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Cataland: Why the Fuss?

Christian Stump1†, Hugh Thomas2‡, and Nathan Williams3§

1Institut für Mathematik, Freie Universität Berlin, Germany
23LaCIM, Université du Québec à Montréal, Montréal (Québec), Canada

Abstract. The main objects of noncrossing Catalan combinatorics associated to a finite Coxeter system are noncross-
ing partitions, sortable elements, and cluster complexes. The first and the third of these have known Fuss–Catalan
generalizations. We provide new viewpoints for these, introduce a corresponding generalization of sortable elements
as elements in the positive Artin monoid, and show how this perspective ties together all three generalizations.

Résumé. Les objets principaux de la combinatoire de Catalan non-croisée associés à un système de Coxeter fini sont
les partitions non-croisées, les éléments triables, et les complexes de clusters. Le premier et le troisième d’entre eux
ont des généralisations Fuss–Catlan connues. Nous fournissons de nouveaux points de vue pour ceux-ci, nous intro-
dusons une généralisation des éléments triables comme éléments dans le monoïde positif d’Artin, et nous montrons
comment cette perspective regroupe les trois généralisations.

Keywords. Coxeter–Catalan combinatorics, Fuß-Catalan numbers, noncrossing partitions, Coxeter-sortable ele-
ments, cluster complexes, associahedra, subword complexes

1 Introduction
Fix a finite Coxeter system (W,S) and a (standard) Coxeter element c ∈ W—that is, a product of the
simple generators S in any order. There are three noncrossing Catalan objects associated to this data [15,
16, 6, 13]:

• the c-noncrossing partitions NC(W, c);
• the c-sortable elements Sort(W, c) (which generalize the 231-avoiding permutations); and
• the c-cluster complexes Asso(W, c) (which generalize the well-studied dual associahedron).

Although no uniform proof is currently known, these noncrossing families are counted by the Catalan
number of type W Cat(W ) :=

∏n
i=1

h+di
di

, where d1 ≤ d2 ≤ . . . ≤ dn are the degrees and h := dn =
ord(c) is the Coxeter number ofW . These noncrossing Catalan objects have two natural lattice structures:

• the c-noncrossing partition lattice NCL(W, c); and
• the c-Cambrian lattice Camb(W, c).
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The noncrossing partition lattices and the cluster complex have been generalized in the literature by
introducing a nonnegative integral parameter m. Since many generalizations exist, we refer to this partic-
ular generalization as an m-eralization. The objects associated with these m-eralizations are counted by
the Fuß-Catalan numbers of type W

Cat(m)(W ) :=

n∏
i=1

mh+ di
di

.

More precisely, D. Armstrong defined and studied the m-eralized c-noncrossing partitions NC(m)(W, c)
for any Coxeter element c in [2], generalizing P. Edelman’s construction from [9] to all finite Coxeter
groups; and S. Fomin and N. Reading defined and studied them-eralized c-cluster complex Asso(m)(W, c)
for a bipartite Coxeter element c in [10].

There are several components missing in this story. The aim of this extended abstract is to complete the
m-eralization of noncrossing Catalan objects using the spherical Artin group corresponding to the finite
Coxeter system (W,S). Due to space limitations, we will omit much of our discussion of noncrossing
partitions, the cluster complexes, and connections to the representation theory of hereditary Artin algebras.

Coxeter-sortable elements. The most glaring omission is that nom-eralization of N. Reading’s c-sortable
elements [16] has appeared in the literature. It is straightforward to extract a definition involving chains
of sortable elements by combining D. Armstrong’s definition of m-eralized c-noncrossing partitions and
N. Reading’s shard order (see Section 7), but such a definition is unsatisfactory without a corresponding
m-eralization of the weak order. At the heart of this extended abstract is the observation that such an m-
eralization is given by the interval [e, wm◦ ] in the weak order of the positive Artin monoid B+ = B+(W ).
These intervals have been previously studied by P. Dehornoy in an enumerative context [8].

Definition 1.1 W (m) :=
{
w ∈ B+(W ) : w ≤ wm◦ ∈ B+(W )

}
.

There is a natural bijection between the elements of W and W (1); W (m) is a rank-symmetric lattice
under the weak order, recovering the usual weak order for m = 1. In Section 4, we provide the missing
m-eralization of the c-sortable elements as a lift of N. Reading’s definition from W to W (m).

Definition 1.2 Let c ∈W be a Coxeter element. An element w ∈W (m) is c-sortable if the c-sorting word
w(c) for w yields a decreasing sequence of subsets of positions in c. Denote the set of all such m-eralized
c-sortable elements by Sort(m)(W, c).

We provide three characterizations of Sort(m)(W, c) in Definition 3.4, Proposition 4.3, and in Defini-
tion 5.2, extending N. Reading’s characterizations when m = 1 [15, Sections 2 and 4].

Cluster complexes. The second missing component is that there is no simple combinatorial definition
of the m-eralized c-cluster complex when the Coxeter element c is not bipartite. In the full version of
this work, we supply this definition with an m-eralized c-compatibility relation. We prove the existence
and uniqueness of this relation using an m-eralization of the subword complex approach to c-cluster
complexes given in [7, 13].

Definition 1.3 The simplicial complex Asso(m)(W, c) is the set of subwords (as indices of positions) of
the word cwm

◦ (c) whose complements contain a word for wm◦ ∈W of length mN , where N = `(w◦).
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We recover that Asso(m)(W, c) is vertex-decomposable, and hence shellable. With the m-eralizations
of noncrossing partitions, sortable elements, and subword complexes in hand, we prove the following
theorem.

Theorem 1.4 There are explicit and uniform bijections between the three families
• the m-eralized c-noncrossing partitions NC(m)(W, c);
• the m-eralized c-sortable elements Sort(m)(W, c); and
• the m-eralized c-cluster complexes Asso(m)(W, c).

By “explicit”, we mean that we provide a bijection, rather than just proving existence of a bijection by
a counting argument. The term “uniform” specifies that the description of the bijection does not use the
classification theorem of finite Coxeter systems.

In the following, we focus on the structure ofm-eralized c-sortable elements Sort(m)(W, c), for the full
treatment and many more details, we refer to the full length article of this extended abstract.

Cambrian lattices. Although the exchange graph of S. Fomin and N. Reading’s m-eralized c-cluster
complex can be used to define a Cambrian graph for bipartite Coxeter elements, no corresponding poset
has been considered in the literature for m > 1. In particular, no orientation of the exchange graph was
known to be a lattice. In Section 6, we close this third gap by defining the m-eralized c-Cambrian lattice
on Sort(m)(W, c). Our construction m-eralizes N. Reading’s Cambrian lattices, which are themselves
generalizations of the classical Tamari lattices.

Theorem 1.5 The restriction of the weak order to Sort(m)(W, c) is a lattice.

We call this the m-eralized c-Cambrian lattice. One intuition comes from the isomorphism between
shard order restricted to c-sortable elements and the noncrossing partition lattice: just as D. Armstrong
considered component-wise absolute order on chains in NCL(W, c) [2], our m-eralized c-Cambrian lat-
tices can be seen to be component-wise weak order on the corresponding chains in Shard(W ).

In summary, we place the program of m-eralizing noncrossing Coxeter–Catalan combinatorics in the
context of the corresponding positive Artin monoid.

2 Background and the m-eralized weak order
2.1 Coxeter systems
Let (W,S) be a (finite) Coxeter system of rank n = |S|. The elements in the set S are called simple
generators or simple reflections. The set of reflections in W is defined to beR :=

{
sw : s ∈ S, w ∈W

}
,

where we write uw := wuw−1.(i) We use the corresponding root system Φ = Φ+tΦ− (so that s 7→ αs ∈
Φ+) without further comment. The spherical Artin system (B(W ),S) corresponding to the finite Coxeter
system (W,S) is the group B(W ) given by (a formal copy of) the generators S and the presentation

B(W ) = 〈S : (ss′)m(s,s′)/2 = (s′s)m(s′,s)/2 for s, s′ ∈ S with s 6= s′〉.

Rather than studying B(W ), we will restrict ourselves to the positive Artin monoid B+(W ) (or sim-
ply B+), which is the submonoid of B(W ) generated by S .

(i) We choose this convention over the more natural choice w−1uw for reasons of brevity.
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e

s t

st ts

sts

sts · ssts · t

sts · ststs · ts

sts · sts

s · s t · t

s · st t · tsst · t ts · s

st · ts ts · st

Fig. 1: Weak(2)(A2). The elements marked in gray are the st-sortable elements.

2.2 Weak order
The (Coxeter) length of an elementw in the groupW or in the positive Artin monoidB+ is the length `(w)
of a shortest expression for w as a product of the generators in S. We define the support supp(w) for
w ∈ W or w ∈ B+(W ) to be the set {s1, . . . , sp} ⊆ S of simple reflections contained in any reduced
word s1 · · · sp for w. The (right) weak order on W (resp. B+) is the partial order Weak(W ) (resp.
Weak(B+)) defined by u ≤ w if there exists v ∈W (resp. v ∈ B+) with uv = w and `(u)+`(v) = `(w).
If w has such a factorization uv = w, we say that u left-divides w and v right-divides w. We may write
wv−1 for u and u−1w for v, even in B+. A letter s ∈ S is called initial (resp. final) in an element w
in the group W or in the Artin monoid B+, if s left-divides (resp. right-divides) w. It is well-known
that Weak(W ) and Weak(B+) are both lattices.Observe that the Coxeter group W injects into B+(W )
as the interval [e, w◦]Weak(B+), where w◦ := lcm(S). This injection preserves the weak order, so that
Weak(W ) = [e, w◦]Weak(B+). The (right) m-weak order is defined as the interval Weak(m)(W ) :=

[e, wm◦ ]Weak(B+). We denote the set of elements simply by W (m) :=
{
w : w ∈ Weak(m)(W )

}
. Figure 1

illustrates the Hasse diagram of Weak(2)(A2).

2.3 Descents, Garside factorizations, and inversions
The left descent set, right descent set, left ascent set, and right ascent set of w ∈ W or of w ∈ B+

by desL(w) := {s ∈ S : s left divides w}, desR(w) := {s ∈ S : s right divides w}, ascL(w) :=
S \ desL(w), and ascR(w) := S \ desR(w). For w ∈ W , the covered reflections and the covering
reflections are given by cov↓(w) := {sw : s ∈ desR(w)} and cov↑(w) := {sw : s ∈ ascR(w)}.

Each element w ∈ B+ has a normal form called Garside factorization garside(w), which gives an
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garside w(st) desL desR
s · s st|st|st s s
s · st st|st|st s t
t · t st|st|st t t
t · ts st|st|st t s
st · t st|st|st s t
st · ts st|st|st s s
ts · s st|st|st t s

garside w(st) desL desR
ts · st st|st|st t t
sts · s st|st|st s, t s
sts · t st|st|st s, t s, t
sts · st st|st|st s, t s, t
sts · ts st|st|st s, t s, t
sts · sts st|st|st s, t s, t

Fig. 2: The 13 elements in B+(A2) having exactly two Garside factors with their st-sorting word and their descent
sets.

alternative description of the m-weak order. To this end, set w1 = w and v1 = gcd(w1, w◦). For
i = 2, 3, . . ., as long as wi−1 6= e, let wi = v−1i−1wi−1, vi = gcd(wi, w◦). Then garside(w) =

w(1) ·w(2) · · · · ·w(k), where w(i) := vi and the degree deg(w) is defined to be k. By construction, every
factor sits inside the interval [e, w◦] and so can be treated as an element of W .

Proposition 2.1 A factorization v1 · v2 · · · · · vk with vi ∈W is the Garside factorization of the element
w = v1 · · · vk ∈ B+ if and only if desR(vi−1) ⊇ desL(vi).

To emphasize different Garside factors, we may separate them by a centered dot. For w ∈W , we write

inv(w) :=
{
αs1 , s1(αs2), . . . , s1 · · · s`−1(αs`)

}
⊆ Φ+

A colored positive root is positive roots together with a color given by a nonnegative integer. A simple
reflection s ∈ S acts on a colored positive root as s(β(k)) = [s(β)](k) if β 6= αs and s(β(k)) = β(k+1) if
β = αs. Given any S-word Q = s1 · · · sp, The colored inversion sequence of Q is given by

inv(Q) :=
(
β
(m1)
1 , . . . , β(mp)

p

)
, (1)

where β(mi)
i is given by s1 · · · si−1(α

(0)
si ).

2.4 Coxeter elements

A (standard) Coxeter element c for (W,S) and for (B(W ),S) is defined to be the product of the simple
reflections S in any order. As the Dynkin diagram for a finite Coxeter group W is a tree, we have that
all Coxeter elements in W are conjugate. We denote their common order by the Coxeter number h. The
rank n of W , the number N = `(w◦) = |Φ+|, and the Coxeter number are related by N = nh/2.

Let c = s1 · · · sn be a particular reduced word for a Coxeter element c, and let w be an element in W
(or in B+). The c-sorting word w(c) for w is then defined to be the lexicographically first subword of
c∞ = (s1 · · · sn)∞ which is a reduced expression for w. To emphasize the different copies of s1 · · · sn,
we may separate them by vertical bars. Finally, we write ≤c for the root order inv(w◦(c)) on Φ+ and
analogously for the root order invR(w◦(c)) onR.



1128 Christian Stump, Hugh Thomas, and Nathan Williams

3 Coxeter-sortable elements
In this section, we review N. Reading’s theory of c-sortable elements [14, 16, 15], recalling two charac-
terizations of these elements. We then define an m-eralization of N. Reading’s c-sortable elements as a
certain subset Sort(m)(W, c) of W (m).

N. Reading introduced and studied c-sortable elements in [14, 15]. The c-sortable elements have at
least three different characterizations, each of which is useful in different ways.

Definition 3.1 (N. Reading [14]) An element w ∈ W is c-sortable if the c-sorting word w(c) for w de-
fines a decreasing sequence of subsets of positions in c. We denote the set of c-sortable elements by
Sort(W, c). The c-Cambrian lattice CambSort(W, c) is the restriction of Weak(W ) to Sort(W, c).

Although the definition of being c-sortable depends on a particular choice of a reduced word c for
the Coxeter element c, all c-sorting words w(c) are commutation equivalent and the property of being
c-sortable does not depend on a particular chosen word.

The second characterization is the c-Cambrian recurrence, which is immediate from Definition 3.1.

Proposition 3.2 (N. Reading [16, Lemma 2.1 and 2.2]) Let s be initial in c. Then

w ∈ Sort(W, c)⇔

{
w ∈ Sort(W〈s〉, s

−1c) if s ∈ ascL(w)

s−1w ∈ Sort(W, s−1cs) if s ∈ desL(w)
,

where W〈s〉 := WS\{s}.

N. Reading’s third characterization describes c-sortable elements by their inversion sets as the c-aligned
elements. We do not m-eralize this definition, and so omit further discussion.

Lemma 3.3 (N. Reading [15, Corollary 4.5], [16, Theorem 1.2])

1. For u, v ∈ Sort(W, c), inv(u ∧ v) = inv(u) ∩ inv(v). Furthermore, u ∧ v ∈ Sort(W, c).
2. CambSort(W, c) is a sublattice of Weak(W ).

We first define Sort(m)(W, c) as elements in W (m) in analogy with Definition 3.1.

Definition 3.4 An element w ∈ W (m) is c-sortable if the c-sorting word w(c) for w defines a decreasing
sequence of subsets of positions in c. We denote the set of c-sortable elements by Sort(m)(W, c).

Example 3.5 In Weak(2)(A3) with c = s1s2s3, the element w = s1s2s3s1s2 · s3s2s1 has c-sorting word

w(c) =

(
1 2 3 1 2 3 1 2 3 1 2 3
s1 s2 s3 s1 s2 s3 − s2 − s1 − −

)
.

It is not c-sortable since s1 occurs in the fourth but not the third copy of c.

4 Cambrian rotation and the Cambrian recurrence
In this section, we generalize Proposition 4.3 to provide an inductive characterization of the m-eralized
sortable elements.
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The Cambrian rotation and the Cambrian recurrence both depend on an operation Shifts for an initial
simple reflection s in a Coxeter element c. The map Shifts : Sort(m)(W, c) → Sort(m)(W, s−1cs) is
defined for w ∈ Sort(m)(W, c) by

Shifts(w) =

{
w ∨ sm if s ∈ ascL(w)

s−1w if s ∈ desL(w)
.

It is nontrivial to show that this operation yields an element in Sort(m)(W, s−1cs).
We may now compose the shift operations in the order specified by any reduced S-word for the Coxeter

element c. This composition does not depend on the chosen reduced word, since two shifts Shifts and
Shiftt commute for commuting s, t ∈ S.

Definition 4.1 Let c be a Coxeter element. Them-eralized c-Cambrian rotation Cambc : Sort(m)(W, c)→
Sort(m)(W, c) is given by Cambc = Shiftsn ◦ · · · ◦ Shifts1 for any reduced S-word s1s2 · · · sn for c.

Example 4.2 In Sort(2)(A2, st), one orbit of m-eralized Cambrian rotation is given by

e
Shifts7−−−→ s · s Shiftt7−−−→ sts · sts Shifts7−−−→ tst · st Shiftt7−−−→ sts · t
Shifts7−−−→ tst

Shiftt7−−−→ st
Shifts7−−−→ t

Shiftt7−−−→ e

After removing the initial e, which is thought of as an element of Sort(2)(A2, st), the right column
consists of elements of Sort(2)(A2, st), while the left column contains elements of Sort(2)(A2, ts).

Rather than take the join with sm in the first case of the definition of the shift operator, we could have
sent w to itself, viewed as an element of a parabolic subgroup. As an m-eralization of Proposition 3.2, we
call this process the m-eralized c-Cambrian recurrence.

Proposition 4.3 Let s be initial in a Coxeter element c. Then

w ∈ Sort(m)(W, c)⇔

{
w ∈ Sort(m)(W〈s〉, s

−1c) if s ∈ ascL(w)

s−1w ∈ Sort(m)(W, s−1cs) if s ∈ desL(w)
.

Example 4.4 Consider sts·s ∈ Sort(2)(A2, st). Then them-eralized c-Cambrian recurrence is computed
as

sts · s︸ ︷︷ ︸
Sort(2)(A2,st)

7→ ts · s︸︷︷︸
Sort(2)(A2,ts)

7→ s · s︸︷︷︸
Sort(2)(A2,st)

7→ s︸︷︷︸
Sort(2)(A2,ts)

7→ s︸︷︷︸
Sort(2)(A1,s)

7→ e︸︷︷︸
Sort(2)(A1,s)

7→ e︸︷︷︸
Sort(2)(A0,e)

.

Figure 3 shows all 12 elements of Sort(2)(A2, st) ∼= Sort
(2)
shard(A2, st), with their support. The notion

Sort
(2)
shard(A2, st) will be defined and studied in Section 7.

5 Factorwise Coxeter-sortable elements
We now give an alternative description of m-eralized Coxeter-sortable elements using Garside factors.
Let w ∈ W , let c = s1s2 · · · sn be a Coxeter element, and let desR(w) = {si1 , si2 , . . . , sik}, where
swi1 ≤c s

w
i2
≤c · · · ≤c s

w
ik

in the root order associated to c. Define the restriction of c with respect to the
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garside(w) Sort(2)(A2, st) Sort
(2)
shard(A2, st) Cc(w) supp(w)

e st|st|st e � e α(0), β(0) −
sts · tst st|st|st sts � sts α(2), β(2) s, t
sts · t st|st|st sts � s γ(1), α(2) s, t
st st|st|st st � e β(0), γ(1) s, t

s st|st|st s � e γ(0), α(1) s
t · t st|st|st t � t α(0), β(2) t

sts · ts st|st|st sts � st β(1), γ(2) s, t
sts st|st|st sts � e α(1), β(1) s, t

t st|st|st t � e α(0), β(1) t
st · t st|st|st st � st β(0), γ(2) s, t

s · s st|st|st s � s γ(0), α(2) s
sts · s st|st|st sts � t α(1), β(2) s, t

Fig. 3: All 12 elements of Sort(m)(A2, st) and Sort
(m)
shard(A2, st), their skip sets and their supports, grouped into

orbits under Cambrian rotation.

element w to be the Coxeter element c
∣∣
w

:= si1si2 · · · sik of the Coxeter system given by the standard
parabolic subgroup WdesR(w) generated by the simple reflections in desR(w). Observe that c

∣∣
w

contains
the same simple reflections as the restriction of c to this standard parabolic subgroup, but that the order in
which the simple reflections appear is not necessarily the order in which they appear in c—rather, it is the
order coming from the root order associated to c.

Example 5.1 Consider type A3 with c = s1s2s3 and let w = s1s2s3s2 = s1s3s2s3, so that des(w) =

{s2, s3}. Since sw
(1)

3 = (13) ≤c (34) = sw
(1)

2 , we then have c
∣∣
w

= s3s2.

Definition 5.2 Let w be an element in W (m) with garside(w) = w(1) · · · · · w(m). We say that w is
factorwise c-sortable if w(i) ∈ WdesR(w(i−1)) is c(i)-sortable for all 1 ≤ i ≤ m, where w(0) := w◦,

c(0) := c, c(i) := c(i−1)
∣∣
w(i−1) . We denote the set of factorwise c-sortable elements by Sort

(m)
fact (W, c).

Corollary 5.3 An element w ∈W (m) is c-sortable if and only if it is factorwise c-sortable.

The next theorem transports the characterization of weak order on inversion sets to sortable elements,
and generalizes Lemma 3.3(1).

Theorem 5.4 For w, u ∈ Sort(m)(W, c), w ≤ u if and only if inv(w) ⊆ inv(u), and inv(w ∧ u) =
inv(w) ∩ inv(u).

Remark 5.5 The first part of Theorem 5.4 does not hold in general for non-sortable elements, although
it is true when m = 1. The second part doesn’t even hold for non-sortable elements when m = 1.

6 m-eralized Cambrian lattices
Generalizing the case for m = 1, we prove that Sort(m)(W, c) is a sublattice of Weak(m)(W ). N. Read-
ing’s c-sortable elements are the key to understand certain order congruences on the weak order that re-
spect the lattice structure of the weak order (and are therefore lattice congruences). We briefly summarize
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e

s t

st

sts

sts · ssts · t

sts · ts

sts · sts

s · s t · t

st · t

Fig. 4: Camb
(2)
Sort(A2, st).

some results of [16]. N. Reading defined an order-preserving projection πc↓ : Weak(W ) → Sort(W, c)
sending an element w to the largest c-sortable element less than or equal to w. Likewise, there is
a related order-preserving map π↑c that maps w to the smallest c-sortable greater than or equal to w.
N. Reading showed that the fibers of πc↓ and π↑c are equal and that the fiber containing w is the interval
[πc↓(w), π↑c (w)]Weak(W ). This turns out to be enough to conclude that the c-sortable elements form a lattice
quotient of the weak order. Each of these congruences defines an associahedron corresponding to c; the
1-skeletons of these c-associahedra are the Hasse diagrams of the c-Cambrian lattices.

In contrast, the m-eralized c-sortable elements no longer form a lattice quotient of Weak(m)(W ).

Definition 6.1 The m-eralized c-Cambrian poset Camb
(m)
Sort(W, c) is the restriction of Weak(m)(W ) to

Sort(m)(W, c).

Although we no longer have a lattice quotient, the restriction of Weak(m)(W ) to Sort(m)(W, c) still
yields a lattice. This is a generalization of Lemma 3.3(2). Figure 4 shows all 12 st-sorting elements in
Camb

(2)
Sort(A2, st).

Theorem 6.2 Camb
(m)
Sort(W, c) is a sublattice of Weak(m)(W ).

7 m-eralized Coxeter-sortability and shard intersection order
Guided by a construction of P. Edelman for classical noncrossing partitions, D. Armstrong defined NC(m)(W, c)
as the m-multichains in the lattice of noncrossing partitions. On the other hand, N. Reading defined an
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Fig. 5: Shard(A3) restricted to Sort(A3, s1s2s3). Sortable elements are given by their inversion sets in the positive
roots. Covered reflections are circled in grey, and further inversions in the parabolic subgroup generated by the
covered reflections are circled in white.

order Shard(W ) on the elements ofW , with the property that the restriction of Shard(W ) to Sort(W, c) is
isomorphic to the noncrossing partition lattice [17]. It is natural to combine D. Armstrong’s definition with
this isomorphism to m-eralize Coxeter-sortable elements as chains of c-sortable elements in Shard(W ).
In this last section, we provide an alternative characterization of the m-sortable elements which has not
been considered in the literature before, reconciling ourm-eralization of c-sortable elements with D. Arm-
strong’s m-eralization of noncrossing partitions.

In [17], N. Reading defined a delicate slicing procedure on simplicial hyperplane arrangements that
cuts hyperplanes into several pieces called shards. The shard intersection order Shard(W ) is the set of
all intersections of these hyperplane pieces, ordered by reverse inclusion. N. Reading proved that the
intersection of the lower shards of an element w ∈ W is a bijection between W and the set of shard
intersections. The longest element w◦ is mapped to the maximal element in the shard intersection order
under this bijection. It is possible to define the shard intersection order directly on W .

Definition 7.1 Let u, v ∈ W . The shard intersection order Shard(W ) is given by u�v if and only if
〈cov↓(u)〉 ⊆ 〈cov↓(v)〉 and inv(u) ⊆ inv(v).

Figure 5 shows Shard(A3) restricted to Sort(A3, s1s2s3).

Proposition 7.2 Definition 7.1 agrees with the definition given in [17, Section 4].

N. Reading showed that the shard intersection order provides an alternative way of thinking about
the noncrossing partition lattice NCL(W, c): it is the restriction of Shard(W ) to the sortable elements
Sort(W, c).
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Theorem 7.3 ([17, Theorem 8.5]) The restriction of Shard(W ) to Sort(W, c) is isomorphic to NCL(W, c).
The isomorphism is given by sending w ∈ Sort(W, c) to the product of its covered reflections in the order
they appear in invR(c(w)).

Combining these observations with-D. Armstrong’s definition of m-noncrossing partitions as m-multi-
chains in the noncrossing partition lattice allows us to immediately extract a definition of m-sortable
elements as m-multichains of sortable elements in Shard(W ).

Definition 7.4 Let Sort(m)
shard(W, c) be the set of m-multichains of c-sortable elements in Shard(W ),

Sort
(m)
shard(W, c) :=

{
(w1�w2� · · ·�wm) : wi ∈ Sort(W, c)

}
.

Theorem 7.5 There is an explicit bijection Sort
(m)
shard(W, c) −̃→ Sort(m)(W, c).

Remark 7.6 In analogy to componentwise absolute order on NC
(m)
δ (W, c)—as considered by D. Arm-

strong in [2]—by Theorems 5.4 and 7.5, componentwise weak order on Sort
(m)
shard(W, c) defines the m-

eralized c-Cambrian lattice.

Example 7.7 For type A3 with m = 2 and c = s1s2s3, consider the chain of sortable elements in shard
order

(w1�w2) = (s1s2s3s2�s1s2s3) ∈ Sort
(m)
shard(A3, c).

We now compute the bijection of Theorem 7.5.

invR(w1) = {(12), (13), (14), (34)} ⊇ {(12), (13), (14)} = invR(w2).

Note that w1 has covered reflections {(13), (34)} and associated simple reflections {s3, s2}, since sw1
3 =

(34)w1 = (13) and sw1
2 = (23)w1 = (34). The covered reflections generate the nonstandard parabolic

subgroup Wcov↓(w1) containing the reflections {(13), (14), (34)}. Restricting to Wcov↓(w1), w2 is sent
to the element in Wcov↓(w1) with reflection inversion set {(13), (14)}. (Note that we can uniquely re-
cover invR(w2) by adding in missing initial segments of oriented dihedral subgroups—in this case, the
dihedral generated by {s1, s2} forces (1, 2) to be added back to the inversion set). We conjugate these
inversions by w−11 to pass to the corresponding standard parabolic subgroup WdesR(w1), obtaining the in-
version set {(34), (24)}. This inversion set corresponds to an element with reduced word s3s2. Therefore,
(s1s2s3s2�s1s2s3) is mapped to the Garside factorization s1s2s3s2 · s3s2.
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