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Abstract. The poset P of all permutations ordered by pattern containment is a fundamental object of study in the
field of permutation patterns. This poset has a very rich and complex topology and an understanding of its Möbius
function has proved particularly elusive, although results have been slowly emerging in the last few years. Using a
variety of topological techniques we present a two term formula for the Möbius function of intervals in P . The first
term in this formula is, up to sign, the number of so called normal occurrences of one permutation in another. Our
definition of normal occurrences is similar to those that have appeared in several variations in the literature on the
Möbius function of this and other posets, but simpler than most of them. The second term in the formula is (still)
complicated, but we conjecture that it equals zero for a significant proportion of intervals. We present some cases
where the second term vanishes and others where it is nonzero. Computing the Möbius function recursively from its
definition has exponential complexity, whereas the computation of the first term in our formula is polynomial and the
exponential part is isolated to the second term, which seems to often vanish. This is thus the first polynomial time
formula for the Möbius function of what appears to be a large proportion of all intervals of P .

Résumé. L’ensemble partiellement ordonnŕ (EPO) P de toutes les permutations, ordonnées par inclusion de motifs,
est d’importance fondamentale dans l’étude des motifs de permutations. Cet EPO Possède une topologie très riche
et complexe ; comprendre la fonction de Möbius associée s’est avéré particulièrement difficile, même si des résultats
sont apparus lentement au cours des dernières années. En utilisant divers outils topologiques nous établissons une
formule (contenant deux termes) pour la fonction de Möbius appliquée aux intervalles de P . Le premier terme de cette
formule est, à un signe près, le nombre des occurrences dites normales d’une permutation dans une autre. Notre défi-
nition des occurrences normales est semblable à celles que l’on trouve à plusieurs endroits dans la littérature existante
sur la fonction de Möbius, que ce soit de cet EPO ou d’autres ; mais elle semble plus simple que la plupart de celles-ci.
Le second terme de la formule est compliqué, mais nous conjecturons qu’il se réduit à zéro pour bon nombre d’inter-
valles. Nous présentons des exemples oú le second terme est réduit à zéro, ainsi que des exemples où ce n’est pas le
cas. Le calcul de la fonction de Möbius en utilisant la formule de récurrence dans sa définition a une complexité
exponentielle, tandis que le calcul du premier terme de notre formule a une complexité polynomiale, et la partie
exponentielle est isolée dans le second terme, qui semble souvent réduit à zéro. Nous obtenons ainsi le premier algo-
rithme polynomial pour calculer la fonction de Möbius de ce qui semble être une part importante d’intervalles de P .
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1 Introduction
Let σ and π be permutations of positive integers. We define an occurrence of σ in π to be a subsequence
of π with the same relative order of size as the letters in σ. For example, 132 occurs twice in 23541, as the
subsequences 254 and 354. The permutation poset P consists of all permutations with the partial order
σ ≤ π if there is an occurrence of σ in π. An interval [σ, π] in P is the subposet {z ∈ P |σ ≤ z ≤ π}.
The Möbius function of a poset is defined recursively as: µ(a, b) = 0 if a 6≤ b, µ(a, a) = 1 for all a and,
for a < b:

µ(a, b) = −
∑
a≤z<b

µ(a, z).

In this paper we present a two term formula for the Möbius function of intervals [σ, π] inP . Its first term
is, up to a sign, the number of certain occurrences of σ in π, which can be computed in time polynomial
in the length of π, whereas the second term requires exponential time to compute. However, this second
term seems to be zero for a substantial proportion of intervals. This new formula thus seems to be the
first instance of a polynomial time formula for the Möbius function of intervals in P that applies to a
significant proportion of intervals.

The modern study of permutation patterns can be traced to Knuth’s 1968 work [Knu68], where it was
shown that permutations that avoid 231, that is, contain no occurrence of 231, can be sorted using a stack.
This link between sorting complexity and permutation avoidance was further investigated in the 1970s
and 1980s in papers such as [Knu70], [Rog78], [Rot81] and [SS85]. In recent decades hundreds of papers
have been published in the field of permutation patterns, an excellent review of the field’s current state
can be found in [Kit11] and many open problems can be found in [Ste13].

The study of the Möbius function of P was first proposed in [Wil02] and the first results appeared
in [SV06], where a formula for intervals of layered permutations was presented. A layered permutation
is the direct sum of decreasing permutations, where the direct sum σ ⊕ π of two permutations σ and π is
obtained by appending π to σ after adding the length of σ to each letter of π. For example, 312⊕ 213 =
312546. There is an analogous skew sum σ 	 π, where π is appended to σ after the length of π is
added to each element of σ. In [BJJS11] a formula for the Möbius function is presented for intervals of
decomposable permutations, that is, permutations that can be written as the direct sum of two or more
non-empty permutations. However this formula is recursive and bottoms out in intervals bounded by
indecomposable permutations, for which there is no general formula for the Möbius function.

Furthermore, in [BJJS11] a formula is presented for intervals of separable permutations, that is, per-
mutations that avoid 2413 and 3142, or equivalently, permutations that can be written using only direct
sums, skew sums and the singleton permutation 1. A formula for the Möbius function of intervals of
permutations with a fixed number of descents is given in [Smi16], where a descent occurs at position i in
a permutation π = π1 . . . πn if πi > πi+1. Further results have been presented in [ST10, Smi14, MS15].
However, the proportion of intervals [σ, π] which satisfy any of these properties approaches zero as the
length of π increases. There are indications that the formula we present here reduces the computation of
the Möbius function to polynomial time for a significant proportion of intervals.

Many of the results on the Möbius function of intervals of P , and also of some posets of words, are
linked to the number of what have been termed normal occurrences, or normal embeddings, in the lit-
erature, see [Bjö90, Bjö93, SV06, BJJS11, Smi16]. The first appearance of normal occurrences is in
Björner’s paper [Bjö90], where a formula for the Möbius function of intervals of words with subword or-
der is presented. The definition of a normal occurrence has varied in these papers, but all follow a similar
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theme.
Our definition of normal occurrences, which is simpler than most previous ones, is based upon the

adjacencies of a permutation, where an adjacency in a permutation is a maximal sequence of increasing
or decreasing consecutively valued letters in consecutive positions and the tail of an adjacency is all but
its first letter. A normal occurrence of σ in π, in our definition, is any occurrence that includes all the tails
of all the adjacencies of π.

We present a formula, in Theorem 21, that shows the Möbius function of [σ, π] is, up to a sign, equal
to the number of normal occurrences of σ in π plus an extra term that seems to vanish for a significant
proportion of intervals. For example, we know this extra term vanishes if σ and π have the same number of
descents, which is a consequence of the result in [Smi16]. Using interval blocks, which appear in [ST10],
we prove that if for all permutations λ ∈ [σ, π) there is a singleton interval block, that is, a letter of π
which belongs to no occurrence of λ, the second term of the formula vanishes. The above mentioned
cases are of zero proportion when the length of π goes to infinity, but computer tests indicate that for a
substantial proportion of intervals the second term of our formula vanishes. Why that is the case is still a
mystery, but this suggests that many more families of intervals than are now known may turn out to have
a tractable Möbius function.

It is shown in [MS15] that if π is decomposable and has equal consecutive components then for any
subpermutation σ obtained by removing k > 1 of the equal components, the interval [σ, π] contains a
disconnected subinterval. Many of the definitions of normal occurrences have an extra condition for the
case when π has this property. We prove a result that indicates the second term of our formula for the
Möbius function is often nonzero in this case. Exactly what the connection is between this second term
and the topology of such intervals is another mystery.

Computing the Möbius function using the original recursive formula has exponential complexity,
whereas our formula splits the computation into two parts. The first part, that is, computing the number
of normal occurrences, can be done in polynomial time and the second part has exponential complexity
in the general case. Our formula here is the first formula for arbitrary intervals of permutations that seems
to have polynomial time complexity for a significant proportion of intervals.

In the following sections we present some of the results from the paper [Smi15], we refer the reader
to the paper for any proofs which are omitted here. In Section 2 we introduce some definitions and give
a brief introduction to the topology of posets. Furthermore, we present a poset Aσ,π which is the union
of certain posets defined by the occurrences of σ in π. We present a surjective poset map from Aσ,π

onto [σ, π] that we later use to compute µ(σ, π). In Section 3 we present and prove our main result, that
the Möbius function of intervals of P equals the number of normal occurrences plus an extra term that we
define. In Section 4 we apply our formula to show that the Möbius function of [σ, π] equals the number
of normal occurrences of σ in π if for each λ ∈ [σ, π) there is at least one letter of π which is not in
any occurrence of λ. We also show that the value of the second term of our formula for the Möbius
function of [σ, π] is often nonzero when π has a decomposition into a direct sum with consecutive equal
components. Such repeated components have played a (different) role in work by other authors, but the
connection remains mysterious.

2 Definitions and Preliminaries
In this section we introduce some definitions required to present our main result. Two nonequal permuta-
tions can have the same pattern but on different letters. We wish to treat such permutations as the same so
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we consider permutations in their smallest form, this is made formal by the following definition:

Definition 1 Given a permutation π the reduced form of π denoted red(π) is obtained by replacing the
i-th smallest letter in π with the letter i.

Example 2 The reduced form of π = 25473 is red(π) = 14352.

We assume throughout that a permutation is in its reduced form, unless otherwise stated.
Now we introduce an important property of permutations that is fundamental to our results:

Definition 3 An adjacency in a permutation is a maximal sequence of increasing or decreasing consecu-
tively valued letters in consecutive order. An adjacency with a single letter is a trivial adjacency. The tail
of a nontrivial adjacency is all but the first letter of the adjacency and a trivial adjacency does not have a
tail.

Example 4 The permutation π = 2314765 has adjacencies 23, 1, 4 and 765 and the tails are 3 and 65.

Next we define embeddings and our version of normal embeddings. Embeddings are in one-to-one
correspondence with occurrences, and we use embeddings instead of occurrences throughout the rest of
the paper because they allow for easier presentation of the required definitions.

Definition 5 Consider the permutations σ ≤ π. An embedding η of σ in π is a sequence of the same
length as π such that the nonzero letters in η are the letters of an occurrence of σ in π and in the same
positions in η as in π.

An embedding η of σ in π is normal if the positions of all the letters in all the tails of the adjacencies
in π are nonzero in η. We denote the number of normal embeddings of σ in π as NE(σ, π).

Example 6 For σ = 132 and π = 2314765 the sequence 0300065 is the only normal embedding of σ
in π, so NE(σ, π) = 1.

Proposition 7 Computing NE(σ, π) for a fixed σ can be done in time polynomial in the length of π.

Proof: Counting the number of occurrences of σ in π, of lengths k and n, respectively, can be done in
polynomial time O(nk) by exhaustive search, and testing for normality is linear. 2

We use the adjacencies of a permutation to break down the permutation and embeddings into smaller
components.

Definition 8 Consider permutations σ ≤ π and an embedding η of σ in π. Let π̂ = (π̂1, . . . , π̂t) be
the decomposition of π into its adjacencies, that is, π̂i is the increasing or decreasing permutation corre-
sponding to the i-th adjacency of π.

Define η̂ := (η̂1, . . . , η̂t), where η̂i is the permutation obtained from the nonzero letters that η embeds
in the i-th adjacency of π. If η does not embed in any letters of the i-th adjacency then η̂i = ∅.

Example 9 If σ = 132 and π = 2314765 then π̂ = (12, 1, 1, 321) and the embedding η = 0010760
gives η̂ = (∅, 1, ∅, 21).

When considering embeddings the selection of letters within an adjacency is usually irrelevant. This is
made formal by the following equivalence relation.
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Definition 10 LetEσ,π be the set of embeddings of σ in π. Define an equivalence relation on embeddings
where η ∼ ψ if the only differences between η and ψ occur within adjacencies of π. Define Êσ,π as the
set containing the rightmost embedding, that is, the embedding where the nonzero letters are the furthest
right, of each equivalence class of Eσ,π/ ∼.

Consider η ∈ Êσ,π and define the zero set of η as Z(η) = {i | ηi = 0}. Define EZσ,π to be the set of
sets of embeddings in Êσ,π such that for each set S ∈ EZσ,π we have

⋂
η∈S

Z(η) = ∅.

When defining Êσ,π we choose the rightmost embedding to ensure that all normal embeddings are
in Êσ,π . Note that if η ∼ ψ then η̂ = ψ̂, which can be used as an equivalent definition of the equivalence
relation. The set EZσ,π is upwards closed under containment because if we take any set S ∈ EZσ,π

adding a new embedding to S will result in a set that still has empty intersection of zero sets.

Example 11 If σ = 132 and π = 413265 then the embedding 013200 has zero setZ(013200) = {1, 5, 6}
and

Eσ,π ={013200, 400065, 010065, 003065, 000265},

Êσ,π ={013200, 400065, 010065, 000265},
EZσ,π ={{013200, 400065}, {013200, 400065, 010065},

{013200, 400065, 000265}, {013200, 400065, 010065, 000265}}.

Using our decomposition we build posets from embeddings in the following way:

Definition 12 Given an embedding η ∈ Eσ,π define the poset P (η) := [η̂1, π̂1]× · · · × [η̂t, π̂t] and

Aσ,π :=
⋃

η∈Êσ,π

P (η)o,

where P (η)o denotes the interior of P (η), that is, P (η) with the top and bottom elements removed.

Example 13 Consider [132, 413265] and let η1, η2, η3 and η4 be the embeddings listed in Êσ,π in Ex-
ample 11. Then π̂ = (1, 1, 21, 21) and η̂1 = (∅, 1, 21, ∅), η̂2 = (1, ∅, ∅, 21), η̂3 = (∅, 1, ∅, 21) and
η̂4 = (∅, ∅, 1, 21). See Figure 1 for P (ηi) and A132,413265.

The poset Aσ,π consists of the elements η̂ for all η ∈ Êλ,π and all λ ∈ (σ, π). Therefore, we define a
surjective poset map f from Aσ,π to (σ, π) in the following way:

Definition 14 Let f : Aσ,π → (σ, π) be the map which maps all elements η̂, where η ∈ Êλ,π , to λ.

Example 15 If [132, 413265] and η̂ = (1, ∅, 1, 21) then η = 400265 ∈ Ê2143,π , so f(η̂) = 2143.

2.1 The Topology of a Poset
We study the topology of a poset by constructing a simplicial complex from the poset in the following
way:

Definition 16 Let P be a poset. A chain in P is a totally ordered subset {z1 < · · · < zt}. The order
complex of P , denoted ∆(P ), is the simplicial complex whose vertices are the elements of P and whose
faces are the chains of P .
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(∅, 1, 21, ∅)

(1, 1, 21, ∅) (∅, 1, 21, 1)

(1, 1, 21, 1) (∅, 1, 21, 21)

(1, 1, 21, 21)

P (013200) = [∅, 1]× [1, 1]× [21, 21]× [∅, 21]

(1, ∅, ∅, 21)

(1, 1, ∅, 21) (1, ∅, 1, 21)

(1, 1, 1, 21) (1, ∅, 21, 21)

(1, 1, 21, 21)

P (400065) = [1, 1]× [∅, 1]× [∅, 21]× [21, 21]

(∅, 1, ∅, 21)

(1, 1, ∅, 21) (∅, 1, 1, 21)

(1, 1, 1, 21) (∅, 1, 21, 21)

(1, 1, 21, 21)

P (010065) = [∅, 1]× [1, 1]× [∅, 21]× [21, 21]

(∅, ∅, 1, 21)

(1, ∅, 1, 21) (∅, 1, 1, 21)
(∅, ∅, 21, 21)

(1, 1, 1, 21)
(1, ∅, 21, 21) (∅, 1, 21, 21)

(1, 1, 21, 21)

P (000265) = [∅, 1]× [∅, 1]× [1, 21]× [21, 21]

(∅, 1, 21, 21) (1, 1, 1, 21) (1, ∅, 21, 21) (1, 1, 21, 1)

(∅, 1, 1, 21) (∅, ∅, 21, 21) (1, 1, ∅, 21) (∅, 1, 21, 1) (1, ∅, 1, 21) (1, 1, 21, ∅)

A132,413265

Fig. 1: The posets of the embeddings of 132 in 413265 and the union A132,413265 of their interiors.
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When we refer to the order complex of an interval [σ, π] we mean the order complex of the inte-
rior (σ, π), which we denote ∆(σ, π).

Example 17 Consider the interval I = [123, 4567123]. An example of a chain in (123, 4567123)
is 4123 < 456123. The order complex and Hasse diagram of I are given in Figure 2.

When we mention a topological property of a poset we refer to the corresponding property of its order
complex. For further background on order complexes and poset topology in general see [Wac07].

We can use the order complex of [σ, π] to calculate µ(σ, π) due to the following formula, which is an
application of the Philip Hall Theorem and the Euler-Poincaré formula for the reduced Euler characteristic,
see [Wac07, Section 1.2]:

µ(σ, π) = χ̃(∆(σ, π)) =

|π|−|σ|∑
i=−1

(−1)iβ̃i(∆(σ, π)), (1)

where χ̃ is the reduced Euler characteristic and β̃i is the i-th reduced Betti number, that is, the rank of
the i-th reduced homology group. Therefore, by calculating the homology of [σ, π] we can compute the
Möbius function. For example, if we can show that ∆(σ, π) is contractible this implies µ(σ, π) = 0, and
if ∆(σ, π) and ∆(α, β) are homotopically equivalent then µ(σ, π) = µ(α, β).

The first explicit results on the topology of intervals of permutations appear in [MS15] and [Smi16].

4123 2341 1234

45123 34512 23451

456123 345612

4123

45123

456123

34512

2341

345612

23451

1234

Fig. 2: Left: Hasse diagram of (123, 4567123). Right: The order complex ∆(123, 4567123).

3 The Main Result
We use the map f in Definition 14 to calculate the Möbius function of [σ, π] by calculating µ(Aσ,π) and
the effect on the Möbius function when applying f . First we compute µ(Aσ,π). Given a set A of posets
the Möbius function of the union of A can be calculated using the following inclusion-exclusion formula,
which can be seen as a consequence of the inclusion-exclusion formula for the Euler characteristic and
Equation (1):

µ

(⋃
a∈A

a

)
=
∑
S⊆A
S 6=∅

(−1)|S|−1µ

(⋂
a∈S

a

)
, (2)
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Applying Equation (2) to Aσ,π gives:

µ(Aσ,π) =
∑

S⊆Êσ,π
S 6=∅

(−1)|S|−1 µ(
⋂
η∈S

P (η)o). (3)

To calculate this we need to know the Möbius function of the intersections ∩η∈SP (η)o. Note that when
calculating the Möbius function of the interior (or intersection of interiors) we add the top and bottom
elements back in. Therefore, a contractible intersection has Möbius function 0, an empty intersection has
Möbius function −1 and µ(P (η)o) = µ(P (η)). See [Smi15] for the proof of Lemma 18.

Lemma 18 If S ⊆ Êσ,π and |S| > 1 then:

µ(
⋂
η∈S

P (η)o) =

{
−1, if S ∈ EZσ,π

0, otherwise
.

Example 19 Consider our running example of [132, 413265]. Let S = {013200, 010065} then S 6∈
EZσ,π because 1 is in the zero set of both embeddings. Therefore, Lemma 18 implies µ(P (013200)o ∩
P (010065)o) = 0. We can check this by looking at Figure 1 where we can see that the intersection
P (013200) ∩ P (010065) is the single point (∅, 1, 21, 21), thus the Möbius function equals zero.

Now that we know the Möbius function of the intersections we can compute µ(Aσ,π):

Lemma 20
µ(Aσ,π) = (−1)|π|−|σ|NE(σ, π) +

∑
S∈EZσ,π

(−1)|S|.

Proof: We can split Equation (3) into two parts:

µ(Aσ,π) =
∑

η∈Êσ,π

µ(P (η)o) +
∑

S⊆Êσ,π
|S|>1

(−1)|S|−1µ(
⋂
η∈S

P (η)o). (4)

By Lemma 18 the second part of the right hand side of Equation (4) equals
∑

S∈EZσ,π
(−1)|S|.

By the definition of P (η), and the identity µ(A×B) = µ(A)µ(B), we know µ(P (η)) =
∏

1≤i≤t

µ(η̂i, π̂i).

We know that [η̂i, π̂i] is always a chain, so by the definition of normality if η is not normal there is some i
such that |η̂i| ≤ |π̂i| − 2, so µ(η̂i, π̂i) = 0 which implies µ(P (η)) = 0. If η is normal then |π̂i| − |η̂i| = 0
or 1, so µ(η̂i, π̂i) = 1 or −1, for all i. There are |π| − |σ| parts [η̂i, π̂i] with µ(η̂i, π̂i) = −1, one for each
zero in η, and the remaining have µ(η̂i, π̂i) = 1. Therefore, µ(P (η)o) = µ(P (η)) = (−1)|π|−|σ| for each
normal embedding, so the first term in the right hand side of Equation (4) equals (−1)|π|−|σ| NE(σ, π).
2

We now present our formula for the Möbius function that applies to any interval of permutations:
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Theorem 21 For any permutations σ and π:

µ(σ, π) = (−1)|π|−|σ| NE(σ, π) +
∑

λ∈[σ,π)

µ(σ, λ)
∑

S∈EZλ,π
(−1)|S|. (5)

Proof: The poset (σ, π) is obtained from Aσ,π after taking a quotient along the fibers of the map f . So
for each λ ∈ (σ, π) the set Êλ,π is mapped a point we denote λ. This transforms Aσ,π into the interval
(σ, π). We need to know what effect this has on the Möbius function of Aσ,π .

We work our way from the bottom to the top, so we can assume that all elements below the elements
of Êλ,π have already been quotiented and all elements above have not. Define the poset W (λ) := {τ ∈
Aσ,π | τ ≤ η or τ ≥ η for some η ∈ Êλ,π}. When we quotient the elements of Êλ,π to λ we map W (λ)
onto a contractible poset, since in that poset the element λ is comparable to all other elements and thus
represents a cone point in the corresponding order complex. This implies the change to the Möbius
function is −µ(W (λ)).

To compute µ(W (λ)) we split W (λ) into two disjoint parts

W (λ)< := {τ ∈W (λ) | τ < η for some η ∈ Êλ,π},

W (λ)≥ := {τ ∈W (λ) | τ ≥ η for some η ∈ Êλ,π}.

The poset W (λ)< is isomorphic to (σ, λ) because all points below λ have already been quotiented.
The poset W (λ)≥ is equal to

⋃
η∈Êλ,π (P (η) \ π̂) which has Möbius function −

∑
S∈EZλ,π (−1)|S|, by

Lemma 18 and the inclusion-exclusion formula (this also follows from the Crosscut Theorem, see [Sta12,
Corollary 3.9.4]).

Because every element of Êλ,π lies above every element of (σ, λ) this implies W (λ) = W (λ)< ?
W (λ)≥, where ? denotes the topological join. Therefore,

−µ(W (λ)) = −µ(W (λ)<)µ(W (λ)≥) = µ(σ, λ)
∑

S∈EZλ,π
(−1)|S|.

So we start with µ(Aσ,π), given by Lemma 20, and then subtract µ(W (λ)) for each λ ∈ (σ, π), which
gives the desired formula. 2

Remark 22 Computer tests indicate that 95% of intervals [σ, π], where |π| < 9, satisfy µ(σ, π) =
(−1)|π|−|σ|NE(σ, π). Thus, for these intervals the latter term in Equation (5) is zero.

Remark 23 The complexity of counting the number of normal embeddings is polynomial so in the cases
where we can show that the latter term of Equation (5) equals zero we have a polynomial time formula for
the Möbius function. This is a dramatic improvement over the original recursive formula that has expo-
nential complexity. However, computing the latter term of Equation (5) also has exponential complexity
as it requires us to compute the entire interval [σ, π].

Tests show that using Equation (5) is often much quicker than computing the Möbius function using
the recursive formula. When computing the Möbius function of the rank 15 interval

[54123, 9 7 10 4 8 1 2 6 5 3 19 17 20 14 18 11 12 16 15 13],
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the formula in Equation (5) took 1.75 minutes and the recursive formula took 13.5 hours. Note that this
interval has Möbius function −3 but no normal embeddings so the latter term of Equation (5) is nonzero
in this case. Furthermore, using Equation (5) we were able to compute the Möbius function of a rank 16
interval in 1 hour and a rank 17 interval in 6 hours. However, if σ has a large number of occurrences in π
then using Equation (5) can be quite slow. For example, if σ = 2413 and π = 2 4 6 8 10 1 3 5 7 9 then there
are 35 occurrences of σ in π and µ(σ, π) can be computed in 0.06 seconds using the recursive formula but
takes 15.5 hours using Equation (5).

4 Applications
Due to Remark 22 we suspect that the second part of Equation (5) vanishes for a significant proportion
of intervals. For example, a consequence of Proposition 3.3 in [Smi16] is that if σ and π have the same
number of descents then the second part of Equation (5) vanishes. The key to simplifying Equation (5) is
answering the following question:

Question 24 Given an interval [σ, π], for which λ ∈ [σ, π) is the following sum nonzero?:

EZ(λ, π) :=
∑

S∈EZλ,π
(−1)|S|. (6)

One case where EZ(λ, π) = 0 is when the set EZλ,π is always empty, which leads us to the following
definition and proposition:

Definition 25 We say an interval [σ, π] has a single block if there exists some i such that ηi = 0 for
any η ∈ Êσ,π . That is, there is a letter in π that is not contained in any of the occurrences in Êσ,π .

We say an interval is single if for all λ ∈ [σ, π) the interval [λ, π] has a single block.

Our notation here follows from the idea of interval blocks in [ST10]. Computer tests show that 78.6%
of intervals [σ, π], where |π| < 9, are single and we found that 39% of 48300 random rank 10 intervals,
where |σ| = 5 and |π| = 15, are single. We suspect that the proportion of intervals that are single
approaches zero as the rank tends to infinity, because the likelihood that there exists some λ ∈ [σ, π] such
that [λ, π] does not have a single block increases as the rank of the interval increases.

Proposition 26 If [σ, π] is single then µ(σ, π) = (−1)|π|−|σ|NE(σ, π).

Intervals that contain a disconnected subinterval of rank at least 3 are non-shellable, as shown by
Björner in [Bjö80], and thus not amenable to some of the elegant methods of topological combinatorics,
see [MS15] for further background. To finish we consider a particular type of interval [σ, π] that is known
to be disconnected and show that EZ(σ, π) 6= 0 for these intervals. Whether there is a topological “reason”
for EZ(σ, π) being nonzero in these cases we do not know.

We consider decomposable permutations and write them in the form π1 ⊕ · · · ⊕ πn, where each πi,
which we call a component of π, is indecomposable. Consider a permutation π, with a sequence of α ≥ 2
equal consecutive components, and λ ≤ π obtained from π by removing k of the components from this
sequence, where 1 ≤ k < α. The interval [λ, π] is disconnected, which follows from results in [MS15],
specifically Lemma 4.2 and Theorem 5.6. These intervals are the cause of the extra conditions in the
formulas for the Möbius function that appear in [BJJS11] and [MS15].

We compute the extra term for these cases with the following proposition:
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Proposition 27 Consider a decomposable permutation π = π1⊕· · ·⊕πn with a sequence of consecutive
components πi+1 = · · · = πi+α, with α > 1. Let λ = λ1⊕· · ·⊕λm be the subpermutation of π obtained
by reducing the sequence of equal components to length `, for 0 ≤ ` ≤ α. Then:

EZ(λ, π) = (−1)α−`−1
(
α− 1

`− 1

)
. (7)

See [Smi15] for the proof of Proposition 27 and see Example 29 for an application of Proposition 27.
We conjecture that we can generalise this further by removing elements from more than one sequence of
equal components:

Conjecture 28 Consider a decomposable permutation π = π1⊕· · ·⊕πn which has t sequences of equal
components πi+1 = · · · = πi+αi 6= 1 of respective lengths αi, for 1 ≤ i ≤ t. Let λ = λ1 ⊕ · · · ⊕ λm be
the permutation obtained from π by, for each i, reducing the i-th sequence to length `i, with 0 ≤ `i ≤ αi.
Then:

EZ(λ, π) = (−1)α−`−1
t∏
i=1

(
αi − 1

`i − 1

)
,

where α = α1 + · · ·+ αt and ` = `1 + · · ·+ `t.

Example 29 Consider the permutation π = 2 1 4 3 7 5 6 10 8 9 13 11 12 which has the decomposition 21⊕
21⊕ 312⊕ 312⊕ 312, so has 2 sequences of equal components.

First consider τ = 21 ⊕ 21 ⊕ 321 ⊕ 321. We have decreased the length α = 3 sequence of 312’s to
length ` = 2. Applying Proposition 27 gives:

EZ(τ, π) = (−1)3−2−1
(

3− 1

2− 1

)
= 2.

Now consider λ = 21⊕ 312⊕ 312 = 21534867, which has EZ(λ, π) = −2. We see that Conjecture 28
gives us the same value, where α1 = 2, `1 = 1 and α2 = 3, `2 = 2:

(−1)5−3−1
(

2− 1

1− 1

)(
3− 1

2− 1

)
= −2.
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