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Rational Shi tableaux and the skew length
statistic

Robin Sulzgruber1†

1Fakultät für Mathematik, Universität Wien, Austria

Abstract: We define two refinements of the skew length statistic on simultaneous core partitions. The first one relies
on hook lengths and is used to prove a refined version of the theorem stating that the skew length is invariant under
conjugation of the core. The second one is equivalent to a generalisation of Shi tableaux to the rational level of
Catalan combinatorics. We prove that the rational Shi tableau is injective. Moreover we present a uniform definition
of the rational Shi tableau for Weyl groups and conjecture injectivity in the general case.

Résumé: Nous définissons deux raffinements de la statistique de longueur gauche sur les partitions simultanément
coeur. Le premier repose sur les longueurs d’équerre et est utilisé pour prouver une version plus fine du théorème
d’invariance de la longueur gauche par conjugaison du coeur. Le second est équivalent à une généralisation des
tableaux de Shi au niveau rationnel de la combinatoire de Catalan. Nous démontrons que le tableau de Shi rationnel
est injectif. De plus nous présentons une définition uniforme du tableau de Shi rationnel pour les groupes de Weyl, et
conjecturons l’injectivité dans le cas général.

Keywords. affine permutations, cores, Dyck paths, Shi arrangement, skew length

The skew length is a statistic on simultaneous core partitions, which counts the number of certain
cells in the Young diagram of the core. It was invented by Armstrong [AHJ14] who used it to give a
combinatorial formula for the rational q, t-Catalan numbers (see also [GM13, ALW15])

Cn,p(q, t) =
∑

κ∈Cn,p

q`(κ)t(n−1)(p−1)/2−skl(κ).

Here n and p are relatively prime, Cn,p denotes the set of n, p-cores, `(κ) is the length of κ and skl(κ)
denotes the skew length (see Section 1 for all definitions). The intriguing property of these polynomials is
the apparent symmetry Cn,p(q, t) = Cn,p(t, q), for which there is no proof except in very special cases.

The skew length was further studied in [Xin15] and [CDH15]. For coprime n and p it was proven that
skl(κ) is invariant under conjugation of the core and independent of whether κ is viewed as an n, p-core or
as a p, n-core. The first main contribution of our paper is a refinement of the skew length statistic in terms
of the multiset of hook lengths of certain cells of the core. We obtain a refined version of the two results
mentioned above in Theorem 1.3 providing a conceptual explanation for these phenomena. Moreover our
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method of proof relies on induction and does not use rational Dyck paths. This has the advantage that
we do not need to assume that n and p are relatively prime. Theorem 1.3 therefore extends to previously
untreated cases.

Shi tableaux [FTV11] encode the dominant regions of the (m-extended) Shi arrangement, which are
counted by the Fuß–Catalan numbers. The Shi arrangement and its regions are intimately related to the
affine symmetric group. In [GMV14] Gorsky, Mazin and Vazirani define the so called p-stable affine
permutations, which can be seen as a generalisation of the regions of the Shi arrangement to the rational
level of Catalan combinatorics. In Section 2 we define rational Shi tableaux, which encode dominant
p-stable affine permutations. Our main result concerning rational Shi tableaux is Theorem 2.8, asserting
that each dominant p-stable affine permutation is uniquely determined by its Shi tableau. Theorem 2.8 is
especially interesting in view of the fact that the rational Pak–Stanley labelling [GMV14] can be obtained
by taking the row-sums of the rational Shi tableau.

The Shi arrangement can be defined for any irreducible crystallographic root system Φ. Furthermore,
p-stable affine Weyl group elements have been considered in [Thi15]. We provide a uniform definition of
the rational Shi tableaux of dominant p-stable elements of the affine Weyl group of Φ. We conjecture that
dominant p-stable Weyl group elements are determined uniquely by their Shi tableaux (Conjecture 2.7).

In Section 3 we tie our previous results together by relating dominant p-stable affine permutations to
rational Dyck paths and simultaneous cores. This is achieved using the Anderson bijection of [GMV14].
We show that the rational Shi tableau of a dominant p-stable affine permutation can be computed from the
corresponding rational Dyck path as the codinv tableau of the path (Theorem 3.2). The codinv statistic on
rational Dyck paths, that is, the sum of the entries of the codinv tableau, corresponds naturally to the skew
length statistic on cores (Corollary 3.4). Hence we find that rational Shi tableaux can in fact be regarded as
another refinement of the skew length statistic. The contents of Section 3 and in particular the connection
between rational Shi tableaux and the zeta map on rational Dyck paths [GM13, ALW15] (Theorem 3.3)
are the main tools used in the proof of Theorem 2.8.

This is an extended abstract and some proofs have been omitted. A preprint of the full version is
available [Sul15].

1 Skew length and conjugation
Throughout this section n and p are positive integers (not necessarily coprime!). For any positive integer
z we set [z] = {1, . . . , z}. A partition λ is a weakly decreasing sequence λ1 ≥ λ2 ≥ · · · ≥ λ` > 0 of
positive integers. The number of parts or summands λi is called the length of the partition and is denoted
by `(λ). The sum

∑
i λi is called the size of λ. A partition is often identified with its Young diagram

{(i, j) : i ∈ [`(λ)], j ∈ [λi]}. We call the elements of the Young diagram cells of the partition. The
conjugate of the partition λ is the partition λ′ where λ′i = #{j : λj ≥ i}. Equivalently, if we view
partitions as Young diagrams then (j, i) ∈ λ′ if and only if (i, j) ∈ λ. The hook length of a cell of λ is
defined as hλ(i, j) = λi− j + λ′j − i+ 1. A partition κ is called n-core if no cell of κ has hook length n.
A partition is called n, p-core if it is both an n-core and a p-core. We denote the set of n-core partitions
by Cn and the set of simultaneous n, p-cores by Cn,p. Clearly λ ∈ Cn if and only if λ′ ∈ Cn.

Let λ be a partition. Given the hook length h of a cell x in the top row of λ we denote by Hc(h) the set
of hook lengths of cells in the same column as x. Given the hook length h of a cell x in the first column
of λ we denote by Hr(h) the set of hook lengths of cells in the same row as x. If h is not the hook length
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Fig. 1: A simultaneous core κ ∈ C7,16 with the multisets H7,16(κ) in red and H16,7(κ) in green.

of a suitable cell, set Hr(h) = ∅ resp. Hc(h) = ∅. For example, in Figure 1 we have Hc(12) = {12, 5}
and Hr(12) = {12, 10, 5, 3, 1} and Hr(11) = ∅.

A subset A ⊆ Z is called abacus if there exist integers a, b ∈ Z such that z ∈ A for all z with z < a,
and z /∈ A for all z with z > b. We call the elements of A beads and the elements of Z − A gaps.
An abacus is normalised if zero is a gap and there are no negative gaps. An abacus is balanced if the
number of positive beads equals the number of nonpositive gaps. An abacus A is n-flush if z − n ∈ A
for all z ∈ A. The theorem below is a version of the classical result that n-cores correspond to abacus
diagrams that are n-flush (see for example [JK81, 2.7.13]). Let κ ∈ Cn be an n-core with maximal hook
length m, that is, m is the hook length of the top left corner. Define α(κ) = {κi + 1 − i : i ≥ 1}
and β(κ) = Hc(m) ∪ {z ∈ Z : z < 0}, where by convention κi = 0 when i > `(κ). Note that
β(κ) = {z + `(κ)− 1 : z ∈ α(κ)}.

Theorem 1.1 The map α is a bijection between n-cores and balanced n-flush abaci. The map β is a
bijection between n-cores and normalised n-flush abaci.

For our purposes in this section we need the following simple consequence of Theorem 1.1.

Lemma 1.2 Let κ ∈ Cn be an n-core and z ≥ 0. Then z + n ∈ Hr(h) implies z ∈ Hr(h), and
z + n ∈ Hc(h) implies z ∈ Hc(h).

In fact, the set of n-cores is characterised by the property that z + n ∈ Hc(m) implies z ∈ Hc(m) for
all z ≥ 0, where m is the maximal hook length of κ.

Let κ ∈ Cn,p be a simultaneous core with maximal hook length m. Moreover choose an element
h ∈ Hc(m). We call the row of κ whose leftmost cell has hook length h an n-row (resp. p-row) if
h+ n /∈ Hc(m) (resp. h+ p /∈ Hc(m)). Similarly, given h ∈ Hr(m) we call the column whose top cell
has hook length h an n-column (resp. p-column) if h + n /∈ Hr(m) (resp. h + p /∈ Hr(m)). Denote by
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Hn,p(κ) the multiset of hook lengths of cells that are contained both in an n-row and in a p-column. In
Figure 1 the leftmost hook lengths of the 7-rows are 31, 15, 13, 12 and 4, and the top hook lengths of the
7-columns are 31, 29, 20, 12, 11 and 9.

This section’s main result is a surprising symmetry property of the multiset Hn,p(κ).

Theorem 1.3 Let κ ∈ Cn,p be an n, p-core. Then Hn,p(κ) = Hp,n(κ).

Proof: We prove the claim by induction on the size of κ. Denote by κ̄ the partition obtained from κ by
deleting the first column. Clearly κ̄ ∈ Cn,p and we may assume that Hn,p(κ̄) = Hp,n(κ̄).

Let m denote the maximal hook length in κ. Note that each n-row of κ̄ is an n-row of κ. The only p-
column of κ̄ that is not a p-column of κ has maximal hook lengthm−p. Thus there exist setsA ⊆ Hc(m)
and B ⊆ Hc(m− p) with Hn,p(κ) = (Hn,p(κ̄)∪A)−B. Similarly Hp,n(κ) = (Hp,n(κ̄)∪C)−D for
some setsC ⊆ Hc(m) andD ⊆ Hc(m−n). It suffices to show thatA−B = C−D andB−A = D−C.

Suppose z ∈ A but z /∈ B. Then z ∈ Hc(m) and z + n /∈ Hc(m). On the one hand we obtain
z /∈ Hc(m− n) and z /∈ D. It follows that A∩D = ∅. On the other hand we obtain z+ n+ p /∈ Hc(m)
and therefore z + n /∈ Hc(m − p). Since z /∈ B this implies z /∈ Hc(m − p) and consequently
z + p /∈ Hc(m). We obtain z ∈ C. Therefore A−B ⊆ C −D, and A−B = C −D by symmetry.

Conversely suppose z ∈ B but z /∈ A. By symmetry we have B∩C = ∅ and z /∈ C. On the other hand
z+n /∈ Hc(m−p) implies z+n+p /∈ Hc(m) and thus z+p /∈ Hc(m−n). Moreover z ∈ Hc(m−p)
implies z + p ∈ Hc(m) and therefore z ∈ Hc(m). Since z /∈ A we obtain z + n ∈ Hc(m) and
z ∈ Hc(m− n). We conclude that z ∈ D and the proof is complete. 2

The skew length skl(κ) of an n, p-core was defined by Armstrong, Hanusa and Jones [AHJ14] as the
number of cells that are contained in an n-row of κ and have hook length less than p. The set Hn,p(κ)
allows for a new equivalent definition.

Proposition 1.4 Let κ ∈ Cn,p be an n, p-core. Then skl(κ) = #Hn,p(κ).

From Theorem 1.3 we immediately recover two results that were recently proven by Guoce Xin [Xin15],
and independently by Ceballos, Denton and Hanusa [CDH15] when n and p are relatively prime.

Corollary 1.5 The skew length of an n, p-core is independent of the order of n and p.

Corollary 1.6 Let κ ∈ Cn,p be an n, p-core with conjugate κ′. Then skl(κ) = skl(κ′).

Indeed, with our alternative definition of skew length given in Proposition 1.4 the statements of Corol-
laries 1.5 and 1.6 are identical. We close this section by stating two equivalent conjectural properties of
the multiset Hn,p(κ) that need further investigation.

Conjecture 1.7 Let n and p be relatively prime, and κ ∈ Cn,p. Then the hook length of each cell of κ
appears in Hn,p(κ) with multiplicity at least one.

Conjecture 1.8 Let n and p by relatively prime, z ≥ 0 and κ ∈ Cn,p. Then z + n ∈ Hn,p(κ) implies
z ∈ Hn,p(κ). Equivalently also z + p ∈ Hn,p(κ) implies z ∈ Hn,p(κ).
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2 Rational Shi tableaux
In the beginning of this section we recall some facts about root systems and Weyl groups. For further
details we refer the reader to [Hum90]. Let Φ be an irreducible crystallographic root system with ambient
space V , positive system Φ+ and simple system ∆ = {σ1, . . . , σr}. Any root α ∈ Φ can be written as a
unique integer linear combination α =

∑r
i=1 ciσi, where all coefficients ci are nonnegative if α ∈ Φ+,

or all coefficients are nonpositive if α ∈ −Φ+. We define the height of the root α by ht(α) =
∑r
i=1 ci.

Thereby ht(α) > 0 if and only if α ∈ Φ+, and ht(α) = 1 if and only if α ∈ ∆. Moreover there exists a
unique highest root α̃ such that ht(α̃) ≥ ht(α) for all α ∈ Φ. The Coxeter number of Φ can be defined
as h = ht(α̃) + 1.

Let δ be a formal variable. We define the set of affine roots as Φ̃ = {α + kδ : α ∈ Φ, k ∈ Z}. The
height of an affine root is given by ht(α+ kδ) = ht(α) + kh. The sets of positive and simple affine roots
are defined as Φ̃+ = Φ+ ∪ {α+ kδ ∈ Φ̃ : α ∈ Φ, k > 0} and ∆̃ = ∆∪ {−α̃+ δ}. Thus α+ kδ ∈ Φ̃+ if
and only if ht(α+ kδ) > 0, and α+ kδ ∈ ∆̃ if and only if ht(α+ kδ) = 1.

The Coxeter arrangement Cox(Φ) consists of all hyperplanes of the form Hα = {x ∈ V : 〈x, α〉 = 0}
for α ∈ Φ. Its regions, that is, the connected components of V −

⋃
α∈ΦHα, are called chambers. We

define the dominant chamber as

C =
{
x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆

}
.

The Weyl group W of Φ is the group of linear automorphisms of V generated by all reflections in a
hyperplane in Cox(Φ). The Weyl group acts simply transitively on the chambers. Thus identifying the
identity e ∈W with the dominant chamber, each chamber corresponds to a unique Weyl group element.

The affine arrangement Aff(Φ) consists of all hyperplanes of the form Hα,k = {x ∈ V : 〈x, α〉 = k},
where α ∈ Φ and k ∈ Z. Its regions are called alcoves. We define the fundamental alcove as

A◦ =
{
x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆ and 〈x, α̃〉 < 1

}
.

The affine Weyl group W̃ of Φ is the group of affine transformations of V that is generated by all reflections
in a hyperplane in Aff(Φ). The affine Weyl group acts simply transitively on the set of alcoves. By
identifying the identity e ∈ W̃ with the fundamental alcove, every alcove corresponds to a unique element
of W̃ . An element ω ∈ W̃ is called dominant if and only if the alcove ω(A◦) is contained in the dominant
chamber C.

Given a root α ∈ Φ we define its coroot as α∨ = 2α/〈α, α〉. The coroot lattice is the integer span of
all coroots Q̌ =

∑
α∈Φ Zα∨ ⊆ V . For each q ∈ Q̌ the translation tq : V → V defined by tq(x) = x+ q

for all x ∈ V is an element of the affine Weyl group. Identifying Q̌ with its translation group we obtain
W̃ = W n Q̌. Note that if ω ∈ W̃ is dominant and ω = tqs, where q ∈ Q̌ and s ∈ W , then in particular
q lies in the closure of the dominant chamber. Thus 〈α, q〉 ≥ 0 for each positive root α ∈ Φ+.

Fix a root system of type An−1 by declaring the roots, positive roots and simple roots to be

Φ = {ei − ej : i, j ∈ [n], i 6= j}, Φ+ = {ei − ej : i, j ∈ [n], i < j}, ∆ = {ei − ei+1 : i ∈ [n− 1]}.

We now describe a combinatorial model for the affine Weyl group of type An−1. A detailed exposition
is found in [BB05, Sec. 8.3]. The affine symmetric group

∼
Sn is the group of bijections ω : Z → Z such
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that ω(i+n) = ω(i)+n for all i ∈ Z and ω(1)+· · ·+ω(n) = n(n+1)/2. Such a bijection ω is called affine
permutation. Each affine permutation is uniquely determined by its window [ω(1), ω(2), . . . , ω(n)]. The
group

∼
Sn has a set of generators called simple transpositions given by si = [1, . . . , i+ 1, i, . . . , n] for i ∈

[n− 1] and sn = [0, 2, . . . , n− 1, n+ 1]. The affine symmetric group and the set of simple transpositions
form a Coxeter system isomorphic to the the affine Weyl group of type An−1. The symmetric group Sn

can be seen as the subgroup of
∼
Sn consisting of all affine permutations whose window is a permutation

of [n].
The affine symmetric group possesses an involutive automorphism owing to the symmetry of the

Dynkin diagram of type An−1. Set s∗i = sn−i for i ∈ [n − 1] and s∗n = sn. This correspondence
extends to an automorphism ω 7→ ω∗ on

∼
Sn, where ω∗ is obtained by replacing all instances of si in any

expression of ω in terms of the simple transpositions by s∗i . The involutive automorphism has a simple
explicit description in window notation and fulfils many desirable properties.

Lemma 2.1 (i) Let ω ∈ ∼Sn be an affine permutation and i ∈ Z. Then w∗(i) = 1 − ω(1 − i). In
particular the window of ω∗ is given by [n+ 1− ω(n), . . . , n+ 1− ω(1)].

(ii) The involutive automorphism preserves Sn, translations, and dominant affine permutations.

Let ω ∈ ∼Sn be an affine permutation. An affine inversion of ω is a pair (i, j) ∈ [n]×N such that i < j
and ω(i) > ω(j). For i, j ∈ [n] with i < j define

ki,j(ω) =

∣∣∣∣⌊ω−1(j)− ω−1(i)

n

⌋∣∣∣∣ . (1)

The numbers ki,j(ω) where first considered by Shi [Shi86, Lem. 4.2.2]. We arrange them in a staircase
tableau as in Figure 3.

Lemma 2.2 (Compare to [BB05, Prop. 8.3.1]) Let ω ∈ ∼Sn be an affine permutation.

(i) Then the number of affine inversions of ω is given by
∑
i,j ki,j(ω).

(ii) If ω is dominant then ki,j(ω) equals the number of affine inversions (a, b) of ω, such that ω(a) ≡ i
and ω(b) ≡ j modulo n.

Motivated by Lemma 2.2 we call the collection of numbers ki,j(ω) for i, j ∈ [n] with i < j the
inversion table of ω ∈ ∼Sn. A simple computation reveals the effect of the involutive automorphism on
the inversion table.

Proposition 2.3 Let ω ∈ ∼Sn be an affine permutation. Then the inversion table of ω∗ is the transpose of
the inversion table of ω. That is kn+1−j,n+1−i(ω

∗) = ki,j(ω) for all i, j ∈ [n] with i < j.

There is a natural way to generalise the inversion table to affine Weyl groups. Let Φ be an irreducible
crystallographic root system with affine Weyl group W̃ . Let ω ∈ W̃ have the decomposition ω = tqs,
where q ∈ Q̌ and s ∈W . The affine Weyl group acts on the set of affine roots by

ω · (α+ kδ) = s · α+ (k − 〈q, s · α〉)δ.

A positive affine root α+ kδ ∈ Φ̃+ is an affine inversion of ω if ω · (α+ kδ) ∈ −Φ̃+. We denote the set
of affine inversions of ω by Inv(ω) = Φ̃+∩ω−1 ·

(
− Φ̃+

)
. For ω ∈ W̃ and a positive root α ∈ Φ+ define

kα(ω) = #(Inv(ω−1) ∩ {±α+ kδ : k ∈ Z}). (2)
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Proposition 2.4 Let i, j ∈ [n] with i < j and ω ∈ ∼Sn. Then ki,j(ω) = kei−ej (ω).

Note that two distinct elements of
∼
Sn may well have the same inversion table. However, we achieve

a bijective correspondence between permutations and tableaux if we restrict ourselves to dominant affine
permutations. We shall see that in case of the rational Shi tableau, which also counts certain inversions of
affine permutations, the appropriate set is even smaller, in fact finite.

Let p be a positive integer that is relatively prime to n. An affine permutation ω ∈ ∼Sn is called p-stable
if ω(i) < ω(i + p) for all i ∈ Z. The set of p-stable affine permutations in

∼
Sn, denoted by

∼
Sp
n, was

first considered by Gorsky, Mazin and Vazirani [GMV14]. As a consequence of Lemma 2.1 we see that
the involutive automorphism ω 7→ ω∗ preserves

∼
Sp
n. If p = mn + 1 then

∼
Sp
n corresponds to the set of

minimal alcoves of the regions of the m-extended Shi arrangement. If p = mn − 1 then
∼
Sp
n is related

to the bounded regions of the m-extended Shi arrangement. Thus p-stable affine permutations should be
viewed as a “rational” analogue of the regions of the Shi arrangement.

Let ω ∈ ∼Sp
n be a dominant p-stable affine permutation. Let ω−1 = tqs, where q ∈ Q̌ and s ∈ Sn, and

p = mn+ r with r ∈ [n− 1]. We define the rational Shi tableau of ω as the collection of integers

tpi,j(ω) =

{
min(ki,j(ω),m) if r + s(i) < s(j) or s(i) + r − n < s(j) < s(i).

min(ki,j(ω),m+ 1) otherwise,
(3)

where i, j ∈ [n] such that i < j.

One can show that ki,j(ω) ≤ m whenever s(j) − s(i) ∈ {r − n, r}. As a consequence tpi,j(ω) =
min(ki,j(ω),m) if p = mn + 1, and tpi,j(ω) = min(ki,j(ω),m + 1) if p = mn + (n − 1). For
p = mn+ 1 we recover the Shi tableau of Fishel, Tzanaki and Vazirani [FTV11]

The rational Shi tableau behaves similarly to the inversion table under the involutive automorphism.

Proposition 2.5 Let ω ∈ ∼Sp
n be a dominant p-stable affine permutation. Then the rational Shi tableau of

ω∗ is the transpose of the rational Shi tableau of ω. That is, tpn+1−j,n+1−i(ω
∗) = tpi,j(ω) for all i, j ∈ [n]

with i < j.

The rational Shi tableau generalises naturally to affine Weyl groups. Let Φ be an irreducible crystal-
lographic root system, and p be relatively prime to the Coxeter number h of Φ. Let Φ̃p denote the set of
affine roots of height p. In [Thi15, Sec. 8] Thiel defines p-stable affine Weyl group elements as the set
W̃ p = {ω ∈ W̃ : ω · Φ̃p ⊆ Φ̃+}. Let α ∈ Φ+ be a positive root and ω ∈ W̃ p a dominant p-stable element
of the affine Weyl group. Define

tpα(ω) = #
(
ω · (−Φ̃+

<p) ∩ {−α+ kδ : k ≥ 1}
)
, (4)

where Φ̃+
<p denotes the set of positive affine roots with height less than p. The rational Shi tableau of ω

is the collection of numbers tpα(ω) for α ∈ Φ+.

Proposition 2.6 Let n, p be positive coprime integers, i, j ∈ [n] with i < j, and ω ∈ ∼Sp
n be a dominant

p-stable affine permutation. Then tpi,j(ω) = tpei−ej (ω), which counts the number of affine inversions (a, b)
of ω such that b < a+ p, and ω(a) ≡ i and ω(b) ≡ j modulo n.

The following is the main conjecture of this paper.
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Conjecture 2.7 Let Φ be an irreducible crystallographic root system with affine Weyl group W̃ and Cox-
eter number h, and let p be a positive integer relatively prime to h. Then each dominant p-stable element
of the affine Weyl group is determined uniquely by its rational Shi tableau.

Conjecture 2.7 is known in to be true in the Fuß–Catalan case where p = mn + 1. In the next section
we exploit the connections of the affine symmetric group to the combinatorics of rational Dyck paths to
prove the conjecture if Φ is of type An−1. That is, we prove the following theorem. (The proof is found
at the end of Section 3.)

Theorem 2.8 Let n, p be two positive coprime integers. Then each dominant p-stable affine permutation
in
∼
Sn is determined uniquely by its rational Shi tableau.

The sum of the entries of the Shi tableau generalises the height statistic used by Stump in [Stu10,
Conj. 3.14]. Thus the q-Fuß–Catalan numbers proposed therein are generalised by the polynomials

CΦ,p(q) =
∑
ω

∏
α∈Φ+

qt
p
α(ω), (5)

the sum being taken over all dominant p-stable elements of the affine Weyl group, after a suitable trans-
formation. To be precise we have qhmr/2 Cat(m)(W ; q−1) = CΦ,hm+1(q), where r is the rank of Φ.

Pak and Stanley [Sta96] found a bijection between the regions of the (m-extended) Shi arrangement
of type An−1 and the set of (m-)parking functions of length n. Gorsky, Mazin and Vazirani [GMV14,
Def. 3.8] generalised this bijection to a map from

∼
Sp
n to the set of rational parking functions. Their

rational Pak–Stanley labelling f(ω) is defined by

fi(ω) = #
{

(a, b) ∈ [n]× N : a < b < a+ p, ω(a) > ω(b) and ω(b) ≡ i modulo n
}
,

where i ∈ [n]. If ω is a dominant p-stable affine permutation then the Pak–Stanley labelling is obtained
by taking the row-sums of the Shi tableau of ω. That is, fj(ω) =

∑j−1
i=1 t

p
i,j(ω). Consequently the dual

Pak–Stanley labelling, which we define by f∗i (ω) = fi(ω
∗), is obtained by taking the column-sums of the

Shi tableau of ω. That is, f∗i (ω) =
∑n
j=n−i+2 t

p
n−i+1,j(ω).

Partly the motivation for studying rational Shi tableaux comes from the fact that in view of the previous
paragraph they can be regarded as an intermediate step between dominant p-stable affine permutations
and their image under the Pak–Stanley labelling. If one replaces a dominant p-stable affine permutation ω
by its rational Shi tableau then some information is apparently lost, since not all inversions of ω are taken
into account. Moving on to the Pak–Stanley labelling f(ω) gives up even more information on the nature
of these inversions. Nevertheless there seems to be just enough information left to determine ω uniquely.
While the injectivity of the Pak–Stanley labelling on the set of all p-stable affine permutations remains an
open problem [GMV14, Conj. 1.4], it follows from the work of Williams [Wil15] that the Pak–Stanley
labelling is injective on the set of dominant p-stable affine permutations. In view of Theorem 2.8 it is an
interesting question whether Shi tableaux can offer new insights regarding this problem.

Another major open problem concerning the Pak–Stanley labelling is to find an analogous labelling for
different affine Weyl groups. Notably also this problem can be solved for rational Shi tableaux (recall the
definition in (4)).

To conclude this section we want to connect the world of cores and abaci to dominant affine permu-
tations. This connection is achieved by the next theorem, which follows essentially from the work of
Lascoux [Las01]. Let ω ∈ ∼Sn be a dominant affine permutation, and define γ(ω) = {z ∈ Z : ω(z) ≤ 0}.



Rational Shi tableaux and the skew length statistic 1155

0

16

32

48

64

80

96

112

-7

9

25

41

57

73

89

105

-14

2

18

34

50

66

82

98

-21

-5

11

27

43

59

75

91

-28

-12

4

20

36

52

68

84

-35

-19

-3

13

29

45

61

77

-42

-26

-10

6

22

38

54

70

-49

-33

-17

-1

15

31

47

63

-56

-40

-24

-8

8

24

40

56

-63

-47

-31

-15

1

17

33

49

-70

-54

-38

-22

-6

10

26

42

-77

-61

-45

-29

-13

3

19

35

-84

-68

-52

-36

-20

-4

12

28

-91

-75

-59

-43

-27

-11

5

21

-98

-82

-66

-50

-34

-18

-2

14

-105

-89

-73

-57

-41

-25

-9

7

-112

-96

-80

-64

-48

-32

-16

0

Fig. 2: A rational Dyck path x ∈ D7,16.

Theorem 2.9 The map γ is a bijection between dominant affine permutations in
∼
Sn and balanced n-flush

abaci. The abacus γ(ω) is p-flush if and only if ω ∈ ∼Sp
n is p-stable.

Recall the map α from cores to balanced flush abaci that was introduced in Section 1. We obtain a
bijection α−1 ◦ γ between the dominant affine permutations in

∼
Sn and n-cores. In particular α−1 ◦ γ

restricts to a bijection between dominant p-stable affine permutations and Cn,p. The following result
appears to be new.

Proposition 2.10 Let ω ∈ ∼Sn be a dominant affine permutation. Then α−1 ◦ γ(ω∗) is the conjugate
partition of α−1 ◦ γ(ω).

3 The codinv statistic
Let n and p be positive coprime integers. A rational Dyck path is a lattice path x that starts at (0, 0),
consists of n North steps N = (0, 1) and p East steps E = (1, 0), and never goes below the diagonal with
rational slope n/p. Denote the set of all rational Dyck paths by Dn,p.

For (i, j) with 0 ≤ i ≤ p and 0 ≤ j ≤ n place the label `i,j = jp− in in the unit square with bottom
right corner (i, j). Given a rational Dyck path x ∈ Dn,p, we assign to each of its steps the label `i,j , where
(i, j) is the starting point of the step. Let (`1, `2, . . . , `n) be the vector consisting of the labels of the North
steps of x (indicated in red in Figure 2) ordered increasingly. Denote by H(x) the set of positive labels
below x (indicated in green in Figure 2). These correspond exactly to those boxes below x but strictly
above the diagonal. Hence we have area(x) = #H(x).

We introduce the following definitions. A codinv pair of x is a pair of integers (`, h) such that ` is the
label of a North step of x and h ∈ H(x) and ` ≤ h ≤ `+ p. The codinv tableau of x is the collection of
numbers

di,j(x) = #
{

(`i, h) : h ∈ H, `i < h < `i + p and h ≡ `j mod n
}

(6)

where i, j ∈ [n] with i < j. See Figure 3 for an example.
Similar constructions have appeared before. First we remark that the codinv tableau is related to, albeit

not the same as, the laser fillings of Ceballos, Denton and Hanusa [CDH15, Def. 5.13]. The row-sums and
column-sums of the codinv tableau and the laser filling of a Dyck path agree. However, the codinv tableau
is always of staircase shape while the laser filling sits inside the boxes below the rational Dyck path.
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Fig. 3: The codinv tableau of the Dyck path in Figure 2.

Secondly we note that codinv pairs have been considered by Gorsky and Mazin [GM13] using slightly
different notation. However, they only considered the column-sums of the codinv tableau.

Our next aim is to relate rational Shi tableaux to codinv tableaux. Our starting point is an elegant
bijection ϕ : Dn,p → Cn,p between rational Dyck paths and simultaneous cores discovered by Ander-
son [And02]. For any finite set H = {h1, . . . , hk} of positive integers there exists a unique partition λ
such that H is the set of hook lengths of the cells in the first column of λ. For any x ∈ Dn,p let ϕ(x) be
the partition such that the set of hook lengths of the cells in its first column equals H(x). The Dyck path
in Figure 2 thereby corresponds to the core in Figure 1.

Theorem 3.1 [And02, Prop. 1] The map ϕ : Dn,p → Cn,p is a bijection.

Gorsky, Mazin and Vazirani [GMV14, Sec. 3.1] defined a generalised Anderson mapA that bijectively
maps the set of p-stable affine permutations to the set of rational parking functions. We are interested
in the restriction of the Anderson map to the set of dominant p-stable affine permutations, which can be
written as the composition A = ϕ−1 ◦ α−1 ◦ γ of maps we have already discussed. Here the inverse of
Anderson’s bijection ϕ makes an appearance, which accounts for the name of the Anderson map. We use
the Anderson map to relate rational Shi tableaux to the codinv statistic.

Theorem 3.2 Let n, p be positive coprime integers and ω ∈ ∼Sp
n be a dominant p-stable affine permuta-

tion. Then the rational Shi tableau of ω equals the codinv tableau of A(ω). That is, tpi,j(ω) = di,j(A(ω))
for all i, j ∈ [n] with i < j.

The zeta map ζ : Dn,p → Dn,p is a map on rational Dyck paths that has appeared many times in the
literature. Andrews, Krattenthaler, Orsina and Papi [AKOP02] first defined the inverse of the zeta function
in the Catalan case Dn,n+1. Haglund [Hag03] studied the Catalan instance of the zeta map in connection
with diagonal harmonics. More recently multiple descriptions of the rational zeta map have been found
(see [GM13, ALW15]).

The zeta map can be defined as follows. Let x = x1x2 . . . xn+p ∈ Dn,p be a rational Dyck path with
steps xi ∈ {N,E}. For i ∈ [n+p] let `(xi) be the label of the step xi. Then ζ(x) = xσ(1)xσ(2) . . . xσ(n+p),
where σ ∈ Sn+p is the unique permutation such that `(xσ(1)) < `(xσ(2)) < · · · < `(xσ(n+p)). The zeta
map is accompanied by a second map on rational Dyck paths that is called the eta map in [CDH15]. It is
defined by η(x) = ζ ◦ϕ−1((ϕ(x)′) where λ′ is the conjugate partition of λ and ϕ is Anderson’s bijection.

Using the codinv tableau we reprove a connection between the Anderson map, the zeta map and the
Pak–Stanley labelling that was already observed in [GMV14, Thm. 5.3]. Note that each rational Dyck
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path x ∈ Dn,p is the South-West boundary of a partition λ fitting inside the p × n rectangle. We call
λ the complement of x. For example, the complement of the Dyck path x in Figure 2 is the partition
λ = (11, 6, 6, 4, 3, 2).

Theorem 3.3 Let n, p be positive coprime integers and ω ∈ ∼Sp
n be a dominant p-stable affine permuta-

tion. Then the complement of ζ ◦A(ω) equals the (reversed(i)) Pak–Stanley labelling f(ω). Moreover, the
complement of η ◦ A(ω) equals the (reversed) dual Pak–Stanley labelling f∗(ω).

It is well known that skl(ϕ(x)) = (n − 1)(p − 1)/2 − area(ζ(x)). This follows from Armstrong’s
definition of the zeta map [ALW15, Thm 4.8], which uses cores. As a first consequence of Theorem 3.3
we obtain a justification for calling the codinv tableau a refinement of the skew length statistic.

Corollary 3.4 Let x ∈ Dn,p. Then
∑
i,j di,j(x) = (n− 1)(p− 1)/2− area(ζ(x)).

Furthermore we may now use a result of Ceballos, Denton and Hanusa [CDH15] to prove that each
rational Dyck path is determined uniquely by its codinv tableau, or equivalently, that each dominant p-
stable affine permutation is determined uniquely by its rational Shi tableau.

Theorem 3.5 Let x, y ∈ Dn,p such that di,j(x) = di,j(y) for all i, j ∈ [n] with i < j. Then x = y.

Proof of Theorems 2.8 and 3.5: We deduce the claim from [CDH15, Thm. 6.3], which asserts that
any rational Dyck path x can be reconstructed from the pair (ζ(x), η(x)). By Theorems 3.2 and 3.3 the
codinv tableau of x encodes both ζ(x) and η(x) in terms of column-sums and row-sums. Therefore it
contains enough information to determine the path x uniquely. Using the Anderson map again we obtain
the analogous statement for rational Shi tableaux and dominant p-stable affine permutations. 2

Note that the exciting recent result due to Williams [Wil15, Cor. 6.4], that the zeta map is bijective,
could replace [CDH15, Thm. 6.3] in the proof of Theorem 2.8.
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