
HAL Id: hal-02166199
https://hal.science/hal-02166199v2

Preprint submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Infinets: The parallel syntax for non-wellfounded
proof-theory

Abhishek De, Alexis Saurin

To cite this version:
Abhishek De, Alexis Saurin. Infinets: The parallel syntax for non-wellfounded proof-theory. 2021.
�hal-02166199v2�

https://hal.science/hal-02166199v2
https://hal.archives-ouvertes.fr

Infinets: The parallel syntax
for non-wellfounded proof-theory

Abhishek De1 and Alexis Saurin2 ?

1 IRIF, Université de Paris, France
2 IRIF, CNRS, Université de Paris, France

Abstract. Logics based on the µ-calculus are used to model induc-
tive and coinductive reasoning and to verify reactive systems. A well-
structured proof-theory is needed in order to apply such logics to the
study of programming languages with (co)inductive data types and au-
tomated (co)inductive theorem proving. While traditional proof system
suffers some defects, non-wellfounded (or infinitary) and circular proofs
have been recognized as a valuable alternative, and significant progress
have been made in this direction in recent years. Such proofs are non-
wellfounded sequent derivations together with a global validity condition
expressed in terms of progressing threads.
The present paper investigates a discrepancy found in such proof sys-
tems, between the sequential nature of sequent proofs and the parallel
structure of threads: various proof attempts may have the exact thread-
ing structure while differing in the order of inference rules applications.
The paper introduces infinets, that are proof-nets for non-wellfounded
proofs in the setting of multiplicative linear logic with least and greatest
fixed-points (µMLL∞) and study their correctness and sequentialization.

Keywords: circular proofs · non-wellfounded proofs · fixed points · mu-
calculus · linear logic · proof-nets · induction and coinduction

Inductive and coinductive reasoning is pervasive in computer science to spec-
ify and reason about infinite data as well as reactive properties. Developing ap-
propriate proof systems amenable to automated reasoning over (co)inductive
statements is therefore important for designing programs as well as for ana-
lyzing computational systems. Various logical settings have been introduced to
reason about such inductive and coinductive statements, both at the level of
the logical languages modelling (co)induction (such as Martin Löf’s inductive
predicates or fixed-point logics, also known as µ-calculi) and at the level of the
proof-theoretical framework considered (finite proofs with explicit (co)induction
rules à la Park [23] or infinite, non-wellfounded proofs with fixed-point unfold-
ings) [6–8, 4, 1, 2]. Moreover, such proof systems have been considered over clas-
sical logic [6, 8], intuitionistic logic [9], linear-time or branching-time temporal
logic [19, 18, 25, 26, 13–15] or linear logic [24, 16, 4, 3, 14].

? This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No
754362. Partially funded by ANR Project RAPIDO, ANR-14-CE25-0007.

2 Abhishek De and Alexis Saurin

Logics based on the µ-calculus have been particularly successful in modelling
inductive and coinductive reasoning and for the verification of reactive systems.
While the model-theory of the µ-calculus has been well-studied, its proof-theory
still deserves further investigations. Indeed, while explicit induction rules are
simple to formulate (For instance, figure 1 shows the introduction rule à la Park
for a coinductive property) the treatment of (co)inductive reasoning brings some
highly complex proof objects.

` G[νX.G/X], ∆
(ν)

` νX.G,∆

Fig. 1: Coinduction rule

At least two fundamental technical shortcom-
ings prevent the application of traditional µ-calculus-
based proof-systems for the study of programming
languages with (co)inductive data types and auto-
mated (co)inductive theorem proving and call for alternative proposals of proof
systems supporting (co)induction. Firstly, the fixed point introduction rules
break the subformula property which is highly problematic for automated proof
construction: at each coinduction rule, one shall guess an invariant (in the same
way as one has to guess an appropriate induction hypothesis in usual mathemat-
ical reasoning). Secondly, (νinv) actually hides a cut rule that cannot be elimi-
nated, which is problematic for extending the Curry-Howard correspondence to
fixed-point logics.

...

` µX.X
(µ)

` µX.X

...

` νX.X, Γ
(ν)

` νX.X, Γ
(cut)

` Γ

Fig. 2: An unsound proof

Non-wellfounded proof systems have been
proposed as an alternative [6–8] to explicit
(co)induction. By having the coinduction rule
with simple fixed-point unfoldings and allowing
for non-wellfounded branches, those proof systems
address the problem of the subformula property
for the cut-free systems: the set of subformula is
then known as the set Fischer-Ladner subformulas, incorporating fixed-points
unfolding, but preserving finiteness of the subformula space. Moreover, the cut-
elimination dynamics for inductive-coinductive rules becomes much simpler. A
particularly interesting subclass of non-wellfounded proofs, is that of circular, or
cyclic proofs, that have infinite but regular derivations trees: they have attracted
a lot of attention for retaining the simplicity of the inferences of non-wellfounded
proof systems but finitely representable making it possible to have an algorith-
mic treatment of such proof objects. However, in those proof systems when
considering all possible infinite, non-wellfounded derivations (a.k.a. pre-proofs),
it is straightforward to derive any sequent Γ (see fig. 2). Such pre-proofs are
therefore unsound: one needs to impose a validity criterion to sieve the logically
valid proofs from the unsound ones. This condition will actually reflect the in-
ductive and coinductive nature of our two fixed-point connectives: a standard
approach [6–8, 24, 3] is to consider a pre-proof to be valid if every infinite branch
is supported by an infinitely progressing thread. As a result, the logical cor-
rectness of circular proofs becomes non-local, much in the spirit of correctness
criteria for proof-nets [17, 12].

However the structure of non-wellfounded proofs has to be further investi-
gated: the present work stems from the observation of a discrepancy between

Infinets: The parallel syntax for non-wellfounded proof-theory 3

the sequential nature of sequent proofs and the parallel structure of threads. An
immediate consequence is that various proof attempts may have the exact same
threading structure but differ in the order of inference rule applications; more-
over, cut-elimination is known to fail with more expressive thread conditions.
In this paper, we propose a theory of proof-nets for non-wellfounded proofs of
µMLL∞.
Organization of the paper. In Section 1, we recall the necessary background
from [3] on linear logic with least and greatest fixed points and its non-wellfounded
proofs, we only present the unit-free multiplicative setting which is the frame-
work in which we will define our proof-nets. In Section 2 we adapt Curien’s
proof-nets [10] to a very simple extension of MLL, µMLL∗, in which fixed-points
inferences are unfoldings and only wellfounded proofs are allowed; this allows
us to set the first definitions of proof-nets and extend correctness criterion, se-
quentialization and cut-elimination to this setting but most importantly it sets
the proof-net formalism that will be used for the extension to non-wellfounded
derivations. Infinets are introduced in Section 3 as an extension of the µMLL∗

proof-nets of the previous section. A correctness criterion is defined in Section 4
which is shown to be sound (every proof-nets obtained from a sequent (pre-)proof
is correct). The completeness of the criterion (i.e. sequentialization theorem) is
addressed in Section 5. We quotient proofs differing in the order of rule applica-
tion in Section 6 and establish proof-nets as canonical proof objects. We conclude
in Section 8 and comment on related works and future works. An appendix pro-
vides details on some of the prerequisites and proof details.
Notation. Let [n] denote the set {1, 2, . . . , n}. For any sequence S, let Inf(S)
be the terms of S that appears infinitely often in S. Given a finite alphabet Σ,
Σ∗ and Σω are the set of finite and infinite words over Σ respectively. Σ∞ =
Σ∗ ∪ Σω. We denote the empty word by ε. Given two words u, u′ (finite or
infinite) we denote by u∩ u′ the greatest common prefix of u and u′ and u v u′
if u is a prefix of u′. Given a language, L ⊆ Σ∞, L ⊆ Σ∞ is the prefix closure
of L. Given two node-labelled trees T1 and T2, we define d(T1, T2) = 1

2δ
where δ

is the minimal depth of the nodes at which they differ.

1 Background

We denote the multiplicative additive fragment of linear logic by MALL and
the multiplicative fragment by MLL. The non-wellfounded extension of MALL
with least and greatest fixed points operators, µMALL∞, was introduced in [3,
14]. Proof-nets for additives and units are more cumbersome, so, in the current
presentation, we will only consider the unit-free multiplicative fragment which
we denote by µMLL∞.

Definition 1. Given an infinite set of atoms A = {A,B, . . . }, and an infinite
set of propositional variables V = {X,Y, . . . } s.t. A∩V = ∅, µMLL pre-formulas
are given by following grammar:

φ, ψ ::= A | A⊥ | X | φ` ψ | φ⊗ψ | σX.φ

4 Abhishek De and Alexis Saurin

where A ∈ A and X ∈ V, and σ ∈ {µ, ν}; σ binds the variable X in φ. Free and
bound variables, and capture-avoiding substitution are defined as usual. When a
pre-formula is closed (i.e. no free variables), we simply call it a formula.

Note that negation is not a part of the syntax, so that we do not need any
positivity condition on fixed-points expressions. We define negation, (•)⊥, as a
meta-operation on the pre-formulas and will use it only on formulas.

Definition 2. Negation of a pre-formula φ, φ⊥, is the involution satisfying:

(φ⊗ ψ)
⊥

= ψ⊥ ` φ⊥, X⊥ = X, (µX.φ)
⊥

= νX.φ⊥.

Example 1. As a running example, we will consider the formulas

φ = A`A⊥ ∈ MLL and ψ = νX.X⊗ φ ∈ µMLL∞.

Observe that φ⊥ = A⊥⊗A as usual in MLL and by def. 2, ψ⊥ = µX.X ` φ⊥.

The reader may find it surprising to define X⊥ = X, but it is harmless since
our proof system only deals with formulas. Note that we have (F [X/G])

⊥
=

F⊥[X/G⊥].

Definition 3. An address is a word in {l, r, i}∗. Negation extends over ad-
dresses as the morphism satisfying l⊥ = r, r⊥ = l, and i⊥ = i. We say that α′

is a sub-address of α if α′ v α. We say that α and β are disjoint if α ∩ β is
not equal to α or β.

Definition 4. A formula occurrence (denoted by F,G, ...) is given by a for-
mula φ and an address α, and written φα. Let addr(φα) = α. We say that occur-
rences are disjoint when their addresses are. Operations on formulas are extended
to occurrences as follows: φα

⊥ = φ⊥α⊥ , for any ? ∈ {`,⊗}, F ? G = (φ ? ψ)α if
F = φαl and G = ψαr, and for σ ∈ {µ, ν}, σX.F = (σX.φ)α if F = φαi. Sub-
stitution of occurrences forgets addresses i.e. (φα)[ψβ/X] = (φ[ψ/X])α. Finally,
we use d•e to denote the address erasure operation on occurrences.

Fixed-points logics come with a notion of subformulas (and suboccurrences)
slightly different from usual:

Definition 5. The Fischer-Ladner closure of a formula occurrence F , FL(F),
is the least set of formula occurrences s.t. F ∈ FL(F), G1 ? G2 ∈ FL(F) =⇒
G1, G2 ∈ FL(F) for ? ∈ {`,⊗}, and σX.G ∈ FL(F) =⇒ G[σX.G/X] ∈ FL(F)
for σ ∈ {µ, ν}. We say that G is a FL-suboccurrence of F (denoted G ≤ F) if
G ∈ FL(F) and G is an immediate FL-suboccurrence of F (denoted GlF)
if G ≤ F and for every H s.t. G ≤ H ≤ F either H = G or H = F . The
FL-subformulas of F are elements of {φ | φ = dG ∈ FL(F)e}.

Clearly, we could have defined Fischer-Ladner closure on the level of formulas.
By abuse of notation, we will sometimes use FL(•),≤,l on formulas.

Remark 1. Observe that for any F , the number of FL-subformulas of F is finite.

Infinets: The parallel syntax for non-wellfounded proof-theory 5

` dF e = dGe⊥
(ax)

` F,G
` F,∆1 ` F⊥,∆2

(cut)
` ∆1,∆2

` F,G,∆
()

` F `G,∆

` F,∆1 ` G,∆2
(⊗)

` F⊗G,∆1,∆2

` G[µX.G/X],∆
(µ)

` µX.G,∆
` G[νX.G/X],∆

(ν)
` νX.G,∆

Fig. 3: Inference rules for µMLL∞

The usual notion of subformula (say in MLL for example) is obtained by
traversing the syntax tree of a formula. In the same way, the notion of FL-
subformula can be obtained by traversing the graph of the formula (resp. occur-
rence).

Definition 6. The FL-graph of a formula φ, denoted G(φ), is the graph ob-
tained from FL(φ) by identifying the nodes of bound variable occurrences with
their binders (i.e. φ→ ψ if φl ψ).

Example 2. The graphs of the formulas φ and ψ of example 1 are the following:

G(φ) = `

A A⊥

G(ψ) = νX.

⊗ G(φ)

Observe that the graph of a MLL formula is acyclic corresponding to the usual
syntax tree but the graph of a µMLL∞ formula could potentially contain a cycle.

As usual with classical linear logic Γ, φ ` ∆ is provable iff the sequent Γ `
φ⊥, ∆ is provable. Hence, it is enough to consider the one-sided proof system of
LL. A one-sided sequent is an expression ` ∆ where ∆ is a finite set of pairwise
disjoint formula occurrences.

Definition 7. A pre-proof of µMLL∞ is a possibly infinite tree generated from
the inference rules given in fig. 3.

Definition 8. A thread of a formula occurrence F is a sequence t = {Fi}i∈I
where I ∈ ω + 1, F0 = F , and for every i ∈ I s.t. i + 1 ∈ I either Fi is
suboccurrence of Fi+1 or Fi = Fi+1. We denote by dte the sequence {dFie}i∈I
where t = {Fi}i∈I . A thread t is said to be valid if min(Inf(dte)) is a ν-formula
where minimum is taken in the ≤ ordering.

Remark 2. Observe that for any infinite thread t of a formula occurrence F ,
Inf(dte) is non-empty since F has finitely many FL-subformulas.

Definition 9. A µMLL∞ proof is a pre-proof in which every infinite branch
contains a valid thread. A circular pre-proof is a regular µMLL∞ pre-proof i.e.
one which has a finite number of distinct subtrees.

6 Abhishek De and Alexis Saurin

Example 3. The following non-wellfounded pre-proof of the sequent ` ψα (α is
an arbitrary address) is circular.

?

` ψαil

(ax)
` Aαirl, A⊥αirr (`)
` A`A⊥αir (⊗)

` ψ ⊗ (A`A⊥)αi
(ν)

? ` ψα

It is indeed valid because the only infinite thread {ψα(il)n}∞n=0 is validating.

2 A first taste of proof-nets in logics with fixed points

Proof-nets are a geometrical method of representing proofs, introduced by Girard
that eliminates two forms of bureaucracy which differentiates sequent proofs:
irrelevant syntactical features and the order of rules. As a stepping stone, we
first consider proof nets in µMLL∗ which is the proof system with the same
inference rules as µMLL∞ (fig. 3) but with finite proofs. This logic is strictly
weaker than µMLL∞.

Proof-nets are usually defined as vertex labelled, edge labelled directed multi-
graphs. In this presentation a proof structure is “almost” a forest (i.e. a collection
of trees) with the leaves joined by axioms or cuts. We use a different presentation
due to Curien [10] to separate the forest of syntax trees and the space of axiom
links for reasons that will become clearer later.

Definition 10. A syntax tree of a formula occurrence F is the (possibly in-
finite) unfolding tree of G(F). The syntax tree induces a prefix closed language,
LF ⊂ {l, r, i}∞ s.t. there is a natural bijection between the finite (resp. infinite)
words in L and the finite (resp. infinite) paths of the tree. A partial syntax
tree, FU , is a subtree of the syntax tree of the formula occurrence, F , such that
the set of words, U ⊆ LF , s.t. U represents a “frontier” of the syntax tree of F
i.e. any u, u′ ∈ U are pairwise disjoint and for every uav ∈ U , there is a v′ s.t.
ua⊥v′ ∈ U . For a finite u ∈ U , we denote by (F, u) the unique suboccurrence of
F with the address addr(F).u.

Example 4. The syntax tree of ψ is the unfolding of G(ψ) and induces the lan-

guage i(li)∗r(l + r) + (il)ω. Further, given an arbitrary address α, ψ
{ili,irl,irr}
α

is a partial syntax tree whereas ψ
{ilil,irl,irr}
α is not. If u = ililir then (ψα, u) =

A`A⊥αu.

Definition 11. A proof structure is given by [Θ′]{BUii }i∈I [Θ], where

– I is a finite index set;
– for every i ∈ I, Bi is a formula occurrence, BUii is a partial syntax tree with
Ui ⊂ {l, r, i}∗;

– Θ′ is a (possibly empty) collection of disjoint subsets of {Bi}i∈I of the form
{C,C⊥};

Infinets: The parallel syntax for non-wellfounded proof-theory 7

– Θ is a partition of
⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} s.t. the partitions are

of the form {αiui, αjuj} with d(Bi, ui)e = d(Bj , uj)e⊥.

Each class of Θ represents an axiom, each of class of Θ′ represents a cut, and
{Bi}i∈I \

⋃
θ∈Θ′ θ are the conclusions of the proof structure.

Definition 12. Let π be a µMLL∗ proof. Desequentialization of π, denoted
Deseq(π), is defined by induction on the structure of the proof:

– The base case is a proof with only an ax rule. Say the proof is
(ax)

F,G⊥

then
Deseq(π) = [∅]{F,G⊥}[{{F,G⊥}}]

– If Deseq(π1) = [Θ′1]Γ1 ∪ {FU}[Θ1] and Deseq(π2) = [Θ′2]Γ1 ∪ {F⊥
U ′}[Θ2],

then Deseq(π) = [Θ′1 ∪Θ′2 ∪ {F, F⊥}]Γ1 ∪ Γ2[Θ1 ∪Θ2] where the proof π is

π1

` Γ, F
π2

` ∆,F⊥
(cut)

` Γ,∆

– If Deseq(π1) = [Θ′1]Γ1 ∪ {FU}[Θ1] with addr(F) = αl and Deseq(π2) =
[Θ′2]Γ1 ∪ {GU

′}[Θ2] with addr(G) = αr, then Deseq(π) = [Θ′1 ∪Θ′2]Γ1 ∪ Γ2 ∪
{F⊗Gl·U+r·U ′}[Θ1 ∪Θ2] with addr(F⊗G) = α where the proof π is

π1

` Γ, F
π2

` ∆,G
(⊗)

` Γ,∆, F⊗G

– If Deseq(π0) = [Θ′0]Γ0 ∪ {FU , GU
′}[Θ0] with addr(F) = αl, addr(G) = αr

then Deseq(π) = [Θ0]Γ0 ∪ {F `Gl·U+r·U ′}[Θ0] with addr(F `G) = α where
the proof π is

π0

` Γ, F,G
(`)

` Γ, F `G

– If Deseq(π0) = [Θ′0]Γ0 ∪ {F [X/F]U}[Θ0] with addr(F [X/F]) = αi then
Deseq(π) = [Θ0]Γ0 ∪{µX.F i·U}[Θ0] with addr(µX.F) = α where the proof π
is

π0

` Γ, F [X/F]
(µ)

` Γ, µX.F

– The case for ν follows exactly as µ.

Example 5. Consider the following proof π of the sequent ` νX.X ` µX.X.

(ax)
` νX.Xαl, µY.Yβi

(µ)
` νX.Xαl, µY.Yβ

(ax)
` νY.Yβ⊥i, µX.Xαr

(ν)
` νY.Yβ⊥ , µX.Xαr

(cut)
` νX.Xαl, µX.Xαr

(`)
` νX.X ` µX.Xα

8 Abhishek De and Alexis Saurin

µY.Y νY.Y

νX.X µX.X

ax ax

µY.Y

µ

νY.Y

ν

cut

νX.X ` µX.X

O

(a)

νX.X µX.X

ax

νX.X ` µX.X

O

(b)

Fig. 4: Graph of µMLL∞ proof structures

We choose α, β s.t. they are disjoint. We have that Deseq(π) = [Θ′]Γ [Θ] s.t.

Θ′ =
{
{µY.Yβ , νY.Yβ⊥}

}
Θ =

{
{αl, βi}, {αr, β⊥i}

}
Γ =

{
νX.X ` µX.X{l,r}α , µY.Y

{i}
β , νY.Y

{i}
β⊥

}
Definition 13 (Graph of proof structure). Let S = [Θ′]{BUii }i∈I [Θ] be a
proof structure. The graph of S denoted Gr(S) is the graph formed by:

– taking the transpose of the partial syntax tree {BUii }i∈I ;
– for each {Bi, Bj} ∈ Θ′, adding a node labelled cut with two incoming edges

from (Bi, ε) and (Bj , ε);
– for each {αiui, αjuj} ∈ Θ, adding a node labelled ax with two outgoing edges

to (Bi, ui) and (Bj , uj) where addr(Bi) and addr(Bj) is αi and αj resp.

Example 6. The graph of the proof structure in example 5 is Fig. 4a.

Gr(S) are exactly the proof structures that we obtain from directly lifting
the formalism of MLL proof nets à la Girard to µMLL∗.

As usual in the theory of proof nets, we need a correctness criterion on
the µMLL∗ proof structure to exactly characterize the class of proof nets. The
following correctness criterion lifts to µMLL∗ a criterion first investigated by
Danos and Regnier [12]. We present it in a slightly different syntax using the
notion of orthogonal partitions [11, 12].

Definition 14. Let P1 and P2 be partitions of a set S. The graph induced by P1

and P2 is defined as the undirected bipartite multigraph (P1, P2, E) s.t. for every
p ∈ P1 and p′ ∈ P2, (p, p′) ∈ E if p ∩ p′ 6= ∅. Finally, P1 and P2 are said to be
orthogonal to each other if the graph induced by them is acyclic and connected.

Definition 15. Given a proof structure, S = [Θ′]{BUii }i∈I [Θ], define a sets of
switchings of S, sw = {swi}i∈I s.t. ∀i ∈ I, swi : Pi → {l, r} is a function
over Pi, the ` nodes of BUii . The switching graph Ssw associated with sw is
formed by:

– taking the partial syntax tree {BUii }i∈I as an undirected graph;

Infinets: The parallel syntax for non-wellfounded proof-theory 9

– for each {Bi, Bj} ∈ Θ′, adding a node labelled cut with two edges to (Bi, ε)
and (Bj , ε);

– for each node (Bi, u) ∈ Pi, removing the edge between (Bi, u) and (Bi, u ·
sw((Bi, u))).

Let ΘswS be the partition over
⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} induced by

the connected component of Ssw.

Definition 16. A proof structure, S, is said to be OR-correct if for any
switching sw, ΘswS and Θ is orthogonal. The graph induced by ΘswS and Θ is
called a correction graph of S.

Proposition 1. Let π be a µMLL∗ proof. Then Deseq(π) is an OR-correct proof
structure. Conversely, given an OR-correct µMLL∗ proof structure, it can be
sequentialized into a µMLL∗ sequent proof.

Definition 17. µMLL∗ cut-reduction rules is obtained by adding the follow-
ing rule to the usual cut-reduction rules for MLL proof nets:

F [X/F] F⊥[X/F⊥]

F [X/F] F⊥[X/F⊥]µX.F

µ

νX.F⊥ −→
ν

cut cut

Proposition 2. Cut elimination on µMLL∗ proof-nets preserves correctness and
is strongly normalizing and confluent.

The proofs of propositions 1, 2 are straightforward extensions from MLL.

Example 7. The proof structure in example 5 after cut-elimination produces the
proof structure in Fig. 4b.

Now the question is how this translates to non-wellfounded proofs. Consider
the proof in example 3. Firstly observe that there is no finite proof of this
sequent i.e. it is not provable in µMLL∗. Now, if we naively translate it into a
proof structure using the same recipe as definition 12, we have

[∅]
{
ψ{i(li)

∗r(l+r)+(il)ω}
α

}
[{αi(li)nrl, i(li)nrr}n≥0].

Observe that (il)ω is not in any partition. In fact, it represents a thread in an in-
finite branch and must be accounted for. Hence the partition should be equipped
to account for the threads invariant by an infinite branch in a proof (in particu-
lar, in the example above there should be a singleton partition {(il)ω}). This is
also the reason we will use the graphical presentation for non-wellfounded proof-
nets since we would potentially need to join two infinite paths by a node which
is unclear graph-theoretically. However we will sometimes draw the “graph” of
non-wellfounded proof-nets for ease of presentation by using ellipsis points to
brush the technical difficulty under the carpet (for example Fig. 5b represents
the proof net we discussed above).

10 Abhishek De and Alexis Saurin

A⊥ A

A A⊥ A⊥ A

. . .
. . .

. . . A A⊥ A⊥ A

ax

ax ax

ax axp2

O

p1

O O⊗

⊗ ⊗⊗

t2

⊗
t1

⊗O

ν

O

ν

O

ν

(a)

A A⊥

...

A A⊥

A A⊥

ax

ax

ax

O

⊗

νO

⊗

ν

O

⊗

F

ν

(b)

Fig. 5: Graph of µMLL∞ NWFPS

3 Infinets

We will now lift our formalism for defining proof nets for µMLL∗ to µMLL∞.

Definition 18. A non-wellfounded proof structure(NWFPS) is given by
[Θ′]{BUii }i∈I [Θ], where

– I is a possibly infinite index set;
– for every i ∈ I, Bi is a formula occurrence, BUii is a partial syntax tree;
– Θ′ is a (possibly empty) collection of disjoint subsets of {Bi}i∈I of the form
{C,C⊥};

– Θ is a partition of
⋃
i∈I{αiui | addr(Bi) = αi, ui ∈ Ui} s.t. the partitions are

one of the following forms:
• {αiui, αjuj} s.t. ui, uj are finite and d(Bi, ui)e = d(Bj , uj)e⊥.
• It contains an elements of the form αiui s.t. u is an infinite word;

– {Bi}i∈I \
⋃
θ∈Θ′ θ is necessarily finite.

Intuitively, each class of Θ represents either an axiom or an infinite branch
in a sequentialization. In fact, infinite words in a partition corresponds exactly
to the infinite threads in a proofs. Hence it is also straightforward to define a
valid NWFPS.

Definition 19. Let π be a pre-proof of the µMLL∞ sequent ` Γ . Deseq(π) is
the (co)inductive translation of π into a NWFPS, [Θ′]Γ ′[Θ] s.t. Θ′ are the cut

Infinets: The parallel syntax for non-wellfounded proof-theory 11

formulas in π, Γ ′ = Γ ∪
⋃
θ∈Θ′ θ, and Θ is a partition of the set of formula

occurrences in π s.t. two formula occurrences are in the same partition if they
are conclusions of an ax rule in π. A NWFPS that is the desequentialization of
a µMLL∞ (pre-)proof is called an (valid) infinet.

4 Correctness criteria

The OR-correctness of a NWFPS is defined as in def. 15 and def. 16 (up to the
fact that the switching can be an infinite set of switching functions). However
this straightforward translation is not enough to ensure soundness.

Example 8. Consider the following sequent proof with infinitely many cuts.

(ax)
µX.X, νZ.Z

? ` µZ.Z, νY.Y
(ν)

` µZ.Z, νY.Y
(cut)

? ` µX.X, νY.Y

Observe that this structure is not OR-correct: ...

µX.X νZ.Z µZ.Z νZ′.Z′ µZ′.Z′···

ax ax

cut cut νY.Y

ν

νY.Y

ν

Consequently, we restrict ourselves to NWFPS with at most finitely many
cuts. The proof structures discussed in the rest of the paper have finitely many
cuts unless otherwise mentioned.

Example 9. Consider the proof structure of the sequent ` νX.X ` (A⊥⊗(A⊗
(A⊥ ` A))) in fig. 5a. Note that for the sake of readability, edge labels have
been concealed. This proof structure is OR-correct but it is not sequentializable.
Consider the ⊗ node labelled t1. In any sequentialization it should be above p1,
which should be above t2, which in turn should be above p2 and so on. This is
absurd since even in a non-wellfounded proof every rule is executed at a finite
depth.

Hence we impose a “lock-free” condition (borrowing the terminology from
concurrent programs) on NWFPS.

Definition 20. Let [Θ′]{BUii }i∈I [Θ] be a NWFPS. For any ui ∈ Ui, uj ∈ Uj, we
say that (ui, uj) is a coherent pair if there exists θ ∈ Θ s.t. {αiui, αjuj} ⊆ θ
where addr(Bi) = αi and addr(Bj) = αj.

Definition 21. A switching path is an undirected path in a partial syntax
tree s.t. it does not go consecutively through the two premises of a ` formula. A
strong switching path is a switching path whose first edge is not the premise
of a ` node. We denote by src(•), tgt(•) the source and target of a switching
path resp. Two switching paths γ, γ′ are said to be compatible if γ′ is strong
and tgt(γ) = src(γ′).

12 Abhishek De and Alexis Saurin

Proposition 3. If γ, γ′ are compatible switching paths, then their concatenation
γ · γ′ is a switching path. Furthermore, if γ is strong, then γ · γ′ is also strong.

The underlying undirected path of any path in a partial syntax tree is a
switching path. We call such paths straight switching paths. In particular,
the path from any node, n, to the root is a straight switching path. We denote
it by δ(n). By abuse of notation, we will also sometimes write δ((Bi, u)) where
u is infinite to mean the infinite path from the root of BUii following u, although
technically (Bi, u) is not a node per se. Observe that any straight switching path

in a partial syntax tree, FU , can be represented by a pair of words (u, u′) ∈ U2

s.t. u < u′. Intuitively, it means that the path is from (F, u) to (F, u′).

Definition 22. A switching sequence is a sequence σ = {γi}ni=1 s.t. γis are
disjoint switching paths and for every i ∈ [n − 1], either γi, γi+1 are compati-
ble or they are straight and the word pairs corresponding to them, (ui, u

′
i) and

(ui+1, u
′
i+1), are s.t. (u′i, u

′
i+1) is a coherent pair. Two nodes, N and N ′, are said

to be connected by the switching sequence, σ, if src(γ1) = N and tgt(γn) = N ′.
We say the switching sequence is cyclic if src(γ1) = tgt(γn).

Definition 23. Let S = [Θ′]{BUii }[Θ] be a proof structure. Let T = {(Bi, ui) |
ui ∈ Ui; (Bi, ui) is a ⊗ formula} and let P = {(Bi, ui) | ui ∈ Ui; (Bi, ui) is a `
formula}. The dependency graph of S, D(S), is the directed graph (V,E)

s.t. V = T] P , for every v ∈ V and p ∈ P , (p, v) ∈ E if the premises of p
are connected by a switching sequence containing v, and, for every v, v′ ∈ V ,
(v, v′) ∈ E if v′ ∈ FL(v).

Proposition 4 (Bagnol et al. [5]). If S is OR-correct then D(S) is acyclic.

From prop. 4, we can impose an order on the nodes of an OR-correct proof
structure, S, namely, n1 < n2 if n1 → n2 in D(S), denoted as <D(S).

Definition 24. A NWFPS, S, is said to be deeply lock-free if <D(S) has no
infinite descending chains.

Example 10. Consider the proof structure, S = [∅]{νX.X ` XL
α , A⊗B

{l,r}
β }[Θ]

where, L = (i(l + r))ω , Θ = {{α(il)ω, βl}, α · (L \ (il)ω) ∪ {βr}} .
Observe that S is OR-correct and deeply lock-free. But S cannot be sequen-

tialized into a sequent proof, because a potential sequentialization has a ⊗ rule
at a finite depth, then either there are some subsoccurences of νX.X ` Xα in
the left premise in which case A cannot reside with only the left-branch in Θ,
or, there are some subsoccurences of νX.X ` Xα in the left premise in which
case A cannot reside with any infinite branch in Θ.

Definition 25. A NWFPS, S = [Θ′]{BUii }i∈I [Θ], is said to be widely lock-
free if there is a function f : N → N s.t. for every (Bi, u) ∈ P and (Bj , v) ∈ T
if ((Bi, u), (Bj , v)) ∈ E, f(|v|) ≥ |u| where D(S) = (T] P,E). We call such a
function a wait function of S. A proof structure is simply called lock-free if
it is both deeply and widely lock-free.

Infinets: The parallel syntax for non-wellfounded proof-theory 13

Remark 3. The wait function of a NWFPS need not be unique (if one exists).

Proposition 5. An infinet is an OR-correct lock-free NWFPS.

Proof (Sketch). Let π be a µMLL∞ pre-proof with finitely many cuts and let
Deseq(π) = S. OR-correctness of S is proved by (co)induction on the structure
of π (see appendix sec. C.1 for more details). To prove that S is deeply lock-free,
we show that <D(S)⊆<O(π) where n1 <O(π) n2 if n1 is introduced below n2
in π (see prop. 5 in [5]). To prove that S is widely lock-free, we will define a
wait function, f . Let n ∈ N. Let d be the maximal (in depth) ⊗ inference in π
s.t. the address, u, of the formula introduced satisfies |u| ≤ n. Consider the set,
{Pi} of all ` inferences under d where Pi is the formula introduced. Then define
f(n) := max{|αi| | addr(Pi) = αi}. Check that f is indeed a wait function and
hence we are done.

5 Sequentialization

A A⊥ −→ A A⊥

cut

A⊗A⊥
⊗

Fig. 6: Translating cuts to
tensors

In this section we show that any NWFPS satis-
fying the correctness criterion introduced in sec-
tion 4 is indeed sequentializable. Since we deal
with finitely many cuts, without loss of generality,
we can assume that we have cut-free proof struc-
tures due to the standard trick shown in Fig. 6.

So, in this section, we will write NWFPS with-
out the left component. We try to adapt the standard proof for MLL but the
straightforward adaptation is not fair since we may never explore one branch by
forever prioritizing the sequentialization of another infinite branch. We restore
fairness by a time-stamping algorithm.

Definition 26. Let S = Γ [Θ] be an OR-correct NWFPS. The root, Bi, of a tree
in Γ is said to be splitting if:

– Γ = {Bεi , Bεj},
– Bi is a `, µ or ν formula, or,
– Bi is a ⊗ formula and there exists Θ1, Θ2 s.t. Θ = Θ1]Θ2 and S1 = Γ1[Θ1],
S2 = Γ2[Θ2] are OR-correct NWFPS where Γ1 = Γ \ {BUii } ∪ {(Bi, l)Ul},
Γ2 = Γ \ {BUii } ∪ {(Bi, r)Ur} and Ui = lUl + rUr.

Proposition 6. Let S = Γ [Θ] be an OR-correct NWFPS and Bi be a splitting
tensor in S. If S is lock-free then so is S1 and S2 as defined in def. 26.

Dated sequentialization process. We time-stamp each node of Γ to indicate the
time when it will be sequentialized. Formally, we have (S, τ) where τ is a function
s.t. τ : {(Bi, u)|u ∈ Ui}i∈I → N ∪ {∞} where Γ = {BUii }i∈I and ∞ > n for all
n ∈ N. Define the minimal finite image, min, as

min(τ) := min{n ∈ N | ∃i ∈ I, u ∈ Ui s.t. τ((Bi, u)) = n}.

14 Abhishek De and Alexis Saurin

We will describe the sequentialization process. Suppose we are given S(= Γ [Θ], τ).
We maintain the following invariant:

S is cut-free, OR-correct and lock-free;
τ((Bi, u)) 6=∞ iff (Bi, u) is splitting in S. (?)

Assume that Γ contains a splitting root, Bj , st. τ(Bj) = min(τ).

– If Γ = {Bεi , Bεj} then we stop successfully with the proof reduced to an ax.
– If Bj is a `, (co)recursively apply the sequentialization process to S0(=

Γ0[Θ], τ0) where Γ0 = Γ \{BUjj }∪{(Bj , l)Ul , (Bj , r)Ur}, Uj = lUl+ rUr, and

τ0((Bi, u)) =

{
t if (Bi, u) is splitting in S0;

τ((Bi, u)) otherwise.

where for each splitting (Bi, u), t is arbitrarily chosen to be any natural
number greater than τ(Bj). We apply a ` rule on the obtained proof.

– If Bj is a µ(resp. ν) formula, (co)recursively apply the sequentialization

process to (S0 = Γ0[Θ], τ0) where Γ0 = Γ \ {BUjj } ∪ {(Bj , i)Ui}, Uj = iUi,
and τ0 is defined as above. We apply a µ (resp. ν) rule on the obtained proof.

– If Bj is a ⊗ formula we (co)recursively apply the sequentialization process
to (S1, τ1) and (S1.τ2) where S1,S2 are as defined in def. 26 and τ1, τ2 are
defined as above. We apply a ⊗ rule on the two obtained proofs.

Observe that the invariant (?) is maintained in this (co)recursive process.
To start the sequentialization, we initialize τ by assigning arbitrary natural

numbers to splitting nodes and ∞ to the other nodes.

Proposition 7. Let γ be a switching path in B
Uj
j ∈ Γ . Then there exists a

switching sw s.t. γ is also a path in the switching graph, Ssw.

Proposition 8. If S is a NWFPS containing a cyclic switching sequence, then
there is switching of S, s.t. the corresponding correction graph is contains a cycle.

Proposition 9. Let T be a non-splitting conclusion in an OR-correct NWFPS.
Then there exists a ` formula, P , s.t. there exists disjoint switching path se-
quences, σ, σ′, from T to P which both start with a premise of T and end with a
premise of P . We call (P, σ, σ′) the witness for T .

Lemma 1. Let S be a cut-free OR-correct NWFPS. S contains a splitting root.

Lemma 2. The sequentialization assigns a finite natural number to every for-
mula i.e. τ((Bi, u)) 6=∞ after some iterations of the process described above.

Lemma. 1 crucially uses OR-correctness and lemma. 2 crucially uses lock-
freeness. They are proved in full details in the appendix. Lemma. 1 ensures
productivity of the aforementioned sequentialization process while lemma. 2 en-
sures that every inference in a NWFPS is ultimately executed. From that, we
conclude the following theorem.

Infinets: The parallel syntax for non-wellfounded proof-theory 15

Theorem 1. Let S = [Θ′]Γ [Θ] be an OR-correct lock-free NWFPS s.t. Θ′ = ∅.
Then S is an infinet.

Remark 4. Observe that the choice of the time-stamping function at each step
of our sequentialization is non-deterministic. By considering appropriate time-
stamping functions we can generate all sequentializations. The detailed study is
beyond the scope of the present paper.

6 Canonicity

We started investigating proof nets for non-wellfounded proofs since we expected
that the proof net formalism would quotient sequent proofs that are equivalent
up to a permutation of inferences. At this point, we carry out that sanity check.

Consider the following proofs π1 and π′1.

π2

` Γ, F [X/F], A
(µ)

` Γ, µX.F,A
π3

` B,∆
(⊗)

π1 ` Γ, µX.F,A⊗B,∆

π2

` Γ, F [X/F], A

π3

` B,∆
(⊗)

` Γ, F [X/F], A⊗B,∆
(µ)

π′1 ` Γ, µX.F,A⊗B,∆

We say that π ;(µ,⊗L) π
′ if π is a proof with π1 as a subproof at a finite depth

and π′ is π where π′1 has been replaced by π′1. Observe that we can define ;� for

every � ∈ P × P where P = {µ, ν,`,⊗?, cut? | ? ∈ {L,R}}. Let ∼�=
⋃
�∈S

;�.

Observe that the usual notion of equivalence by permutation, viz. ∼= (∼�)∗

does not characterize equivalence by infinets. Consider the following two proofs,
π1 and π2, s.t. π1 6∼ π2 which have the same infinet,

[∅]{µX.X{i
ω}

α , νX.X
{iω}
β }[{{αiω, βiω}}].

π1 ` µX.X, νX.X
(µ)

` µX.X, νX.X
(ν)

π1 ` µX.X, νX.X

π2 ` µX.X, νX.X
(ν)

` µX.X, νX.X
(µ)

π2 ` µX.X, νX.X

Suppose we allow infinite permutations. We say that π(∼�)ωπ′ if there exists
a proof π′′ (not necessarily different from π, π′) and two sequence of proofs,
{πi}∞i=0 and {π′i}∞i=0, s.t. π0 = π, π′0 = π′, for every i, πi ∼� πi+1 and π′i ∼� π′i+1,
and d(πi, π

′′)→ 0, d(π′i, π
′′)→ 0 as i→∞. Consider the following three proofs

of ` A⊗B, νY.Y .

π

` A

...
(ν)

` B, νY.Y
(⊗)

` A⊗B, νY.Y (∼�)ω

...
(ν)

` A⊗B, νY.Y (∼�)ω

π′

` A

...
(ν)

` B, νY.Y
(⊗)

` A⊗B, νY.Y

Note that π and π′ can have different computation behaviour (say, for example
A = (X⊥ `X⊥) ` (X ⊗X) and π corresponds to true while π’ corresponds to

16 Abhishek De and Alexis Saurin

false (see example 11 in appendix A)). Hence equating these proofs is absurd.
To exactly capture equivalence by proof nets we need to refine this equivalence.
To do that we introduce the notion of an active occurrence. We say that for a
permutation step ;(ri,r′i)

, the formula occurrence Fi introduced by the rule r′i
is the active occurrence in that step.

We say that π(∼�)ωfairπ
′ if there exists a sequence of proofs {πi}∞i=0 s.t. π0 =

π, for every i, πi ;(ri,r′i)
πi+1, the set of addresses of the active occurrences

occurring infinitely often is empty, Inf({addr(Fi)}∞i=0) = ∅ and d(πi, π
′) → 0 as

i→∞. Let ∼∞= (∼�)∗ ∪ (∼�)ωfair.

Proposition 10. π1 ∼∞ π2 iff Deseq(π1) = Deseq(π2).

7 Cut Elimination

In this section we provide cut elimination results albeit with two crucial re-
strictions: firstly, we consider only finitely many cuts as in the rest of the pa-
per and secondly, we consider proofs with no axioms and no atoms. An infinet
S = [Θ′]Γ [Θ] is said to be η∞-expanded if it does not contain any axioms or
atoms i.e. every θ ∈ Θ contains only infinite words. Any infinet can be made
η∞-expanded in a way akin to η-expansion of axioms in MLL (see appendix
sec. B). There are two issues to be resolved to obtain the result: first, to specify
the notion of a normal form and second, formulate how to reach that.

Proposition 11. Let S = [Θ′]Γ [Θ] be an η∞-expanded infinet. Let {C,C⊥} ∈
Θ and BUii , B

Uj
j ∈ Γ s.t. Bi = C = Bj

⊥. Ui = Uj
⊥ i.e. u ∈ Ui iff u⊥ ∈ Uj.

Proof (Sketch). Since Bi = Bj
⊥, their syntax trees are orthogonal. Since S is

η∞-expanded, Ui(resp. Uj) is actually the full syntax tree. Hence Ui = Uj
⊥.

Definition 27. Let S0 = [Θ′0]Γ0[Θ0] be a η∞-expanded infinet. Let {C,C⊥} ∈
Θ′0 and BUii , B

Uj
j ∈ Γ s.t. Bi = C = Bj

⊥. A big-step {C,C⊥} elimination
on S0 produces non-wellfounded proof-structure S1 = [Θ′1]Γ1[Θ1] where,

– Θ′1 = Θ′0 \ {{C,C⊥}}
– Γ1 = Γ0 \ {BUii , B

Uj
j }

– If θ ∈ Θ0 s.t. θ ∩ Ui = ∅ and θ ∩ Uj = ∅, then θ ∈ Θ1. If u ∈ θ ∩ Ui then
θ ∪ θ′ \ {u, u⊥} ∈ Θ1 where θ′ ∈ Θ0 and u⊥ ∈ θ′ ∩ Uj.

Remark 5. Definition 27 is well-defined because of proposition 11.

Proposition 12. A big-step operation on a valid infinet produces a valid infinet.

Given S = [Θ′]Γ [Θ], an η∞-expanded infinet, we can extend the definition
of a big-step {C,C⊥} elimination on S, for any {C,C⊥} ∈ Θ′, to a big-step
C elimination on S, for C ⊆ Θ′. We call the big-step Θ′ elimination on S the
normal form of S and denote it by JSK.

Infinets: The parallel syntax for non-wellfounded proof-theory 17

We will now construct a suitable distance on infinets with the goal that
this distance will converge for cut reduction sequences. Note that our distance
will only be well-defined over infinets with the same normal form. Given two
such infinets, we will first identify partitions with common conclusions i.e. given
S1 = [Θ′1]Γ1[Θ1] and S2 = [Θ′1]Γ2[Θ2], we define relation R ⊆ Θ1×Θ2 such that
for every θ1 ∈ Θ1 and θ2 ∈ Θ2, θ1Rθ2 iff there exists u ∈ θ1 ∪ θ2 such that

u ∈ (Γ1 ∪ Γ2) r
⋃

θ∈Θ1,Θ2

θ

Observe that R is symmetric. Now we will fix a measure on partitions. Define

f(θ1, θ2) =

{
0 if θ1 = θ2;

(min{|α| | ∃u ∈ {l, r, i}∞, B ∈ Γ1 ∪ Γ2addr(B) = α, αu ∈ θ1∆θ2})−1 otherwise.

Lemma 3. The set of all valid infinets with the same normal form is a metric
space.

We can now define the limit of an infinite sequence of valid infinets with the
same normal form in the standard way: we say that {Si}∞i=0 converges to S if
d (Si,S)→ 0 as i→∞ (where d is the metric obtained from lemma 3).

Definition 28. A sequence of infinets, {Si}∞i=0, is called a reduction sequence
if for every i > 0, Si → Si+1 by the cut reduction rules in definition 17. A re-
duction sequence is said to be fair if for every i, for every cut {C,C⊥} in Si,
there is a j > i such that C ′ is a suboccurrence of C where {C ′, C ′⊥} is the cut
being reduced in the step Sj → Sj+1.

Theorem 2. Let {Si}∞i=0 be a fair reduction sequence s.t. S0 is valid. Then, it
converges to JS0K.

Corollary 1. If two reduction sequences starting from a valid η∞-expanded in-
finet, S, converges to S1 and S2, then all fair reduction sequences starting from
S1 and S2 resp. converge to JSK.

8 Conclusion

In this paper, we introduced infinitary proof-nets for multiplicative linear logic
with least and greatest fixed points with non-well-founded proofs. We defined a
correctness criterion and showed its soundness and completeness in characteriz-
ing those proof structures which come from non-wellfounded sequent (pre)proofs.
We also give a partial cut elimination result.

Related and future works. The closest works we know of are Montelatici’s po-
larized proof nets with cycles [21] and Mellies’ work on higher-order parity au-
tomata [20] which considers a λY-calculus and an infinitary λ-calculus endowed
with parity conditions, therefore quotienting some of the non-determinism of
sequent-calculus albeit in the case of intuitionistic logic. Our work is a first step
in developing a general theory of non-wellfounded and circular proof-nets:

18 Abhishek De and Alexis Saurin

– We plan to extend our formalism to capture proofs with infinitely many
cuts: a first step being to strength the correctness criterion and then trying
to capture most sequentializations since the standard trick of converting cuts
to tensors would yield infinitely many conclusions.

– We plan to carry an investigation of the notion of circularity in proof-nets:
while one can capture circular proofs as finitely representable proof nets,
there are non-wellfounded proofs which are not circular but which are, once
desequentialized. The most simple example of this question are the proofs
of ` νX.X `X which contain sequents of unbounded size and are therefore
not circular.

References

1. David Baelde. On the proof theory of regular fixed points. In Martin Giese and
Arild Waaler, editors, Automated Reasoning with Analytic Tableaux and Related
Methods, 18th International Conference, TABLEAUX 2009, Oslo, Norway, July
6-10, 2009. Proceedings, volume 5607 of Lecture Notes in Computer Science, pages
93–107. Springer, 2009.

2. David Baelde. Least and greatest fixed points in linear logic. ACM Transactions
on Computational Logic (TOCL), 13(1):2, 2012.

3. David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the
multiplicative additive case. In 25th EACSL Annual Conference on Computer Sci-
ence Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, volume 62
of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016.

4. David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In
Nachum Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning, 14th International Conference, LPAR 2007, Yere-
van, Armenia, October 15-19, 2007, Proceedings, volume 4790 of Lecture Notes in
Computer Science, pages 92–106. Springer, 2007.

5. Marc Bagnol, Amina Doumane, and Alexis Saurin. On the dependencies of logical
rules. In Andrew M. Pitts, editor, Foundations of Software Science and Compu-
tation Structures - 18th International Conference, FoSSaCS 2015, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes
in Computer Science, pages 436–450. Springer, 2015.

6. James Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD
thesis, University of Edinburgh, November 2006.

7. James Brotherston and Alex Simpson. Complete sequent calculi for induction
and infinite descent. In 22nd IEEE Symposium on Logic in Computer Science
(LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages 51–62. IEEE
Computer Society, 2007.

8. James Brotherston and Alex Simpson. Sequent calculi for induction and infinite
descent. J. Log. Comput., 21(6):1177–1216, 2011.

9. Pierre Clairambault. Least and greatest fixpoints in game semantics. In FOSSACS,
volume 5504 of Lecture Notes in Computer Science, pages 16–31. Springer, 2009.

10. Pierre-Louis Curien. Introduction to linear logic and ludics, part ii, 2006.

Infinets: The parallel syntax for non-wellfounded proof-theory 19

11. Vincent Danos. Une application de la logique linéaire à l’étude des processus de
normalisation (principalement du λ-calcul). Thèse de doctorat, Université Denis
Diderot, Paris 7, 1990.

12. Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for
Mathematical Logic, 28:181–203, 1989.

13. Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the lin-
ear time µ-calculus. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006:
Foundations of Software Technology and Theoretical Computer Science, 26th Inter-
national Conference, Kolkata, India, December 13-15, 2006, Proceedings, volume
4337 of Lecture Notes in Computer Science, pages 273–284. Springer, 2006.

14. Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie
de la démonstration infinitaire pour les logiques à points fixes). PhD thesis, Paris
Diderot University, France, 2017.

15. Amina Doumane, David Baelde, Lucca Hirschi, and Alexis Saurin. Towards Com-
pleteness via Proof Search in the Linear Time mu-Calculus. Accepted for publica-
tion at LICS, January 2016.

16. Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-
elimination. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013
(CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs,
pages 248–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

17. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

18. Roope Kaivola. A simple decision method for the linear time mu-calculus. In Jörg
Desel, editor, Structures in Concurrency Theory, Workshops in Computing, pages
190–204. Springer London, 1995.

19. Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

20. Paul-André Melliès. Higher-order parity automata. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

21. Raphaël Montelatici. Polarized proof nets with cycles and fixpoints semantics. In
Martin Hofmann, editor, Typed Lambda Calculi and Applications, 6th International
Conference, TLCA 2003, Valencia, Spain, June 10-12, 2003, Proceedings., volume
2701 of Lecture Notes in Computer Science, pages 256–270. Springer, 2003.

22. Reiji Nakajima. Infinite normal forms for the λ-calculus. In C. Böhm, editor,
λ-Calculus and Computer Science Theory, pages 62–82, Berlin, Heidelberg, 1975.
Springer Berlin Heidelberg.

23. David Park. Fixpoint induction and proofs of program properties. Machine intel-
ligence, 5(59-78):5–3, 1969.

24. Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In
Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, volume 2303 of Lecture Notes in Computer Science, pages
357–371. Springer, 2002.

25. Igor Walukiewicz. On completeness of the mu-calculus. In LICS, pages 136–146.
IEEE Computer Society, 1993.

26. Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional
mu-calculus. In Proceedings, 10th Annual IEEE Symposium on Logic in Com-
puter Science, San Diego, California, USA, June 26-29, 1995, pages 14–24. IEEE
Computer Society, 1995.

20 Abhishek De and Alexis Saurin

Acknowledgement.We are indebted to the anonymous reviewers for provid-
ing insightful comments which has immensely enhanced the presentation of the
paper.

A MLL proof nets à la Girard

Definition 29. A proof structure of MLL is a vertex-labelled and edge-labelled
directed multigraph where the nodes are labelled by rules {ax, cut,⊗,`, c} and the
edges are labelled by formulas such that:

– Each node labelled ax has two outgoing edges labelled F and F⊥ for some F
and no incoming edges.

– Each node labelled cut has incoming edges labelled F and F⊥ for some F
and no outgoing edges.

– Each node labelled ⊗ has two incoming edges labelled F and G respectively
(from left to right) and one outgoing edge labelled F⊗G, for some F and G.

– Each node labelled ` has two incoming edges labelled F and G respectively
(from left to right) and one outgoing edge labelled F ` G, for some F and
G.

– Each node labelled c has exactly one incoming edge and no outgoing edges.

A sequent proof, π, in MLL can be translated into a proof structure Deseq(π)
such that there is a bijection between internal nodes of Deseq(π) and the rules
of π which are not exchange rules. However, not every proof structure represents
(or is the translation of) a MLL proof. For example,

A A⊥
ax

A⊗A⊥
⊗

Hence we need to impose a correctness criterion to delineate a subset of
“correct” proof structures which belong to the image of the translation Deseq(•).
There are several correctness criteria known in the literature. We will present
the Danos-Regnier correctness criterion (DR-correctness).

Definition 30. Given a proof structure S, let P be the set of its ` nodes, a
switching of S is a function sw : P → {left, right}. The switching graph
Ssw associated with sw is the labelled directed multigraph obtained from S by
modifying the target of the sw(p) premise of each node p ∈ P into a new c node.

A proof structure S is said to be DR-correct if for any switching sw, Ssw is
acyclic and connected as an undirected graph. A correct proof structure is called
a proof net.

Example 11. Two proof nets of the sequent ` (X ⊗X) ` (X⊥ `X⊥) which are
usually used to represent booleans.

Infinets: The parallel syntax for non-wellfounded proof-theory 21

X X⊥

X X⊥

ax

ax

⊗ O

O

X X⊥

X X⊥

ax

ax

⊗ O

O

B Infinitary η-expansion

In this section we will show that any infinet can be converted to an η∞-expanded
infinet. First consider the morphism A 7→ µX.X for all A ∈ A where A is the
infinite set of atoms. Observe that now our syntax is atom-free.

Definition 31. The infinitary η-expansion of an infinet, S, is defined as
the limit, Sη, of the (co)inductive application of the following rewriting rules:

F⊗G F⊥ `G⊥
ax −→

F F⊥

G G⊥

ax

ax

⊗ O

µX.F νX.F⊥
ax −→ F [µX.F] F⊥[νX.F⊥]

ax

µ ν

We could have defined the infinitary η-expansion on the level of sequent
proofs and indeed, Sη would be isomorphic to the infinet of the infinitary η-
expansion of Deseq(S). On the level of λ-calculus, if an infinet corresponds
to a Böhm tree, then its infinitary η-expansion would correspond to Nakajima
trees [22].

C Further Proofs and Clarifications

C.1 Proof of Prop. 5

Proof. Let S(= [Θ′]Γ [Θ]). Fix a switching sw of S and consequently obtain
partition the Θsw. We will show by (co)induction on the structure of π that Θsw

and Θ are orthogonal.

22 Abhishek De and Alexis Saurin

The base case is a proof with only an ax rule. Say the proof is

(ax)
F,G⊥

then Θ = {{F,G⊥}} and for any switching, sw (there is only one because there
are no par rules), Θsw = {{F}, {G⊥}}. Clearly, they are orthogonal.

Now, suppose π is obtained from π0 with a (`) rule i.e.

π0
····

` Γ, F,G
(`)

` Γ, F `G

Let S0 = [Θ′0]Γ0[Θ0] be the proof structure corresponding to π′. Let Γ =
{BUii }i∈I such that Bj = F `Gα. By hypothesis S0 is OR-correct. Now, given a
switching of S0, a switching of S is fixed if the switching of (Bj , α) is specified.
Hence the OR-correctness of S follows. The case for µ, ν follows similarly.

The steps for the cut rule and ⊗ will be similar. We will only show for ⊗.
Let,

π1
····

` Γ, F

π2
····

` ∆,G
(⊗)

` Γ,∆, F ⊗G
Let Deseq(πi) = S1 = [Θ′i]Γi[Θi] for i = 1, 2. Observe that two switchings

sw1, sw2 of S1 and S2 respectively fixes a switching of S (say sw). Let θF , θG ∈
Θsw1

S1 be the partitions induced by the connected components containing F and
G respectively. Then,

θswS = (Θsw1

S1 \ {θF })] (Θsw2

S2 \ {θG})] {θF] θG}

Now, we have to show that Θ and ΘswP are orthogonal. By the induction
hypothesis S1 and S2 are OR-correct. Let u ∈ Θ and v ∈ ΘswP . We will show
that u and v are connected by exactly one simple path in the correction graph.

– If u ∈ Θ1 and v = θF] θG, then u and θF are connected by induction
hypothesis. Copy this path and just replace θF by v in the end. Observe that
any path connecting u and v can only contain points in Θ1](Θsw1

S1 \θF)]{v}
because u can be connected to something in Θ2] (Θsw2

S2 \ θG)] {v} only via
v. Hence by the induction hypothesis there is exactly one simple between u
and v. Symmetrically, for u ∈ Θ2 and v = θF] θG.

– Let u ∈ Θ1 and v ∈ (Θsw1

S1 \θF). They are connected by induction hypothesis.
If they are not connected via θF then they are still connected by induction
hypothesis. Otherwise, replace the occurrence of θF in the path by θF] θG.
In fact, any path between u and v in the induced graph of Θ and ΘswS is a
path in the correction graph of S1 (upto renaming of θF] θG). Hence there
is exactly one simple path between u and v. Symmetrically, for u ∈ Θ2 and
v ∈ (Θsw2

S2 \ θG).

Infinets: The parallel syntax for non-wellfounded proof-theory 23

– Let u ∈ Θ1 and v ∈ (Θsw2

S2 \ θG). By the first case, there are unique paths,
γ, τ connecting u and θF] θG and connecting v and θF] θG respectively.
Hence u and v are connected by γτ−1. In fact, every simple path connecting
u and v must pass through θF] θG. Hence there is exactly one simple path
between u and v. Symmetrically, for u ∈ Θ2 and v ∈ (Θsw1

S1 \ θF).

So, S is OR-correct.

C.2 Proof of Lemma. 1

Proof. Let S = Γ [Θ] be a DR-correct non-wellfounded proof structure. We are
going to build a path leading to a splitting root. Θ has be non-empty; so choose
θ ∈ Θ. Choose (B, u) ∈ θ.

If (B, u) is the root of a tree in Γ then it is splitting and we are done.
Otherwise follow δ((B, u)) to reach a root node R0. (?) If R is a `, µ, ν or a
splitting ⊗ node, we are done. Let R be non-splitting. By prop. 9, there is a
correctness triple (P0, σ0, σ

′
0). Starting from P , we then follow δ(P0) and we

reach a root node R1. We can now continue as before from (?). If we stop, it
means we have reached a splitting root and we are done. Otherwise the sequence
of root nodes {Ri} visited is infinite. But since Γ is finite we must visit the same
node twice; we will show that this is not possible.

Suppose Ri is the first root node to repeat i.e. there exists Rj for j < i such
thatRj = Ri and for all 0 ≤ ` < `′ < i,R` 6= R`′ . Then σj , δ(Pj), σj+1, · · · , δ(Pi−1)
is a cyclic switching sequence. But then by, prop. 8, the correction graph of S
contains a cycle. This contradicts DR-correctness of S.

C.3 Proof of Lemma. 2

Proof. We will prove by contradiction. Suppose there are nodes which are never
assigned a finite natural number by the time stamping algorithm. Let t = (Bi, u)
be the minimal node like that i.e. for all such other nodes (Bj , u

′), we have
|u| ≤ |u′|. (?) Then, by construction, after finite iterations of the sequential-
ization process, it becomes a conclusion of a proof structure, S ′ that needs to
be sequentialized. Hence t is a non-splitting root in S. By prop. 9, there is a
correctness pair (σ, σ′, P). Consider the set of all such ` formulas, P = {pi}i∈I .
Suppose I is infinite. Since Γ is finite, there is a partial syntax tree, BUii , in Γ
such that there is set V ⊆ Ui such that V ′ = {(Bi, v) | v ∈ V } ∩ P is infinite.
Let f be a wait function of S. Then, f(|u|) > |v| for all v ∈ V ′ which is absurd.
Hence I is finite.

Observe that for every i ∈ I, pi <D(S) t. Now, choose p ∈ P and follow δ(Pi)
to the conclusion, c, of p. If c splitting, then after finite iterations of the sequen-
tialization process, we have a proof structure, S ′′ that needs to be sequentialized
such there is conclusion in S ′′ that is a premise of c. We can continue like this
until the conclusion of p is a non-splitting ⊗ formula t′ (otherwise p will become
eventually splitting and we choose another p′ ∈ P). Observe that t′ <D(S) p.
We continue as before from (?). But then we have an infinite descending chain

24 Abhishek De and Alexis Saurin

in <D(S). This contradicts the lock-freeness of S. So, after finitely many itera-
tions every p ∈ P will be sequentialized and hence t will be splitting and will be
assigned a finite time-stamp.

C.4 Proof of Prop. 10

Proof. The if part follows from the observation that every rule π1 is ultimately
executed in π2 on the same formulas as π1 (possibly preponed or postposed by
finitely many steps) and the fact that permutation does not change the axiom
partition.

For the only-if part, let πi = [Θ′i]Γi[Θi]. [Θ′1]Γ1 = [Θ′2]Γ2 implies that same
rules are applied on same formulas in π1, π2. [Θ1] = [Θ2] implies that same
formulas are the premises of the tensor and cut rules in π1, π2. Hence π1 ∼∞ π2.

C.5 Proof of Prop. 12

Proof. We know that S0 is a valid infinet. Suppose S1 is not an infinet. Then,
the correction graph of S1 contains a cycle involving θ̄ s.t. θ̄ ∈ Θ1 \ Θ0. Let
θ̄ = θ ∪ θ′ \ {u, u⊥} where θ, θ′ ∈ Θ0.

Notice that θ, θ′ are validating since S0 is valid. If u is the validating thread
in θ, then u⊥ cannot be the validating thread in θ′. Hence there is a validating
thread in θ′ that will be retained in θ ∪ θ′ \ {u, u⊥}. So, it is non-empty and
validating.

Now, a path between θ̄ and θ̄ in the correction graph of S1 is a path between
θ and θ′ in the correction graph of S0. But there is a switching of S0 s.t. there
is another distinct path between θ and θ′ which goes through the partitions
corresponding to the connected components containing u, u⊥ resp. Hence there
is a cycle in the correction graph of S0. Contradiction! Hence S1 is OR-correct
and valid.

If there is a deadlock in S1 then there is a deadlock in S0, so lock-freeness of
S1 follows from the lock-freeness of S0. Therefore, S1 is an infinet.

