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Piano strings with reduced inharmonicity

Even on modern straight pianos, the inharmonicity of the lower strings is rather large especially for the first octave. Consequently, the timber of these strings can sometimes sound awful and chords on the first octave be highly dissonant. The idea of the present study is to show how this defect can be rectified using an inhomogeneous winding on the whole string in order to minimize inharmonicity. The problem is solved using an optimisation procedure considering a non uniform linear density. Results show that the inharmonicity of the first partials could be highly reduced by a non uniform winding limited to a quarter of the string.

Introduction

So-called harmonic strings are largely used in music because a uniform string without stiffness, and stretched between two fixed points, naturally have harmonic eigenfrequencies. When considering the string's stiffness the eigenfrequencies are no longer harmonic. The consequence on instruments like harpsichord and early pianos is limited. However, the development of piano making during the 19th century saw a tendency of increasing string tension by a factor 4, and the mass in the same proportion (cf. [START_REF] Chaigne | The making of pianos : a historical view[END_REF]). A consequence is that the inharmonicity cannot be considered negligible anymore, which reflects on the tuning of the instrument and the timbre. For the lower strings a solution has been found in order to increase the mass of the string without increasing too much its bending stiffness: the wound strings. Nevertheless, the inharmonicity remains rather large especially for the first octave of medium grand piano, and even worse on an upright piano: according to Young the inharmonicity of the bass strings on a medium piano is twice that of a grand piano, and that of a straight piano twice that of a medium ( [START_REF] Young | Inharmonicity of piano bass strings[END_REF], [START_REF] Giordano | Evolution of music wire and its impact on the development of the piano[END_REF]). Our study focuses on straight piano because we consider that designing strings with reduced inharmonicity would improve quite a lot the musical quality of these instruments.

The idea of the present study is to show how this defect could be rectified by using an inhomogeneous 42 winding on the whole string, in order to minimise in-43 harmonicity. The string is thus considered to be inho-44 mogeneous that is with a non uniform linear density 45 ([8]). From a theoretical point of view, the problem 46 translates into finding an "optimal" non uniform lin-47 ear density for a stretched string with uniform stiff-48 ness. Here, the optimality condition amounts to being 49 as harmonic as possible. This problem is solved using 50 an optimisation procedure, initialised with the char-51 acteristics of a real string. The diameter of the opti-52 mised string is allowed to vary between the diameter 53 of the core (supporting the winding) and about twice 54 the diameter of the reference string. An area with 55 uniform winding will be kept to reduce the amount 56 of work during the manufacturing of the true string. 57 Moreover, it is proposed to limit the non uniform 58 winding to one side of the string. The model chosen for the string is linear and only 61 involves tension, bending stiffness and mass per unit 62 length. According to Chabassier, this model is suffi-63 cient for low frequencies (cf. [START_REF] Chabassier | Modeling and numerical simulation of a piano[END_REF], remark I.1.2, there 64 is no need to add a shear term), small amplitudes. 65 Moreover, even if this not completely true (see [START_REF] Conklin | Design and tone in the mechanoacoustic piano. part iii. piano strings and scale design[END_REF]), it 66 is considered that the increase of stiffness due to the 67 wrapping can be neglected. So, the stiffness is that of 68 the core (cf. [1] I.1.5) and is therefore constant along 69 the string. Finally, the model is taken without any 70 losses as only the eigenfrequencies are of interest. The displacement equation is then given in the Fourier domain by (cf. [START_REF] Ducasse | On waveguide modeling of stiff piano strings[END_REF])

-µω 2 y = T ∂ 2 y ∂x 2 -EI ∂ 4 y ∂x 4 (1)
where µ is the mass per unit length (function of x), T is the tension, E is the string core's Young modulus, I = Ar 2 /4 with A the core section, r the core radius and ω is the pulsation.

The string being simply supported at both ends, the boundary conditions are given by

y| x=0 = y| x=L = ∂ 2 y ∂x 2 x=0 = ∂ 2 y ∂x 2 x=L = 0.

Solution with constant µ

When µ(x) = µ 0 is constant, it is possible to find an explicit solution of (1). The eigenfrequencies of the oscillator are given by (cf. [START_REF] Valette | Mechanics of the vibrating string[END_REF] §3.4)

f n = nf 0 1 + Bn 2 with f 0 = 1 2L T µ 0 and B = π 2 EI T L 2 .
The inharmonicity factor comes from

√ 1 + Bn 2 .
This equation shows the influence of string's stiffness on inharmonicity. A shorter string with small tension and high stiffness has a higher B, and therefore inharmonic eigenfrequencies. For a typical piano string, the inharmonicity is minimum for the second octave and in the range of 10 -4 . It increases with the frequency in upper octaves but also for the first octave ( [START_REF] Rigaud | A parametric model and estimation techniques for the inharmonicity and tuning of the piano[END_REF]). For a grand piano for the first note A0, B is less than 10 -4 which leads to an inharmonicity of 20 cents for the 16th harmonic but for a straight piano B can reach 10 -3 which leads to an inharmonicity of 200 cents for the 16th harmonic (see [START_REF] Conklin | Design and tone in the mechanoacoustic piano. part iii. piano strings and scale design[END_REF]). With such values of B, the sound of the lower string is awful and chords on the first octave cause a lot of beatings inducing a high roughness. Therefore, we consider that the reduction of the harmonicity factor would have a beneficial influence on the sound of the medium and straight piano, especially for the first two octaves.

Optimisation

The goal is to find a density function that corresponds to a harmonic string, i.e. a function µ that is a minimum for the "inharmonicity" function C (cf. [START_REF] Gaudet | The evolution of harmonic indian musical drums: A mathematical perspective[END_REF]) defined by

C : µ → nmax n=2 ω n (µ) nω 1 (µ) -1 2
where the ω n s are the eigenfrequencies of the equation This choice of inharmonicity function is quite natural for an optimisation problem as it is a quadratic function of the higher frequencies.

In general, it is not possible to work directly with 106 the function µ, and a discretisation of the space is 107 needed so that an approximation in finite dimension 108 can be used. When mass is non uniform, solutions of equation ( 1) have to be approximated by a numerical method. The problem with non-constant µ is thus solved with a classical FEM in space (similar to the more complex setting of [START_REF] Chabassier | Modeling and numerical simulation of a piano[END_REF], §II.1) using Hermite's polynomials (cf. [START_REF] Ern | Aide-memoire of finite elements[END_REF], 1.7) and a uniform discretisation of [0, L] for fixed N and 0 < i < N + 1 with h = L N +1 , x i = hi. The projection of the operators "multiplication by µ", T ∂ 2 ∂x 2 and EI ∂ 4 ∂x 4 then define three 2N × 2N matrices M(µ), T and E so that (1) can be approximated by

ω 2 M(µ)U = (T + E)U (2) 
with

U = t (y(x 1 ), y (x 1 ), • • • , y(x N ), y (x N ))
, 111 where the prime denotes the spatial derivative.

112

More precisely, the matrices T and E can be com-113 puted using Hermite's polynomials and leads to the 114 formulas 115

T = T h 2            . . . -6 5 h 10 -h 10 -h 2 30 -6 5 -h 10 12 5 0 h 10 -h 2 30 0 4h 2 15 . . .            , E = EI h 4           . . . -12 6h -6h 2h 2 -12 -6h 24 0 6h 2h 2 0 8h 2 . . .           116
and as well the matrix M(µ) is computed for func-117 tions µ constants on each interval ]x i , x i+1 [ by

118 M =            . . . µ i-1/2 9 70 -µ i-1/2 13h 420 µ i-1/2 13h 420 -µ i-1/2 h 2 140 µ i-1/2 9 70 µ i-1/2
13h 420

(µ i-1/2 + µ i+1/2 ) 13 35 (-µ i-1/2 + µ i+1/2 ) 11h 210 -µ i-1/2 13h 420 -µ i-1/2 h 2 140 (-µ i-1/2 + µ i+1/2 ) 11h 210 (µ i-1/2 + µ i+1/2 ) h 2 105 . . .            119
where µ i+1/2 denotes the value of µ on ]x i , x i+1 [.

120

Equation ( 2) is a generalised eigenvalue problem 121 that can be solved using generalised Schur decompo-122 sition. In the present study, the gradient algorithm is used 125 to find a minimum of the "inharmonicity" function C. 126 It works well for low stiffness and/or small numbers 127 n max . When converging, it gives a solution having 128 arbitrarily low inharmonicity for the first n max har-129 monics.

130

It uses the derivative of functions ω n with respect to µ for n ∈ {1, • • • , n max }. The value of this derivative is computed using perturbation theory and is approximated by the formula

grad µ ω n = U n .U n t U n M(µ)U n
where U n is an eigenvector of equation ( 2) associated 131 to the eigenvalue -ω 2 n , and U n .U n is the Hadamard 132 (entrywise) product of U n with itself.

The stopping condition is dictated by the inharmonicity of each partial, as it should be at least as good as that of the uniform string and at most ≤ ε, for a fixed constant ε which, in practice, is taken to be 10 -3 .

Examples and results with different strategies

Gradient algorithm looks for solutions in a vector space, but most of the elements of this space are physically irrelevant. It is therefore necessary to reduce the search space and add conditions to find useful solutions. In particular, they must verify at least that the density remains bigger than that of the core, as it would otherwise weaken the string. On the other hand it can be interesting to limit the inhomogeneous part in order to make the manufacturing easier. These considerations lead to different strategies which are described below.

In the following the chosen nominal string is a C1 straight piano string corresponding to a frequency of 32.7Hz : L = 1.035m, µ 0 = 180g/m, T = 825N and EI = 0.028N m 2 , which leads to an inharmonicity coefficient B = 3.13 10 -4 . Here the string is considered to be strictly uniform on all its length and it is considered that the stiffness is that of the core only. In practice it is likely that the inharmonicity coefficient might be significantly higher ( [START_REF] Conklin | Design and tone in the mechanoacoustic piano. part iii. piano strings and scale design[END_REF]).

Minimum of constraints

This corresponds to the case were the only constraint is that the density is at least equal to that of the wire. Results depend on the number of harmonics which are taken into account in the optimisation. On be noticed that the fluctuations are more important 187 near the ends off the string which suggests that fluc-188 tuations in the middle of the string could be avoided. 189 It can be seen on figure 2 that the diameter at the 190 ends is much larger than that of the uniform string. 191 In practice this will be probably difficult to manage. 192

Non negative density fluctuations 193

The question is now whether it would be possible to 194 only add some masses to a uniform string in order 195 to apply local corrections. On the numerical point of 196 view this is obtained by replacing the gradient by its 197 positive part. The convergence is much slower than 198 for the previous case (4730 steps are needed for a max-199 imum inharmonicity of ε = 10 -3 against 332). How-200 ever, the comparison of figure 2 and figure 3 shows 201 that it should be possible to avoid valleys without in-202 creasing too much the amplitude of the hills. 

One sided density fluctuation

Owing to the symmetrical nature of the problem, for all the previous examples the algorithm converges to a symmetrical solution. However there is a priori no reason to keep a symmetrical string. Moreover, to avoid the hammer hitting the string on a non uniform region it would be good to limit the non uniform region to only one end of the string. The first mass is about 5 g and is centered at 3 cm 240 from the end. The third one is 0.4 g and is centered 241 at 24 cm from the end. In practice, the second mass 242 is probably useless. So, it is surprising to realise that 243 for n max = 10 a single mass is probably sufficient to 244 significantly improve the harmonicity of a string. It is noticeable that the present result is not far 246 from what can be found in [START_REF] Sanderson | Method for making wound strings for musical instruments characterized by reduced inharmonicity[END_REF] in which a local over 247 winding is used to compensate for the inharmonicity 248 induced by the bare ends. The present study shows that it might be possible 251 to build piano strings with an optimised non uniform 252 density leading to a reduced inharmonicity of the first 253 partials. Moreover the non uniform part of the string 254 could be limited to a short portion of the string near 255 the end (25 cm in the given example). Moreover, it 256 appears that a single mass a few centimeters from 257 the end might significantly improve the harmonicity. 258 Now, many questions arise. In practice, how to take 259 into account the effective inharmonicity of the string 260 including the influence of the sound board and that of 261 the winding? On the perceptive point of view, what 262 is the minimum number of harmonics to consider in 263 order to obtain a significant improvement? To answer 264 these questions, the next step is to find a process to 265 optimise the harmonicity on an actual string. Obvi-266 ously, the final design will be the result of exchanges 267 between piano tuners, pianists and engineers. Finally 268 we are deeply convinced that such harmonic strings 269 will make it possible to highly increase the musical 270 quality of the first two octaves of straight pianos but
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 21 Mathematical model 72 Let us consider the Euler-Bernoulli model without 73 losses for a stiff string of length L.
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 1 Figure 1: Sketch of the string and notations
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109 3 . 1

 31 Numerical implementation 110

123 3 . 2

 32 Optimisation algorithm 124

figure 2 Figure 2 :

 22 figure 2 the density for different n max = 10, 15, 18, is shown. The convergence is considered to be obtained when the maximum of harmonicity is < 10 -3 . The number of steps needed to obtain the convergence increases with the number of harmonics: for n max = 10, 15, 18 the number of steps are respectively n step = 332, 848, 1188. It appears that the density fluctuations show a number of valleys equal to the number of harmonics involved in the optimisation. Physically it can be interpreted as a way to slower the waves up to the maximum frequency considered. Another important observation is that density fluctuations are allthe more important as the number of harmonics considered is high: the amplitude varies roughly as the square of the harmonic number. This is an important limitation, because this limits the number of harmonics on which inharmonicity can be minimised. On the given example, for n max = 18 the density is localy multiplied by about 2 which means that the diameter of the string is locally increased by 40% . It can also
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 3 Figure 3: Result of convergence with non negative fluctuation of density and n max = 10. Top: density profile; bottom: harmonicity as a function of harmonic number.
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 34 Figure 4: Result of convergence with no fluctuation on one half of the string in the middle and n max = 10. Top: density profile; bottom: harmonicity as a function of harmonic number.

  Figure 5 shows that similar results are obtained when the fluctuation are concentrated on one side. As one could expect, this tends to increase the amplitude of the fluctuations. Results are given on figure 5 for n max = 10 and a = L/4. It is noticeable that the result tends to a point mass near the end combined with two periods of a "damped sinusoidal" variation of density.
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 5 One sided non negative density fluctuation Now, the next step is to consider only non negative density fluctuations on a small part of the string. The results given on figure 5 converge to what can be interpreted as small masses. The second mass being rather negligible it seems that two masses are sufficient to correct the inharmonicity of the first ten harmonics. 239
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 5 Figure 5: Result of convergence with and without positive density fluctuations on one quarter of the string and n max = 10. Top: density profile; bottom: harmonicity as a function of harmonic number.