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On (non-) freeness of some tridendriform
algebras

Vincent Vong†

Hoche, 73 Avenue de Saint-Cloud, 78000 Versailles,France

Abstract. We present some results on the freeness or non freeness of some tridendriform algebras. In particular,
we give a combinatorial proof of the freeness of WQSym, an algebra based on packed words, result already known
with an algebraic proof. Then, we prove the non-freeness of an another tridendriform algebra, PQSym, a conjecture
remained open. The method of these proofs is generalizable, in particular it has been used to prove the freeness of the
dendriform algebra FQSym and the quadrialgebra of 2-permutations.

Résumé. Nous présentons des résultats de liberté concernant certaines algèbres tridendriformes. En particulier, nous
prouvons par des arguments combinatoires que l’algèbre WQSym est tridendriforme libre, résultat déjà connu, mais
obtenu par des méthodes purement algébriques. Puis nous prouvons que PQSym n’est pas une algèbre tridendriforme
libre, conjecture restée ouverte jusqu’à présent. Les méthodes utilisées dans les preuves sont généralisable. En
particulier, elles ont été utilisées pour prouver la liberté de l’algèbre dendriforme FQSym et de la quadrialgèbre
des 2-permutations.

Keywords. WQSym, PQSym, tridendriform algebras, evaluation trees

1 Introduction
For some years now, a lot of algebras arise from combinatorial objects. For examples, permutations, park-
ing functions can be equipped with dendriform products which are half shuffle products ([LR98], [NT07]).
Conversely, some combinatorial objects appear naturally in the theory of operads, which is in part the
study of different types of algebras and the relations between them ([LV12]). For instance, planar binary
trees arise naturally from dendriform algebras ([Lod01]). Indeed, Loday proved that the Hilbert series
of the free dendriform algebra over one generator is the series of Catalan numbers ([Lod01]). Other
combinatorial properties have been studied in [HNT05].

Tridendriform algebras were introduced independently in [LR04] and [Cha02]. An example is given
by WQSym ([NT06]) and the construction of this algebra comes from products defined on a family of
words, the packed words. The freeness of this algebra was proved in [BR10]. Another tridendriform alge-
bra coming from a family of words, parking functions, denoted by PQSym was introduced in [NT07],
where the freeness of this algebra was conjectured.
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The aim of this article is to use the combinatorial interpretation of an algebra in terms of evaluation
trees in order to prove the freeness of WQSym and to prove the non-freeness of PQSym.

The paper is structured as follows: we present some background about evaluation trees, tridendri-
form and and free tridendriform algebras. Then we discuss the freeness of the algebras WQSym
and PQSym.

2 Background
In the sequel we are only interested in graded algebras.

2.1 Evaluation trees and algebras
Definition 1. A pair A = (A,P) is called a P-algebra if A is a graded vector space (A = ⊕n∈NAn)
with A0 isomorphic to K, P is a finite set of bilinear maps from A to A such that for each B in P , yn
in An and ym in Am, the element B(yn, ym) is in An+m, and the element of A0 identified to 1K is the
neutral element of B. We set A+ := ⊕n≥1An. If dim(An) is finite for each n, the Hilbert series of A is
the series

∑
n≥0 dim(An)tn.

Definition 2. A decorated complete binary tree is defined by induction as follows:

• the empty set ∅ is a decorated complete binary tree,
• the triple (a, ∅, ∅) is a decorated complete binary tree, where a is an element of a certain set,
• the triple (a, T1, T2) is a decorated complete binary tree if T1 and T2 are non-empty complete binary

trees, and a is an element.

We denote by CBT (P,B) the set of decorated complete binary trees where the leaves are decorated by
elements of B and the internal nodes are decorated by the elements of P and by BT (P,B) the graded
vector space freely spanned by CBT (P,B).

Definition 3. Let T = (a, T1, T2) and T ′ be two decorated binary trees. We say that T ′ is a prefix of T if
T ′ is the empty set; or T ′ = (a, T ′1, T

′
2) and T ′1 is a prefix of T1 and T ′2 is a prefix of T2.

Definition 4. Let T = (a, T1, T2) and T ′ be two decorated binary trees. We say that T contains the
pattern T ′ if T ′ is a prefix of T ; or T1 or T2 contain the pattern T ′.

If T does not contain the pattern T ′ we say that T avoids the pattern T ′.

Example 1.

�

≺

≺

x �

x x

x

x

The tree contains the pattern
�

≺
but avoids

�

�

.

Definition 5. Let (A,P) be a P-algebra, and B a basis of A+. The vector space of evaluation trees
over A denoted by ET (A) is the vector space BT (P,B).



On (non-) freeness of some tridendriform algebras 1185

×
~

a a′

�

b′ ×

b c

Fig. 1: Evaluation tree of (a~ a′)× (b′ � (b× c)).

Example 2. If A = (A, {×,~,�}), and a, a′, b, b′, and c are in A, the tree represented Figure 1
corresponds to the element (a~ a′)× (b′ � (b× c)) of ET (A).

Definition 6. Let (A,P) be a P-algebra. The evaluation map Ev is a linear map from ET (A) to A
defined on trees by:

Ev (∅) = 1K
Ev ((x, ∅, ∅)) = x
Ev ((B, T1, T2)) = B (Ev(T1), Ev(T2)) ,

(1)

where internal nodes are decorated by bilinear maps of P and leaves by elements of A.

Example 3. Let us consider the vector space of non-commutative polynomials K〈〈A〉〉, where A is a
totally ordered alphabet. Let us define following three products on non-empty words:

u ≺ v = uv if max(u) > max(v) u � v = uv if max(u) < max(v)
= 0 otherwise, = 0 otherwise,

u • v = uv if max(u) = max(v)
= 0 otherwise.

(2)

For A = {a, b, c, · · · , z}, the evaluation tree

�
≺

d b

•
e •

e e

corresponds to the expression (d ≺ b) � (e • (e • e)) which is equal to dbeee.

2.2 Tridendriform algebras
Definition 7. A tridendriform algebra is a vector space V equipped with three bilinear maps, •, �, ≺
such that for each elements a, b, c in A, we have:

(a ≺ b) ≺ c = a ≺ (b� c), (a � b) ≺ c = a � (b ≺ c) (a� b) � c = a � (b � c)
(a � b) • c = a � (b • c), (a ≺ b) • c = a • (b � c) (a • b) ≺ c = a • (b ≺ c)
(a • b) • c = a • (b • c)

. (3)

where � =≺ + •+ �.
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Example 4. The non-commutative polynomials K〈〈A〉〉 equipped with the three laws presented in exam-
ple 3 is a tridendriform algebra ([NT06]).

2.2.1 WQSym

One of the algebras we are interested in is the algebra WQSym. It was defined in [NT06].
It was proved in a different way by Burgunder and Ronco in [BR10] that is a free tridendriform algebra.

We give a proof based on the method presented in [Von15] for the freeness of this algebra in Section 3.

Definition 8. A packed word of size n is a word w = w1 · · ·wn over the alphabet N? with the following
property: if k is a letter of w, then each integer from 1 to k is also a letter of w.

We denote byMT (n) the set of packed word of size n, byMT the set of packed words, by WQSym
the graduated vector space freely generated by packed words and by WQSymn the component of de-
gree n generated byMT (n).

Example 5. The word 1132422 is a packed word but 14355 is not.

Definition 9. Let w be a word over a totally ordered alphabet A and b1 < b2 < · · · < br the different
letters of w. The word pack(w) is the packed word obtained by replacing all occurrences of bi by i.

Example 6. If w = 3944577, we have pack(w) = 1522344.

Definition 10. Let us consider an homogeneous basis (Mu)u∈MT of WQSym. We define the three
following products in this basis:

Mu ≺Mv =
∑

w=w1w2

pack(w1)=u, pack(w2)=v
max(w1)>max(w2)

Mw Mu �Mv =
∑

w=w1w2

pack(w1)=u, pack(w2)=v
max(w1)<max(w2)

Mw

Mu •Mv =
∑

w=w1w2

pack(w1)=u, pack(w2)=v
max(w1)=max(w2)

Mw

(4)

where max(w) is the greatest letter of w.
The vector space WQSym equipped with ≺, � and • is a tridendriform algebra ([NT06]).

Example 7. We have:

M112 •M121 = M113232 + M223131 + M112121. (5)

2.2.2 PQSym

In order to define the algebra PQSym, we have to define parking functions and an algorithm the park-
ization ([NT07]).

Definition 11. A parking function w is a word over the alphabet N∗ such that the non decreasing
word w ↑= w′1w

′
2 · · ·w′n associated to w satisfies the following property:

∀i ∈ {1, 2, · · · , n}, wi ≤ i. (6)

Let us denote by PQSym the vector space freely spanned by parking functions and by PQSymn the
subspace spanned by parking functions of size n.
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Example 8. The word w = 11321 is a parking function since w ↑= 11123 satisfies the property (6) but
the word v = 76191128 is not one.
Definition 12. Let w = w1 · · ·wn be a word over the alphabet N∗. The parkized of the word denoted
by Park(w) is obtained by the following process. We set

d(w) = min{i|]{wj ≤ i} < i}, (7)

by convention, the minimum of an empty set is∞. While d(w) ≤ n, we replace w by the word obtained
by replacing in w all letters j in w greater than d(w) by j + d(w)− a where a is the smallest letter of w
greater than d(w).
Example 9. If w = 9541843, we obtain successively d(w) = 2 and w = 8431732, then d(w) = 6
and w = 7431632. Since d(w) =∞, we deduce that Park(w) = 7431632.
Definition 13. Let (Pu) be an homogeneous basis of PQSym. We define the following three products
in this basis:

Pu ≺ Pv =
∑

w=w1w2

Park(w1)=u, Park(w2)=v
max(w1)>max(w2)

Pw; Pu � Pv =
∑

w=w1w2

Park(w1)=u, Park(w2)=v
max(w1)<max(w2)

Pw

Pu •Pv =
∑

w=w1w2

Park(w1)=u, Park(w2)=v
max(w1)=max(w2)

Pw

(8)
where max(w) is the greatest letter of w.

The vector space PQSym equipped with ≺, � and • is a tridendriform algebra ([NT07]).
Example 10. We have :

P112 •P21 = P11221 + P22331. (9)

2.2.3 Free tridendriform algebras
The method presented in this section has been used in [Nov14] and [Von15].

With the evaluation trees formalism, we rewrite the relations (3). For example, one of them becomes:

�

≺a

cb

=

≺

c�

a b

(10)

So the free tridendriform algebra over one generator x which we denote by T rid can be seen as the
vector space BT ({≺,�, •}, {x}) modulo the relations (3). In order to find a basis, we consider the set of
trees of CBT ({≺,�, •}, {x}) which avoids the following patterns :

?

≺

�

�

?

•
, (11)
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where ? ∈ {≺, �, •}. We denote this set by TAP ({x}) (for Trees Avoiding Patterns with leaves
in {x}).
Proposition 1. The generating series of TAP ({x}) (denoted by G) is the series of the little Schroeder
numbers.

Proof. Let us denote byGa the generating series of trees in TAP ({x}) and whose root is decorated by a.
So we have the following system: 

G = t+G� +G• +G≺
G≺ = tG
G• = tG
G� = G(G−G�)

(12)

Thus, G� = G2

1+G and G = t+ 2tG+ G2

1+G .
So:

2tG2 + (3t− 1)G+ t = 0. (13)

As a consequence, the series G satisfies the same equation as the generating series of the little Schroeder
numbers. Since this equation has one and only one solution which is a series with positive integers
coefficients, we deduce that the coefficients of G are the little Schroeder numbers.

Proposition 2. Under the relations (3), each tree of CBT ({≺,�, •}, {x}) is a linear combination of
trees in TAP ({x}).

Proof. By induction on the number of leaves n. For n ≤ 2, it is a consequence of the rewriting rules. Let T
be a tree with n+1 leaves. If T is equal to (�, T1, T2). By applying the induction hypothesis on T2, we ob-
tain (�, T1,~) where ~ is a linear combination of trees avoiding (11). But one of these trees may have the
following shape: (�, T1, (�, T ′, T”)), where T” has a root different to�, and avoiding (11). Then we use
the following rewriting rule � (�) = (�) �. So we have (�, T1, (�, T ′, T”)) = (�, (�, T1, T ′) , T”).
Thus it is sufficient to apply the induction hypothesis to the left sub-tree.

If the root is decorated by ≺ or •, we first apply the induction hypothesis to the left sub-tree. If a
forbidden pattern appears, at the level of the root with the left sub-tree, we apply the associated rewriting
rule. Thanks to the induction hypothesis, now the left sub-tree is a leaf. If the root is now decorated by �,
we already considered that case. Otherwise, it is sufficient to apply the induction hypothesis to the right
sub-tree.

Theorem 1. A linear basis of the free tridendriform algebra over one generator x is given by the fam-
ily TAP ({x}).

Proof. We have seen that family TAP ({x}) spans the free tridendriform algebra over one generator x.
It is known that the coefficients of the Hilbert series of this algebra is given by the little Shroeder num-
bers ([LR04]). Thanks to Proposition 1, we know that the generating series of TAP ({x}) is also given
by the generating series of the little Schroeder numbers. So the family is a basis TAP ({x}).

Theorem 2. Let A be a free tridendriform algebra generated by a free family F . A linear basis of A is
given by the evaluations of the family TAP (F) (for Trees Avoiding Patterns with leaves in F).
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Proof. Let v ∈ A. Since the family F generates the algebra A, the element v is a linear combination of
trees in TAP (F). Conversely, Assume there exists a linear combination of trees in TAP (F) such that:∑

T∈TAP(F)

αTEv(T ) = 0. (14)

If some of the coefficients are non-zero, we have a relation for the family F . So each of these coefficients
are zero. So (Ev(T ))T∈TAP(F) is a basis of A.

3 Freeness of the tridendriform algebra WQSym
From Theorem 1, in order to prove that WQSym is a free tridendriform algebra, it is sufficient to find
a family F of packed words such that the family (Ev(T ))T∈TAP(F) is a basis of WQSym. In order
to do so, we find three reduced products over packed words satisfying some relations with the three
products of WQSym and are compatible with a total order over packed words. Thanks to the reduced
products, we construct the family F of indecomposable packed words. Thanks to the order, we deduce
that (Ev(T ))T∈TAP(F) is uni-triangular and so is a basis.

3.1 Reduced products on packed words

3.1.1 Definitions and general properties
Definition 14. Let u and v two packed words. We define the following three products:

u ≺′ v = ūv̄; u �′ v = ûv̂; u •′ v = u̇v̇ , (15)

where:

• ū is obtained by replacing max(u) by max(u) + max(v), v̄ is obtained by shifting all letters of v
by max(u)− 1,
• û = u, and v̂ is obtained by shifting all letters of v by max(u),
• u̇ is obtained by replacing max(u) by max(u)+max(v)−1, and v̇ is obtained by shifting all letters

of v by max(u)− 1,

Example 11. If u = 2134341 and v = 3123, we have: u �′ v = 21343457567, u ≺′ v = 21373716456
and u •′ v = 21363616456.

Definition 15. Let u be a non-empty packed word. We say that u is indecomposable if :

u /∈ {v ?′ w, ?′ ∈ {≺′,�′, •′}, v ∈MT , w ∈MT , |u| ≥ 1, |v| ≥ 1} (16)

Otherwise, u is decomposable.
If :

u /∈ {v �′ w, v ∈MT , w ∈MT , |u| ≥ 1, |v| ≥ 1} , (17)

we say that u is �′-connected.

Proposition 3. Let u be a non-empty packed word of size n. The following two propositions are equiva-
lent:
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1. the word u is not �′-connected,

2. there exists 1 < i < n such that all letters u1 · · · , ui are strictly lesser than any letter ui+1, · · · , un.

Proof. Assume that u is not �′-connected. There exists v and w such that:

u = v �′ w = v̂ŵ, (18)

with the letters of v̂ strictly lesser than any letter of ŵ. So we can take i equals to |v̂|.
Conversely, Assume that there exists 1 < i < n such that all letters u1 · · · , ui are strictly lesser than any

letter ui+1, · · · , un. Since u is a packed word, we deduce that u = pack(u1 · · ·ui) �′ pack(ui+1 · · ·un).

Proposition 4. Let u be a non-empty packed word of size n. The following two propositions are equiva-
lent:

1. the word u is decomposable,

2. there exists 1 < i < n such that all letters u1 · · · , ui (but the maximum of ui if it is one of the ui)
are strictly lesser than any letter ui+1, · · · , un.

Proof. Assume that the word u is decomposable. So there exists v, w two packed words and ?′ ∈ {≺′,�′
, •′} such that u = v ?′ w. By taking i = |v|, we deduce that u satisfies the second property. Conversely,
if u satisfies the second property, we have: u = pack(u1 · · ·ui) ?′ pack(ui+1 · · ·un) where ?′ =�′ if any
letter of u1, · · · , ui are strictly lesser than any letter in ui+1 · · ·un. If the maximum of u is in u1 · · ·ui and
in ui+1 · · ·un, then u = pack(u1 · · ·ui) •′ pack(ui+1 · · ·un). If the maximum of u is only in u1 · · ·ui,
then u = pack(u1 · · ·ui) ≺′ pack(ui+1 · · ·un).

3.1.2 The factorization Theorem
Theorem 3. Let w be a non-empty packed word. Then w satisfies one and only one of the following
properties:

1. w is indecomposable; 2. w = u ≺′ v with u indecomposable;

3. w = u �′ v with v �′-connected; 4. w = u •′ v with u indecomposable.

In order to prove Theorem 3 we need to prove the following two propositions:

Proposition 5. Letw be a non-empty packed word. Assume that there exists u, v, u′ and v′ four non-empty
packed words such that:

w = u �′ v = u′ ?′ v′ (19)

where ?′ ∈ {≺′, •′}. Then u′ is decomposable.

Proposition 6. Let w be a non-empty packed word. Assume there exists u, v, u′ and v′ four non-empty
packed words such that:

w = u •′ v = u′ ≺′ v′ (20)

Then u′ is decomposable.
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Proof of Proposition 5. Assume that u �′ v = u′ ?′ v′. By construction, we have:

w = ûv̂ = ũ′ṽ′. (21)

Since û and ũ′ are strict prefixes of w, one is prefix of the other. Since max(w) is not in û but in ũ′, it
results that û is a strict prefix of ũ′. That is to say there exists a non-empty word ω such that :

ũ′ = ûω. (22)

But each letter of û is strictly lesser than all letters of v̂ and so each letter of û is strictly lesser than all
letters of ω. Thus, pack(ũ′) = u′ = û �′ ω′. In particular, u′ is decomposable.

Proof of Proposition 6. Assume that u •′ v = u′ ≺′ v′. By construction, we have:

w = u̇v̇ = ū′v̄′. (23)

Since v̇ and v̄′ are strict suffixes of w, one is suffix of the other. Since max(w) is not in v̄′ but in v̇, it
results that v̄ is a strict suffix of v̇. So u̇ is a strict prefix of ū′. That is to say, there exists a non-empty
word ω such that

ū′ = u̇ω. (24)

We note that each letter of u̇ but max(w) is strictly lesser than all letters of v̇ and so is strictly lesser than
all letters of ω. Thus, the word u′ is decomposable.

Proof of Theorem 3. Let w be a packed word of size n. Assume that w is decomposable. If w is not �′-
connected, thanks to Proposition 3, there exists u and v two non-empty words such that w = uv, where
all letters of u is strictly lesser than all letters of v. By taking u the greatest prefix satisfying this property,
we deduce that w = pack(u) �′ pack(v) with pack(v) �′-connected. Assume that w is decomposable
and �′-connected. Thanks to Proposition 4, there exists u and v two non-empty words such that w =
uv, where all letters of u but max(u) is strictly lesser than all letters of v. By taking u the smallest
prefix satisfying this property, we deduce that w = pack(u) ?′ pack(v) with pack(u) is indecomposable.
If max(u) > max(v), we have ?′ =�′ and if max(u) = max(v), we have ?′ = •′.

From Proposition 5 and Proposition 6, we deduce that the four cases are disjoint. Assume that w =
u �′ v and w = u′ �′ v′ with v and v′ �′-connected. If |v| < |v′|, we deduce that v′ is not�′-connected.
By symmetry, we deduce that |v| = |v′|. Then u = u′ and v = v′. By similar arguments, it follows
that u ?′ v = u′ ?′ v′ with ?′ ∈ {•′,≺′} and u, u′ indecomposable implies that u = u′ and v = v′.

Theorem 4. There is a bijection between packed words and TAP (F) where F is the set of indecompos-
able packed words.

Proof. By applying Theorem 3 recursively, we obtain the bijection.
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3.2 Freeness of WQSym

In order to prove that WQSym is a free tridendriform algebra, we need to find an order on packed words
which have some compatibility with the products ≺,�, • and the products ≺′,�′, •′.

Definition 16. Let u and v be two packed words of same size. We say that u is lesser than v denoted
by u ≤m,lex v if:

u ≤m,lex v ⇔ max(u) > max(v) or max(u) = max(v) and u ≤lex v. (25)

Example 12. We have: 13123 ≤m,lex 21122 and 21134 ≤m,lex 21143.

Proposition 7. Let I be a set of packed words of size m and J be a set of packed words of size n. Let u
be the minimum of I and v be the minimum J . Then:

1. min (I � J) = u �′ v, 2. min (I ≺ J) = u ≺′ v, 3. min (I • J) = u •′ v.

Proof. Let w = w1w2 be the minimum of I ? J , where ? ∈ {≺,�, •} and w1 be the prefix of size n.
Thus w is lesser than u ?′ v. By definition of ≤m,lex, we deduce that max(w) ≥ max (u ?′ v). By
definition of w, there exists r in I and s in J such that w ∈ r ? s. Since u is the minimum of I and v in the
minimum of J , we deduce that max(r) ≤ max(u) and max(s) ≤ max(v). But max(w) ≤ max(r) +
max(s) − 1 if ? = • and max(w) ≤ max(r) + max(s) in the other cases. It follows that max(r) =
max(u) and max(s) = max(v). Let us denote by ũ the prefix of size n of u ?′ v and ṽ the corresponding
suffix. We have w1 ≤lex ũ. But u ≤lex pack(w1) ≤lex w1 ≤lex ũ. But u and ũ may differ only in
maximum value. So pack(w1) = r = u since max(r) is equal to max(u). So we have u ≤lex w1 ≤lex ũ
and w1 and ũ may differ only in maximum value. We have three cases:

• if ? =�, we deduce that ũ = u. So w1 is equal to u.
• If ? = •, we deduce that max(w) = max(u) + max(v) − 1 which is also the maximum of ũ.

So w1 = ũ.
• If ? =≺, we deduce that max(w) = max(u)+max(v) which is also the maximum of ũ. Sow1 = ũ.

In all cases, we have w1 = ũ. Since max(w) = max(u ?′ v) and w1 contains the smallest letters (but
the maximum letter), we deduce that w2 contains the other letters. So w2 and ṽ have the same letters. By
same arguments as previously, we deduce that w2 = ṽ.

Theorem 5. The algebra WQSym is a free tridendriform algebra.

Proof. Thanks to Theorem 4, we deduce that the family (Ev(T ))T∈TAP(F) where F is the set of in-
decomposable packed words may be a basis. Thanks to the total order, we deduce that the matrix of the
family in the basis (Mu) is uni-triangular. Thus the algebra WQSym is a free tridendriform algebra.

4 The tridendriform algebra PQSym

We prove that PQSym is not a free tridendriform algebra by expliciting relations.

Theorem 6. The algebra PQSym is not a free tridendriform algebra.
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Proof. We denote by 〈F〉 the tridendriform algebra generated byF . Assume there exists a familyF which
generates PQSym as a free tridendriform algebra. Let us recall that the valuation of P in PQSym is
the first n such that Πn(P ) 6= 0, where Πn is the projection onto PQSymn.

We consider the elements in F which generate P1, P112 and P211. Since they are finite linear com-
binations of evaluation trees, there is a finite number of leaves. Then we can restrict to a finite free
family Fn = f1, · · · , fn elements of f which generates P1,P112 and P211. since one of the fi is val-
uation one, by linear combinations we can assume without loss of generality that f1 is the only element
which has a component of degree one. Since Π2(f1 • f1), Π2(f1 � f1) and Π2(f1 ≺ f1) span the
subspace PQSym2 we can replace fi by

fi − αif1 • f1 − βif1 � f1 − γif1 ≺ f1 (26)

where αi, βi, γi are respectively the coefficients of P11,P12,P21 in fi. From now on, we assume that
for i ≥ 2, the valuation of fi is at least 3.

Let us denote by V the vector space spanned by f1, · · · , fn and by W the subspace spanned by the
family of non empty evaluation trees BT (�,≺, •, f1, · · · , fn).

By construction, P1, P112 and P211 are in the vector space V
⊕

W . By hypothesis, a basis of V is
given by f1, · · · , fn. By construction, the valuation of elements in W is at least 2. So we have:

P1 = α1f1 +

n∑
i=2

αifi + w, (27)

with w ∈ W and for i ≥ 2 the valuation of fi is at least 3. Since the only element with valuation 1 is f1,
we deduce that α1 6= 0.

Let us write P112 in the same basis. We have:

P112 = β1f1 +

n∑
k=2

βifi + w′, (28)

with w′ ∈ W . The valuation of w′ is at least 2 and the valuation of
∑n

k=2 βifi is at least 3. Since the
valuation of P112 is 3, we deduce that β1 = 0. For i ≥ 2, the valuation of fi is at least 3. So the valuation
of w′ cannot be 2. Thus, the valuation of w′ is at least 3. By valuation arguments, trees of size greater
than 4 and trees whose leaves are different to f1 have a valuation greater than 4. By computing the other
trees, we observe that the coefficients of P112 and P113 are equal. So necessarily, the coefficient of one of
the fi for i 6= 1 is different to 0. Without loss of generality, by re-indexing the elements, we can assume
that β2 6= 0.

We have:
P1 •P112 −P211 •P1 = P2112 −P2112 = 0. (29)

And: P1 =
∑n

i=1 αifi + w, P112 =
∑n

k=2 βifi + w′, P211 =
∑n

i=2 γifi + w”.
By developing in the basis TAP (Fn), we have:∑

1≤i,j≤n

αiβjfi • fj −
∑

1≤i,j≤n

γiαjfi • fj + other terms = 0, (30)
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where other terms are linear combination of trees of size at least three. So in fact,∑
1≤i,j≤n

αiβjfi • fj −
∑

1≤i,j≤n

γiαjfi • fj = 0, (31)

So, for 1 ≤ i, j ≤ n, we have αiβj = γiαj . Since we have α1 6= 0 and β2 6= 0, it results that γ1 6= 0
and α2 6= 0. So γ1α1 6= 0. Thus, β1 is not equal to 0, which is a contradiction.
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