements of W . Let us denote
the facet corresponding to an element w by Fw = (∅, w, ∅). If we consider only adding elements to the
left index set (or only adding elements to the right) we get a subposet of Ξ that corresponds to a facet of
the usual Coxeter complex, i.e., as posets

[(S, e, ∅), Fw] ∼= [(∅, e, S), Fw]↔ [(e, S), (w, ∅)] ∈ Σ.

Taking the union of all such intervals (choosing the left or right version) we get a full copy of Σ as an
upper order ideal inside of Ξ.

Σ = {(w, J) : J ⊆ S,w ∈W J} ∼= {(∅, w, J) : J ⊆ S,w ∈ ∅W J},
= {F ∈ Ξ : (∅, e, S) ≤Ξ F}.

To phrase this result another way, we say that Σ is a relative subcomplex of Ξ. This establishes part (2) of
Theorem 2.

2.3 Ξ is partitionable
We can notice that the faces represented by a given element w form an interval in Ξ whose maximal
element is a maximum of Ξ. That is, let Rw = (AscL(w), w,AscR(w)), which we call the restriction of
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w. Then the interval [Rw, Fw] in Ξ consists of all faces represented by w, and moreover this interval is
boolean:

[Rw, Fw] = {(I, w, J) : I ⊆ AscL(w), J ⊆ AscR(w)},
∼= AscL(w)×AscR(w).

The union of all such intervals partitions the faces of Ξ, i.e.,

Ξ =
⋃

w∈W
[Rw, Fw], (1)

and this union is disjoint. Moreover, since each interval in the partition is an upper ideal isomorphic to a
boolean algebra, Ξ is partitionable in the topological sense as well. See [20] for the relevant definition.

2.4 Ξ is shellable
Before describing how to find a shelling of Ξ, we first make the following simple observation. If (I, u, J)
is a face of Ξ below the face (I ′, v, J ′), then in particular WI′vWJ′ ⊆ WIuWJ , and v ∈ WIuWJ . But
by Lemma 1 this means u is below v in the two-sided weak order.

Observation 1 If (I, u, J) ≤Ξ (I ′, v, J ′), then u ≤LR v.

From this simple observation it follows that any choice of linear extension of the two-sided weak order
for W is a shelling order for Ξ. First recall the definition of a shelling of a boolean complex. This is
an ordering of the facets F1, F2, . . . such that the intersection of the boundary of each new facet with the
union of the boundaries of the prior facets is a pure codimension one complex. That is, for each k, we
must show

∂Fk ∩

(
k−1⋃
i=1

∂Fi

)
is a pure codimension one complex. Here ∂Fk denotes the boundary of Fk, i.e., all proper faces of Fk.

Consider all the codimension one faces of the facet Fw = (∅, w, ∅). These come in four types:
• ({s}, sw, ∅) if s ∈ DesL(w) • (∅, ws, {s}) if s ∈ DesR(w)
• ({s}, w, ∅) if s ∈ AscL(w) • (∅, w, {s}) if s ∈ AscR(w)

In the first two cases, the elements sw and ws are below w in the two-sided weak order. If we order the
facets of Ξ according to a linear extension of the two-sided weak order:

Fw1
, Fw2

, . . . , Fwk
, Fw, . . . ,

then the intersection of Fw with the union of the prior facets is given by those faces below Fw in Ξ that
are not represented by w, i.e.,

∂Fw ∩

(
k⋃

i=1

∂Fwi

)
=

⋃
s∈DesL(w)
t∈DesR(w)

[(S, e, S), ({s}, sw, ∅)] ∪ [(S, e, S), (∅, wt, {t})].

Because all maximal faces in the union have codimension one, we have proved the following proposition.

Proposition 2 (Shelling order) Any linear extension of the two-sided weak order on W is a shelling
order for Ξ.

This proves part (3) of Theorem 2.
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2.5 Consequences of shelling
Let us say a bit more about the codimension one faces of Ξ. These are of the form ({s}, w, ∅) or
(∅, w, {t}). Without loss of generality, consider the first case. The double coset here has only two el-
ements: W{s}wW∅ = {w, sw}, so the face ({s}, w, ∅) is only contained in the facets (∅, w, ∅) and
(∅, ws, ∅). This shows that Ξ is what is called a thin complex (also sometimes known as a pseudomani-
fold).

Results of Björner ([5, Theorem 1.5] and [4, Proposition 4.3]) tells us about thin, shellable complexes.
If the complex is infinite, it is contractible. If the complex is finite it is a sphere. Thus (by passing to
the barycentric subdivision so we get an honest simplicial compex) we obtain the following corollary,
establishing parts (4) and (5a) of Theorem 2.

Corollary 1 Each codimension one face of Ξ is contained in exactly two facets, and hence:

• Ξ is contractible when W is infinite,

• Ξ is a sphere when W is finite.

Before we move on to prove the remaining part of Theorem 2, we include some remarks.

Remark 1 A first guess to define a two-sided Coxeter complex is to consider the set of all double cosets
WIwWJ , ordered by reverse inclusion. Such a poset does indeed exist, but it is difficult to analyze. It is
not even obvious when this poset is ranked. For one thing, there are many subtle equalities of cosets, e.g.,
with w fixed, we might haveWIwWJ = WI′wWJ′ and yet I 6= I ′ or J 6= J ′. For an extreme case, notice
that for any I ⊆ J , we have WIeWJ = WJ . Enumeration of the number of distinct double cosets is the
topic of ongoing work of Billey, Konvalinka, Petersen, Slofstra, and Tenner [3].

Remark 2 If we fix a choice of J andK, we can restrict the Bruhat order onW to give a partial ordering
on the elements JWK , or on the double quotientWJ\W/WK . Stembridge gives a geometric construction
of this partial order in terms of root systems [21]. Diaconis and Gangolli did the same in the case of the
symmetric group, realized as a partial order on contingency tables with prescribed row and column sums
[10].

3 Face enumeration for finite W
Throughout this section we assumeW is finite and fix an ordering on the generating set, S = {s1, . . . , sn}.
In this way we can identify subsets of S with subsets of [n] := {1, 2, . . . , n}. Let x1, . . . , xn and
y1, . . . , yn be indeterminates. If I ⊆ [n], let xI =

∏
i∈I xi, and similarly for yI .

For a face F = (I, w, J) in Ξ, the face monomial for F is

m(F ) = x[n]−Iy[n]−J =
∏

i∈[n]−I

xi
∏

j∈[n]−J

yj .

Notice this encodes the color of the face F ; the x variables encode the left sided vertices, the y variables
encode the right sided vertices.

Let f(x,y) = f(x1, . . . , xn, y1, . . . , yn) denote the generating function for colors of faces, i.e.,

f(x,y) =
∑
F∈Ξ

m(F ) =
∑
I,J

fI,JxIyJ .
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Notice that the coefficient fI,J is the number of faces (S − I, w, S − J), i.e., it counts the cardinality of
the corresponding double quotient:

fI,J = |S−IWS−J | = |WS−I\W/WS−J | = |{w ∈W : DesL(w) ⊆ I,DesR(w) ⊆ J}|.

Now define the quantities

hI,J =
∑
K⊆I
L⊆J

(−1)|I−K|+|J−L|fK,L = |{w ∈W : DesL(w) = I,DesR(w) = J}|,

and the corresponding generating function h(x,y) = h(x1, . . . , xn, y1, . . . , yn) by

h(x,y) =
∑
I,J

hI,JxIyJ ,=
∑
w∈W

xDesL(w)yDesR(w).

Using the partitioning of faces of Ξ given in (1), it is straightforward to check that

f(x,y) =
∑
w∈W

∑
Rw≤F≤Fw

m(F ),

=

n∏
i=1

(1 + xi)(1 + yi) · h
(

x1

1 + x1
, . . . ,

xn
1 + xn

,
y1

1 + y1
, . . . ,

yn
1 + yn

)
. (2)

That is, we obtain the f -polynomial as a multiple of a certian specialization of the h-polynomial. Putting
identity (2) the other way around, we can write

h(x,y) =

n∏
i=1

(1− xi)(1− yi) · f
(

x1

1− x1
, . . . ,

xn
1− xn

,
y1

1− y1
, . . . ,

yn
1− yn

)
. (3)

Setting xi = x and yj = y, the h-polynomial specializes to

h(x, y) =
∑
w∈W

xdesL(w)ydesR(w).

In other words, the polynomial h(x, y) is a “two-sided” Eulerian polynomial. This establishes the claim
in part (5b) of Theorem 2.

We also comment that setting xi = yi = x in f or h would recover the usual f - and h-polynomials of
Ξ, while setting xi = x and yi = 1 would recover the usual f - and h-polynomials of Σ.

Having established Theorem 2 in full, we now turn to some related questions and observations.

4 Two-sided Eulerian polynomials
With finiteW , we can define two-sidedW -Eulerian polynomial, denotedW (x, y), as the joint distribution
of left and right descents:

W (x, y) =
∑
w∈W

xdesL(w)ydesR(w) =
∑

0≤i,j≤n

〈
W

i, j

〉
xiyj ,
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where
〈
W
i,j

〉
denotes the number of elements in W with i left descents and j right descents. We call

〈
W
i,j

〉
a two-sided W -Eulerian number.

For example if W = E6, we have the following array of two-sided Eulerian numbers:

[〈
E6

i, j

〉]
0≤i,j≤6

=



1 0 0 0 0 0 0
0 232 584 389 64 3 0
0 584 4785 5440 1310 64 0
0 389 5440 13270 5440 389 0
0 64 1310 5440 4785 584 0
0 3 64 389 584 232 0
0 0 0 0 0 0 1

.

For the family of type An, these numbers were first studied by Carlitz, Roselle, and Scoville [9], but
have been recently revisited by the author [17] and Visontai [23] (who also discussed type Bn Coxeter
groups). The recent interest in these polynomials stems from a conjecture of Gessel that we will now
describe and generalize to all Coxeter groups.

To state Gessel’s conjecture, one must first make note of certain symmetries in the two-sided Eulerian
numbers. Notice that the map w 7→ w−1 swaps left and right descents, desL(w) = desR(w−1), so we get
symmetry in i and j: 〈

W

i, j

〉
=

〈
W

j, i

〉
. (4)

Also recall that left multiplication by the long element w0 is an anti-automorphism of the weak order:
i.e., ws <L w if and only if w0ws >L w0w, and similarly for the right weak order. Thus if |S| = n,
desL(w0w) = n− desL(w) and desR(w0w) = n− desR(w). Hence we have〈

W

i, j

〉
=

〈
W

n− i, n− j

〉
. (5)

Phrasing symmetries (4) and (5), we have the following observation about the two-sided W -Eulerian
polynomials.

Observation 2 For any finite Coxeter group W of rank n,

1. W (x, y) = W (y, x), and

2. W (x, y) = xnynW (1/x, 1/y).

Integer polynomials that possess symmetries as in Observation 2 have an expansion in the following
basis:

Γn = {(xy)a(x+ y)b(1 + xy)n−2a−b}0≤2a+b≤n.

The generalized Gessel conjecture is that the two-sided Eulerian polynomials expand positively in this
basis. This generalizes the univariate “gamma basis” whose study has led to many interesting results. See
[8, 13, 19] and [18, Chapter 4].

Conjecture 1 (Generalized Gessel’s conjecture) For any finite Coxeter group W , there exist nonnega-
tive integers γWa,b such that

W (x, y) =
∑

0≤2a+b≤n

γWa,b(xy)a(x+ y)b(1 + xy)n−2a−b.
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s2 s3 s6

s1

s2

s3

s5  1 0 0 0
0 0 1 1
0 3 0 1



Fig. 1: A double coset in A6 mapping to a contingency table in Ξ(7).

The univariate version of this claim (i.e., with x = 1) is true, though there is no case-free proof. See
[12, 16, 22] and also [18, Theorem 11.2].

Remark 3 Very recently, the author was informed that Gessel’s original conjecture (for W = An =
Sn+1) was proved by Lin [15]. The method of proof seems to have been a careful induction argument
using a recurrence for the γAn

a,b given by Visontai [23]. The other cases have been verified for small rank
(n ≤ 8). Type Bn is governed by similar combinatorics, so perhaps a similar induction proof can be
found. In all cases, it would be nice to know what the γWa,b count.

5 Contingency tables
Throughout this section we consider the special case where W = Sn is the symmetric group. As shown
in Diaconis and Gangolli [10], for fixed I and J the double cosets WIwWJ are in bijection with arrays
of nonnegative integers with prescribed row and column sums. Our contribution here is to say that the
partial order on Ξ translates to refinement order on these arrays.

To see how this connection is made, we draw double cosets as diagrams of “balls in boxes.” First, we
draw permutations as two-dimensional arrays. If w(i) = j we draw a ball in column i (left to right), row
j (bottom to top). We then insert some vertical and horizontal bars in gaps between balls. The symmetric
group acts on the left by permuting rows that are not separated by a bar. It acts on the right by permuting
columns not separated by a bar.

The left and right descents are easily seen in this picture: left descents correspond to adjacent rows in
which the ball in the top row is to the left of the ball in the bottom row. Right descents correspond to
adjacent columns in which the ball in the first column is higher than the ball in the second. For example,
w = 7142536 is drawn in Figure 1. We can see desL(w) = {3, 6} and desR(w) = {1, 3, 5}.

To indicate a double parabolic coset WIwWJ , we draw solid horizontal bars in gaps that correspond
to S − I and solid vertical bars in gaps that correspond to S − J . In Figure 1, I = {s1, s2, s3, s5}
and J = {s2, s3, s6}. The minimal representative for the double coset corresponds to the permutation
obtained by sorting the balls in increasing order from left to right and from bottom to top. The minimal
representative for the coset illustrated in Figure 1 would then be u = 7123546. Notice that both the left
descents and right descents of u occur in barred positions.

We can map a balls-in-boxes diagram to an array of nonnegative integers by merely counting the number
of balls in each box. See Figure 1. Let Ξ(n) denote the set of all such arrays, which are known as two-way
contingency tables. More precisely, define Ξ(n) to be the set of all nonnegative integer arrays whose
entries sum to n and whose row sums and column sums are positive.
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To move up in the partial order on Ξ, we refine our balls and boxes picture by inserting more bars.
On the contingency table side, this means our arrays get more rows and columns. Each cover relation
corresponds to adding or deleting a single bar, so rank is given by the total number of bars. A balls-in-
boxes picture with k horizontal bars and l vertical bars will correspond to a (k+ 1)× (l+ 1) contingency
table. Note that maximal contingency tables are permutation matrices.

Downward covers in the partial order correspond to removing a single bar from the balls in boxes
picture, which therefore adds all the entries in two adjacent rows or two adjacent columns of the corre-
sponding contingency tables.

Proposition 3 The two-sided Coxeter complex of the symmetric group Sn is isomorphic to Ξ(n) under
refinement order.

Remark 4 The dual of the typeAn Coxeter complex is the permutahedron, which plays an interesting role
in the study of combinatorial Hopf algebras, such as the Malvenuto-Reutenauer algebra and the algebra
of quasisymmetric functions. See work of Aguiar and Sottile, for example [2].

Suggestively, two-way contingency tables provide an indexing set for a Hopf algebra known as the set
of matrix quasisymmetric functions, which gives several well-known combinatorial Hopf algebras (e.g.,
quasisymmetric functions, noncommutative symmetric functions) as subalgebras or quotients. See work
of Duchamp, Hivert, and Thibon [11, Section 5]. It would interesting to explore whether Ξ(n) might
play a role for the matrix quasisymmetric functions similar to the role the permutahedron plays for the
Malvenuto-Reutenauer algebra.

Remark 5 One can generalize from Ξ(n) to Ξ(k;n), the set of all k-way contingency tables. These are
k-dimensional arrays of nonnegative integers whose entries sum to n such that all their marginal sums
are positive. Refinement ordering makes Ξ(k;n) a thin, shellable simplicial poset. (There is a natural
generalization of weak order whose linear extensions provide shelling orders.) Thus Ξ(k;n) is also a
sphere. Its dimension is k(n− 1)− 1 and it has (n!)k−1 facets.
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