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Summary

Even on modern straight pianos, the inharmonicity of
the lower strings is rather large especially for the first
octave. Consequently, the timber of these strings can
sometimes sound awful and chords on the first octave
be highly dissonant. The idea of the present study is
to show how this defect can be rectified using an in-
homogeneous winding on the whole string in order to
minimize inharmonicity. The problem is solved using
an optimisation procedure considering a non uniform
linear density. Results show that the inharmonicity
of the first partials could be highly reduced by a non
uniform winding limited to a quarter of the string.

1 Introduction

So-called harmonic strings are largely used in mu-
sic because a uniform string without stiffness, and
stretched between two fixed points, naturally have
harmonic eigenfrequencies. When considering the
string’s stiffness the eigenfrequencies are no longer
harmonic. The consequence on instruments like harp-
sichord and early pianos is limited. However, the de-
velopment of piano making during the 19th century
saw a tendency of increasing string tension by a factor
4, and the mass in the same proportion (cf. [2]). A
consequence is that the inharmonicity cannot be con-
sidered negligible anymore, which reflects on the tun-
ing of the instrument and the timbre. For the lower
strings a solution has been found in order to increase
the mass of the string without increasing too much
its bending stiffness: the wound strings. Neverthe-
less, the inharmonicity remains rather large especially
for the first octave of medium grand piano, and even
worse on an upright piano: according to Young the
inharmonicity of the bass strings on a medium piano
is twice that of a grand piano, and that of a straight
piano twice that of a medium ([11], [7]). Our study
focuses on straight piano because we consider that
designing strings with reduced inharmonicity would
improve quite a lot the musical quality of these in-
struments.

The idea of the present study is to show how this

defect could be rectified by using an inhomogeneous
winding on the whole string, in order to minimise in-
harmonicity. The string is thus considered to be inho-
mogeneous that is with a non uniform linear density
([8]). From a theoretical point of view, the problem
translates into finding an “optimal” non uniform lin-
ear density for a stretched string with uniform stiff-
ness. Here, the optimality condition amounts to being
as harmonic as possible. This problem is solved using
an optimisation procedure, initialised with the char-
acteristics of a real string. The diameter of the opti-
mised string is allowed to vary between the diameter
of the core (supporting the winding) and about twice
the diameter of the reference string. An area with
uniform winding will be kept to reduce the amount
of work during the manufacturing of the true string.
Moreover, it is proposed to limit the non uniform
winding to one side of the string.

2 Euler Bernoulli model

The model chosen for the string is linear and only
involves tension, bending stiffness and mass per unit
length. According to Chabassier, this model is suffi-
cient for low frequencies (cf. [1], remark I.1.2, there
is no need to add a shear term), small amplitudes.
Moreover, even if this not completely true (see [3]), it
is considered that the increase of stiffness due to the
wrapping can be neglected. So, the stiffness is that of
the core (cf. [1] I.1.5) and is therefore constant along
the string. Finally, the model is taken without any
losses as only the eigenfrequencies are of interest.

2.1 Mathematical model

Let us consider the Euler-Bernoulli model without
losses for a stiff string of length L.

Figure 1: Sketch of the string and notations

The displacement equation is then given in the
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Fourier domain by (cf. [4])

−µω2y = T
∂2y

∂x2
− EI ∂

4y

∂x4
(1)

where µ is the mass per unit length (function of x), T
is the tension, E is the string core’s Young modulus,
I = Ar2/4 with A the core section, r the core radius
and ω is the pulsation.

The string being simply supported at both ends,
the boundary conditions are given by

y|x=0 = y|x=L =
∂2y

∂x2

∣∣∣∣
x=0

=
∂2y

∂x2

∣∣∣∣
x=L

= 0.

2.2 Solution with constant µ

When µ(x) = µ0 is constant, it is possible to find an
explicit solution of (1). The eigenfrequencies of the
oscillator are given by (cf. [10] §3.4)

fn = nf0
√

1 +Bn2 with f0 =
1

2L

√
T

µ0
and B =

π2EI

TL2
.

The inharmonicity factor comes from
√

1 +Bn2.
This equation shows the influence of string’s stiffness
on inharmonicity. A shorter string with small tension
and high stiffness has a higher B, and therefore in-
harmonic eigenfrequencies. For a typical piano string,
the inharmonicity is minimum for the second octave
and in the range of 10−4. It increases with the fre-
quency in upper octaves but also for the first octave
([9]). For a grand piano for the first note A0, B is
less than 10−4 which leads to an inharmonicity of 20
cents for the 16th harmonic but for a straight piano
B can reach 10−3 which leads to an inharmonicity of
200 cents for the 16th harmonic (see [3]). With such
values of B, the sound of the lower string is awful and
chords on the first octave cause a lot of beatings in-
ducing a high roughness. Therefore, we consider that
the reduction of the harmonicity factor would have a
beneficial influence on the sound of the medium and
straight piano, especially for the first two octaves.

3 Optimisation

The goal is to find a density function that corresponds
to a harmonic string, i.e. a function µ that is a min-
imum for the “inharmonicity” function C (cf. [6])
defined by

C : µ 7→
nmax∑
n=2

(
ωn(µ)

nω1(µ)
− 1

)2

where the ωns are the eigenfrequencies of the equation
(1) sorted by increasing magnitude, nmax being the
number of harmonics considered in the optimisation.
This choice of inharmonicity function is quite natu-
ral for an optimisation problem as it is a quadratic
function of the higher frequencies.

In general, it is not possible to work directly with
the function µ, and a discretisation of the space is
needed so that an approximation in finite dimension
can be used.

3.1 Numerical implementation

When mass is non uniform, solutions of equation (1)
have to be approximated by a numerical method. The
problem with non-constant µ is thus solved with a
classical FEM in space (similar to the more complex
setting of [1], §II.1) using Hermite’s polynomials (cf.
[5], 1.7) and a uniform discretisation of [0, L] for fixed
N and 0 < i < N + 1 with h = L

N+1 , xi = hi.
The projection of the operators “multiplication by µ”,

T ∂2

∂x2 and EI ∂4

∂x4 then define three 2N × 2N matrices
M(µ), T and E so that (1) can be approximated by

ω2M(µ)U = (T + E)U (2)

with U = t (y(x1), y′(x1), · · · , y(xN ), y′(xN )),
where the prime ′ denotes the spatial derivative.

More precisely, the matrices T and E can be com-
puted with the formulas

T = T

h2



. . . − 6
5

h
10

. . . − h
10 −

h2

30 · · ·
− 6

5 −
h
10

12
5 0

h
10 −

h2

30 0 4h2

15 · · ·
...

. . .


, E = EI

h4
EI



. . . −12 6h
. . . −6h 2h2 · · ·

−12 −6h 24 0
6h 2h2 0 8h2 · · ·

...
. . .


and the matrix M(µ) is computed for functions µ con-
stants on each interval ]xi, xi+1[ by

M =



. . . µi−1/2
9
70 −µi−1/2 13h

420
. . . µi−1/2

13h
420 −µi−1/2 h

2

140 · · ·
µi−1/2

9
70 µi−1/2

13h
420 (µi−1/2 + µi+1/2) 13

35 (−µi−1/2 + µi+1/2) 11h
210

−µi−1/2 13h
420 −µi−1/2

h2

140 (−µi−1/2 + µi+1/2) 11h
210 (µi−1/2 + µi+1/2) h

2

105 · · ·
...

. . .


.

where µi+1/2 denotes the value of µ on ]xi, xi+1[.

Equation (2) is a generalised eigenvalue problem
that can be solved using generalised Schur decompo-
sition.

3.2 Optimisation algorithm

In the present study, the gradient algorithm is used
to find a minimum of the “inharmonicity” function C.
It works well for low stiffness and/or small numbers
nmax. When converging, it gives a solution having
arbitrarily low inharmonicity for the first nmax har-
monics.

It uses the derivative of functions ωn with respect to
µ for n ∈ {1, · · · , nmax}. The value of this derivative
is computed using perturbation theory and is approx-
imated by the formula

gradµωn =
Un.Un

tUnM(µ)Un

where Un is an eigenvector of equation (2) associated
to the eigenvalue −ω2

n, and Un.Un is the Hadamard
(entrywise) product of Un with itself.
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The stopping condition is dictated by the inhar-
monicity of each partial, as it should be at least as
good as that of the uniform string and at most ≤ ε,
for a fixed constant ε which, in practice, is taken to
be 10−3.

4 Examples and results with
different strategies

Gradient algorithm looks for solutions in a vector
space, but most of the elements of this space are phys-
ically irrelevant. It is therefore necessary to reduce
the search space and add conditions to find useful so-
lutions. In particular, they must verify at least that
the density remains bigger than that of the core, as
it would otherwise weaken the string. On the other
hand it can be interesting to limit the inhomogeneous
part in order to make the manufacturing easier. These
considerations lead to different strategies which are
described below.

In the following the chosen nominal string is a C1
straight piano string corresponding to a frequency of
32.7Hz : L = 1.035m, µ = 180g/m, T = 825N and
EI = 0.028Nm2, which leads to an inharmonicity co-
efficient B = 3.13 10−4. Here the string is considered
to be strictly uniform on all its length and it is con-
sidered that the stiffness is that of the core only. In
practice it is likely that the inharmonicity coefficient
might be significantly higher ([3]).

4.1 Minimum of constraints

This corresponds to the case were the only constraint
is that the density is at least equal to that of the
wire. Results depend on the number of harmonics
which are taken into account in the optimisation. On
figure 2 the density for different nmax = 10, 15, 18,
is shown. The convergence is considered to be ob-
tained when the maximum of harmonicity is < 10−3.
The number of steps needed to obtain the conver-
gence increases with the number of harmonics: for
nmax = 10, 15, 18 the number of steps are respectively
nstep = 332, 848, 1188.

It appears that the density fluctuations show a
number of valleys equal to the number of harmon-
ics involved in the optimisation. Physically it can
be interpreted as a way to slower the waves up to
the maximum frequency considered. Another impor-
tant observation is that density fluctuations are all
the more important as the number of harmonics con-
sidered is high: the amplitude varies roughly as the
square of the harmonic number. This is an important
limitation, because this limits the number of harmon-
ics on which inharmonicity can be minimised. On the
given example, for nmax = 18 the density is localy
multiplied by about 2 which means that the diameter
of the string is locally increased by 40% . It can also
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Figure 2: Result of convergence with no strategy for
different values of nmax. Top: density profile; bottom:
harmonicity as a function of harmonic number.

be noticed that the fluctuations are more important
near the ends off the string which suggests that fluc-
tuations in the middle of the string could be avoided.

It can be seen on figure 2 that the diameter at the
ends is much larger than that of the uniform string.
In practice this will be probably difficult to manage.

4.2 Non negative density fluctuations

The question is now whether it would be possible to
only add some masses to a uniform string in order
to apply local corrections. On the numerical point of
view this is obtained by replacing the gradient by its
positive part. The convergence is much slower than
for the previous case (4730 steps are needed for a max-
imum inharmonicity of ε = 10−3 against 332). How-
ever, the comparison of figure 2 and figure 3 shows
that it should be possible to avoid valleys without in-
creasing too much the amplitude of the hills.
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Figure 3: Result of convergence with non negative
fluctuation of density and nmax = 10. Top: den-
sity profile; bottom: harmonicity as a function of har-
monic number.
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4.3 No density fluctuation on a central
part of given length

In order to limit the area of intervention, an idea is
to keep a uniform diameter on a portion of the string
that is as large as possible. On figure 4 results are
shown for a string that is kept uniform on one half of
its length (i.e. non constant on [0, a] and [L − a, L],
constant on [a, L − a] with a = L/4). It can be seen
that this constraint leads to a concentration of the
added mass near the end of the string. It is interesting
to notice that only 2 hills and 2 valleys on both sides
of the string are sufficient to obtain good results for
nmax = 10.
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Figure 4: Result of convergence with no fluctuation
on one half of the string in the middle and nmax =
10. Top: density profile; bottom: harmonicity as a
function of harmonic number.

4.4 One sided density fluctuation

Owing to the symmetrical nature of the problem, for
all the previous examples the algorithm converges to
a symmetrical solution. However there is a priori no
reason to keep a symmetrical string. Moreover, to
avoid the hammer hitting the string on a non uniform
region it would be good to limit the non uniform re-
gion to only one end of the string. Figure 5 shows
that similar results are obtained when the fluctuation
are concentrated on one side. As one could expect,
this tends to increase the amplitude of the fluctua-
tions. Results are given on figure 5 for nmax = 10
and a = L/4. It is noticeable that the result tends to
a point mass near the end combined with two periods
of a ”damped sinusoidal” variation of density.

4.5 One sided non negative density
fluctuation

Now, the next step is to consider only non negative
density fluctuations on a small part of the string. The
results given on figure 5 converge to what can be inter-
preted as small masses. The second mass being rather
negligible it seems that two masses are sufficient to

correct the inharmonicity of the first ten harmonics.
The first mass is about 5 g and is centered at 3 cm
from the end. The third one is 0.4 g and is centered
at 24 cm from the end. In practice, the second mass
is probably useless. So, it is surprising to realise that
for nmax = 10 a single mass is probably sufficient to
significantly improve the harmonicity of a string.
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Figure 5: Result of convergence with and without pos-
itive density fluctuations on one quarter of the string
and nmax = 10. Top: density profile; bottom: har-
monicity as a function of harmonic number.

5 Conclusion

The present study shows that it might be possible
to build piano strings with an optimised non uniform
density leading to a reduced inharmonicity of the first
partials. Moreover the non uniform part of the string
could be limited to a short portion of the string near
the end (25 cm in the given example). Moreover, it
appears that a single mass a few centimeters from
the end might significantly improve the harmonicity.
Now, many questions arise. In practice, how to take
into account the effective inharmonicity of the string
including the influence of the sound board and that of
the winding? On the perceptive point of view, what
is the minimum number of harmonics to consider in
order to obtain a significant improvement? To answer
these questions, the next step is to find a process to
optimise the harmonicity on an actual string. Obvi-
ously, the final design will be the result of exchanges
between piano tuners, pianists and engineers. Finally
we are deeply convinced that such harmonic strings
will make it possible to highly increase the musical
quality of the first two octaves of straight pianos but
also that of medium grand pianos.



Dalmont et al., p. 5

References

[1] J. Chabassier. Modeling and numerical simula-
tion of a piano (in french). PhD thesis, Ecole
Polytechnique, 2012.

[2] A. Chaigne. The making of pianos : a historical
view. Musique & technique, n◦8, Itemm, 2017.

[3] H. A. Conklin. Design and tone in the mechano-
acoustic piano. part iii. piano strings and scale
design. J. Acoust. Soc. Am., 100, 1996.

[4] E. Ducasse. On waveguide modeling of stiff piano
strings. J. Acoust. Soc. Am., 118(3):1776–1781,
2005.

[5] A. Ern. Aide-memoire of finite elements (in
french). Sciences et Techniques. Dunod, 2005.

[6] S. Gaudet, C. Gauthier, and S. Léger. The evolu-
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