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Horizontal gene transfer: numerical comparison

between stochastic and deterministic approaches

Vincent Calvez∗, Susely Figueroa Iglesias†, Hélène Hivert‡,
Sylvie Méléard§, Anna Melnykova¶, Samuel Nordmann‖

Abstract

Horizontal gene Transfer (HT) denotes the transmission of genetic ma-
terial between two living organisms, while the vertical transmission refers
to a DNA transfer from parents to their offspring. Consistent experimen-
tal evidence report that this phenomenon plays an essential role in the
evolution of certain bacterias. In particular, HT is believed to be the
main instrument of developing the antibiotic resistance. In this work,
we consider several models which describe this phenomenon: a stochastic
jump process (individual-based) and the deterministic nonlinear integrod-
ifferential equation obtained as a limit for large populations. We also con-
sider a Hamilton-Jacobi equation, obtained as a limit of the deterministic
model under the assumption of small mutations. The goal of this paper
is to compare these models with the help of numerical simulations. More
specifically, our goal is to understand to which extent the Hamilton-Jacobi
model reproduces the qualitative behavior of the stochastic model and the
phenomenon of evolutionary rescue in particular.

Keywords: Horizontal gene transfer, stochastic individual-based models,
integro-differential equations, Hamilton-Jacobi equation, evolution dynamics,
resistance to antibiotics.

Introduction

Accurate mathematical description of the evolutionary mechanism is an open
question in biology, medicine, and industry. In particular, transmission of
pathogens, or antibiotic resistance of bacteria is directly linked to the ability of
the bacteria population to mutate and exchange genetic material either verti-
cally (from parents to offspring), or horizontally (from the interaction between
non-parental individuals).
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Horizontal Gene Transfer was first described in bacteria when the antibiotic
resistance was discovered. This resistance occurs when one bacterial cell be-
comes resistant to an antibiotic due to mutation, and then transfers resistance
genes to other species of bacteria. However the Horizontal Transfer of biologic
information is not restricted to genes, it also describes the transfer of plasmids
and endosymbionts, see for example M Henry et al. (2013), Lili et al. (2007).
Some artificial applications of horizontal transfer include forms of genetic engi-
neering (Gene Delivery) that result in an organism with its genes changed in
some way, and, consequently, possessing new properties or functions (see for
instance Kamimura et al. (2011)). These applications are particularly useful for
”Gene Therapy”, which is an experimental procedure that may help treat or
prevent genetic disorders and some types of cancer.

The primary goal of our work is to describe the mechanism of the transfer
itself and explain how it affects the population dynamics. Throughout the paper
we abbreviate the Horizontal Transfer to HT.

Our study starts with finding a good model of a bacteria population. Several
mathematical models for describing a population dynamics were proposed in
literature. The first model we consider is a stochastic birth and death process
(see, for reference, Billiard et al. (2015), Fournier and Méléard (2004)), which
describes the dynamics of reproduction, competition, and exchange of genetic
material between individuals in a population. The phenotype of each individual
is described by a numerical parameter, called trait. Numerical experiments
show that the effect of a unilateral horizontal gene transfer may lead to a cyclic
behavior of the population. Roughly speaking, while HT drives individuals
towards a non-fit phenotype — and, consequently, to extinction, very few not
affected by transfer fit individuals may eventually repopulate the environment,
before being driven again to deleterious phenotypes. This phenomenon is called
an evolutionary rescue of a small population.

However, within a framework of stochastic jump processes, it is hard to define
and study the observed cycling phenomena accurately. The second drawback of
the stochastic system is that it is costly to compute, especially for a large time
scale and population size. Thus, in the case of a large population, it is more
practical to work with a deterministic PDE model, describing the limiting be-
haviour of a stochastic system when the population size goes to infinity Billiard
et al. (2018, 2016), Ferrière and Tran (2009). In certain settings, the population
dynamics involve concentration phenomena (i.e., the convergence of the popu-
lation density to singular solutions, such as Dirac masses). In that case, the
PDE formulation is not suitable. Thus, applying a limiting procedure for small
mutations and time rescaling to the PDE model, we pass to a Hamilton-Jacobi
type equation.

The primary goal of our work is thus to conduct a numerical analysis of
the population dynamics on a macroscopic individual-based model and to com-
pare it with the deterministic system which is obtained as a limit for a large
population. We are especially interested in determining to which extent the lim-
iting Hamilton-Jacobi equation can grasp qualitative properties of the stochastic
model. This framework has already been successfully used to understand the
concentration phenomena, and the location of the dominant trait (see for in-
stance Lorz et al. (2011), Perthame and Barles (2008)). We aim to understand
if the Hamilton-Jacobi approach is also well suited to describe the evolutionary
rescue phenomena which crucially rely on an accurate description of the small
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populations.
On this step, the choice of an approximation scheme for simulating solutions

of the PDE model is of tremendous importance. As we further explain in Section
2, classical explicit schemes do not preserve the asymptotic behavior of the
solution if the time rescaling step goes to 0. From a numerical point of view, it
involves operations with exponentially big values, which lead to non-negligible
errors for explicit numerical schemes. We address this question by proposing
an asymptotic preserving scheme for a Hamilton-Jacobi equation, adapting an
approach proposed in Crandall and Lions (1984). More generally, the numerical
approximation problem for solutions of Hamilton-Jacobi equations is treated in
Achdou et al. (2013).

This paper is structured as follows: in Section 1 we introduce the model
both in a stochastic and deterministic setting, and formally derive the limiting
Hamilton-Jacobi equation. Then, we simulate a jump process, describing the
bacteria population, and study its properties for different values of parameters.
Numerical experiments are gathered in Section 2. We aim to numerically deter-
mine the critical HT rate, which leads to an almost sure extinction of the whole
population. On the next step, we conduct the same analysis for a Hamilton-
Jacobi equation with the help of an asymptotic preserving scheme and compare
it with the stochastic model on an appropriate timescale, and explain why the
classical scheme fails to work. We end our study with conclusions and discussion
of yet unsolved numerical and theoretical questions.

1 Model

1.1 Stochastic model

We consider a stochastic model describing the evolution of a population struc-
tured by phenotype. In a general case it is described at each time t by the point
measure

νKt (dx) =
1

K

NKt∑
i=0

δXi(t)(dx), (1)

where parameter K is a scaling parameter, referred to as the carrying capacity.
It stands for the maximal number of individuals that the underlying environment
is able to host (K can represent, for example, the amount of available resources).
NK
t = K

∫
νKt (dx) is the size of the population at time t, and Xi(t) ∈ Rn is the

trait of i-th individual living at t, which summarizes the phenotype information.
In this work we assume n = 1, that is, the trait is given by a point on a real
line.

The demography of the population is regulated, first of all, by its birth and
death rates. An individual with a trait x gives birth to a new individual with
rate b(x). The trait y of the offspring is chosen from a probability distribution
m(x − y)dy (by that we mean that

∫
R
m(x − y)dy = 1). We will refer to it as

the mutation kernel. An individual with a trait x dies according to an intrinsic

death rate d(x) plus an additional death rate C
NK
t

K
(independent of x) which

stands for the competition between individuals.
Finally, an individual with a trait x can induce a unilateral HT to an indi-

vidual with trait y at rate hK(x, y, ν), such that the pair (x, y) becomes (x, x).
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In literature this kind of transfer is sometimes referred to as a conjugation. For
simplicity, we assume hK(x, y, ν) to be in the particular form

hK(x, y, ν) = hK(x− y,N) = τ0
α(x− y)

N/K
, (2)

where N = K
∫
R
ν(dx) is the number of individuals, τ0 > 0 is a constant and α

is either a Heaviside, or a smooth bounded function, such that for a small δ > 0:

α(z) =

{
0 if z < −δ
1 if z > +δ

, α′(0) =
1

2δ
, (3)

where δ is the stiffness parameter. We introduce δ to have the advantage of
working with a smooth function (which will be useful in the following parts),
while mimicking the binary nature of the Heaviside function.

For a population ν = 1
K

∑N
i=1 δxi and a generic measurable bounded function

F , the generator of the process is then given by:

LKF (ν) =

N∑
i=1

b(xi)

∫
R

(
F

(
ν +

1

K
δy

)
− F (ν)

)
m(xi, dy)

+

N∑
i=1

(
d(xi) + C

N

K

)(
F

(
ν − 1

K
δxi

)
− F (ν)

)

+

N∑
i,j=1

hK(xi, xj , ν)

(
F

(
ν +

1

K
δxi −

1

K
δxj

)
− F (ν)

)
.

It is standard to construct the measure-valued process νK as the solution
of a stochastic differential equation driven by Poisson point measures and to
derive moment and martingale properties (see for instance Fournier and Méléard
(2004)).

1.2 The PDE model

It is proven (see in particular Billiard et al. (2018), Champagnat et al. (2008))
that for K → +∞ the stochastic process defined by a sequence of point measures
given by (1) converges in probability to the unique solution of a non-linear
integro-differential equation. This equation is given by:

∂tf(t, x) = −(d(x) + Cρ1(t))f(t, x) +

∫
Rn
m(x− y)b(y)f(t, y)dy+

f(t, x)
∫
Rn τ(x− y) f(t,y)

ρ1(t) dy, (t, x) ∈ R+ × Rn,

ρ1(t) =

∫
R

f(t, x)dx,

f(0, x) = f0(x) > 0,

where f(t, x) is the macroscopic density of the population with trait x at time t
and, accordingly to the previous section, b(x), d(x) and C are the birth, death
and competition rate respectively, m is the mutation kernel, and

τ(y − x) := τ0 [α(x− y)− α(y − x)] (4)
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is the horizontal transfer flux.
Now our goal is to pass from micro- to a macroscopic scale with the help of

a rescaling. On the one hand, we consider the case of small mutations: for a
small parameter ε > 0 we define

mε(x− y) =
1

εn
m

(
x− y
ε

)
.

With a change of variable z = x−y
ε we can rewrite the mutation term at (t, x)

as ∫
Rn
mε(x− y)b(y)f(t, y)dy =

∫
Rn
m(z)b(x+ εz)f(t, x+ εz)dz.

On the other hand, when ε is small, the effect of mutations can only be observed
in a larger time scale. Thus, we rescale time with t 7→ t

ε .
We end up with the following system, for ε > 0, and (t, x) ∈ R+ × Rn:
ε∂tfε(t, x) = −(d(x) + Cρε(t))fε(t, x) +

∫
Rn m(z)b(x+ εz)fε(t, x+ εz)dz+

fε(t, x)
∫
Rn τ(x− y) fε(t,y)

ρε(t)
dy,

ρε(t) =

∫
R

fε(t, x)dx,

fε(0, x) = f0
ε (x) > 0.

(5)

1.3 The Hamilton-Jacobi limit

We now derive the limiting problem (5) when ε→ 0. As we will see, the limiting
problem allows us to give a rigorous mathematical framework and to perform
useful formal calculations.

Equations in the form of (5) often give rise to a concentration phenomenon,
i.e the convergence of fε towards a Dirac mass when ε → 0 (see Perthame
and Barles (2008), Diekmann et al. (2005)). The usual way to deal with these
asymptotics is to perform a Hopf-Cole transformation (or WKB ansatz), i.e to
consider

uε(t, x) := ε ln(fε(t, x)). (6)

This change of variable comes from the intuition that a Dirac mass is no more
than a narrow Gaussian, and more precisely that fε should behave like a Gaus-
sian of variance ε when ε→ 0. Accordingly, we expect uε to have a non singular
limit when ε→ 0. Incidentally, this substitution also gives insights on the con-
venient scheme to use for numerical simulations, as we will see in the following
section.

Now our goal is to identify and derive the asymptotic properties of uε when
ε → 0, which will be used for discussions in the sequel. The following compu-
tations are only formal, since rigorous proofs are often intricate in this context.
Substituting (6) into (5) we deduce that uε satisfies

∂tuε = −(d(x)+Cρε(t))+

∫
Rn
m(z)b(x+εz) exp

{
uε(t, x+ εz)− uε(t, x)

ε

}
dz

+

∫
Rn
τ(x− y)

fε(t, y)

ρε(t)
dy. (7)
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Formally, at the limit ε→ 0, uε converges to a continuous function u which
satisfies the following Hamilton-Jacobi equation in the ”viscosity” sense:

∂tu = −(d(x) + Cρ(t)) + b(x)

∫
Rn
m(z)ez·∇xudz + τ(x− x(t)), (8)

where ρ(t) ≥ 0 is the weak limit of ρε(t) and

x̄(t) = argmax u(t, ·). (9)

We formally assume here and in the following that the definition of x̄(t) is
unambiguous, i.e that u reaches its maximum in a single point. Note that the
limiting function u is not expected to be C1 for all time. We thus need to deal
with a generalized notion of solutions, namely viscosity solution (see Barles
(1994)).

This framework is convenient because most of the information is contained
in the dynamics of x̄(t). See the next section for further analysis.

1.4 Formal analysis on the Hamilton-Jacobi equation

Hamilton-Jacobi equations are particularly known in mathematical biology to
be a good model to describe how a population concentrates around the dominant
trait(s) when the mutations are small. However, here we are interested to use
this model to describe a phenomenon of evolutionary rescue. In this subsection
we attempt an analysis of the equation (8). We point out that the calculations
are only formal, since rigorous proofs are intricate and beyond the scope of this
paper.

1.4.1 Generality

From an integration of (5) with respect to x and classical computations (under
the assumptions of bounded functions for the birth, death and transfer rates),
we deduce that our model satisfies a saturation property, i.e. ρε(t) is bounded

from above, uniformly in t ≥ 0 and ε > 0. From this and ρε(t) =
∫
Rn e

uε(t,x)
ε dx,

we deduce that ∀t > 0, sup
x∈Rn

u(t, x) ≤ 0 and the following constraint holds:

sup
x∈Rn

u(t, x) = 0 when ρ(t) > 0. (10)

Note that our model allows the population to get extinct, thus we cannot expect
ρ to be always positive. As a byproduct, we derive the concentration property,
i.e the formal weak convergence of measures

fε(t, x) ⇀ ρ(t)δx̄(t)(dx), when ε→ 0,

where δx̄(t) denotes, as usually, the Dirac measure centered in x̄(t). From (10) it
is possible to formally derive a formula for ρ. Indeed, either ρ(t) = 0 or ρ(t) > 0
and

∂tu(t, x̄(t)) = 0,

which implies

ρ(t) =
b(x̄(t))− d(x̄(t)) + τ(0)

C
=
b(x̄(t))− d(x̄(t))

C
, (11)
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for τ defined in (4).
Having above definitions in hand, we can now perform a formal analysis

on the dynamics of x̄(t), defined below in (15). Our aim is to show how the
behaviour of the system can be analyzed within the framework of a Hamilton-
Jacobi equation (8). To fix ideas, we fix all constants but τ0 and we assume
(12)-(14) as follows:

b(x) = br > 0, (12)

d(x) = drx
2, dr > 0, (13)

m(z) =
1√
2πσ

e−
z2

2σ2 , (14)

and the transfer function hK(x, y, ν) is defined in (2). Moreover we work under
the following assumptions:

u(t, ·) reaches its maximum on a single point x̄(t),

x̄(t) is a non-degenerate maximum, i.e ∇2
xu(t, x) < 0,

x̄(t) is smooth with respect to t.

(15)

Finally we assume that the initial condition f0 is a given function of x which
reads:

f0
ε (x) =

1√
ε
e−

x2

2ε . (16)

1.4.2 Smooth dynamics x̄(t).

The following statement deals with the smooth dynamics of x̄(t), i.e in the
regime where no jump occurs in the dynamics of x̄(t).

Statement 1. Under assumptions (12)-(15), the function t 7→ x̄(t) is an in-
creasing function which satisfies the following inequality ∀t ≥ 0:

0 ≤ x̄(t) ≤ τ0
2dδ

.

More precisely, x̄(t) satisfies the canonical equation

d

dt
x̄(t) =

[
−∇2

xu(t, x̄(t))
]−1 · (∇xr(x̄(t)) +∇xτ(0)) , (17)

where
r(x) := b(x)− d(x), (18)

and ∇2
xu denotes the Hessian of u with respect to the x variable.

Proof. Under the above assumptions we can derive the dynamics of x̄(t), referred
to as the canonical equation in the literature (see for instance Mirrahimi and
Roquejoffre (2016)). Indeed, starting from

∇xu(t, x̄(t)) = 0,

a differentiation with respect to t gives (17). Equation (17) has a unique singular
point x?, which satisfies r′(x?) + τ ′(0) = 0, with τ defined in (2) and r in (18).
We find

x? =
τ0

2drδ
. (19)
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Note that t 7→ x̄(t) is increasing when x̄(t) < x? and decreasing when x̄(t) > x?.
Besides, from the initial condition (16), we have x̄(0) = 0, and consequently
0 ≤ x̄(t) ≤ x? ∀t.

1.4.3 Evolutionary rescue.

In general, the canonical equation (17) does not hold in every point of time.
Indeed, a new maximum of u can arise in a finite time, which would cause a
”jump” in the dynamics of x̄(t): this is what we call an evolutionary rescue.
Formally, this is what happens (periodically in time) in the case of cycles, see
Figure 5b. We thus expect x̄(t) to possibly jump periodically, and to follow (17)
between two jumps. We now try to characterize the possible jumps. For T > 0,
we denote

x̄(T−) := lim
t→T
t<T

x̄(t), x̄(T+) := lim
t→T
t>T

x̄(t).

Statement 2. We assume that (12)-(15) hold until a time T > 0, such that
u(T, ·) reaches its maximum on x̄(T−) and on another point x̃. Then x̃ = 0 and
x̄(t) will jump towards 0 at time T , i.e x̄(T+) = 0.

Proof. From assumption (15), we have ∀t ∈ [0, T ] that u(t, ·) is concave non-
degenerate on [x̄(t) ± θ], with θ > 0. For simplicity, we further assume δ ≤ θ,
where δ is defined in (3).

First, let us show that x̃ = 0. We define the fitness function of trait x in a
population concentrated in x̄:

Fx̄(x) := r(x) + τ(x− x̄),

where r and τ are respectively defined in (18) and (4). Note that we have
∂tu(t, x) = Fx̄(t)(x) − Cρ(t), for t < T . But x̃ 6∈ [x̄(t) ± δ] and the choice of
parameters (12)-(13)-(3) implies x̃ must maximize Fx̄(T−)(·), hence x̃ = 0.

The second step is to prove that there will be an actual jump towards 0, i.e
x̄(T+) = 0. First, note that there exists a small η > 0 such that ∀t ∈ (T −η, T ),
u(t, x̄(t)) = 0 and u(t, 0) < 0. Let us fix t ∈ (T − η, T ). We have Fx̄(t)(0) ≥
Fx̄(t)(x̄(t)), and we claim that the inequality is strict. Indeed, since t 7→ x(t) is
increasing, Fx̄(t)(x̄(t)) is decreasing, whereas Fx̄(t)(0) is constant (as long as η
is small enough such that x̄(T − η) > δ). We end up with

Fx̄(t)(0) > Fx̄(t)(x̄(t)).

The above inequality expresses the fact that 0 is fitter than x̄(t) in a population
with trait x̄(t). In general, this does not allow to conclude that 0 will invade
and become the new dominant trait (i.e., that the jump will occur) because it
does not imply that 0 will remain fitter during all the process of invasion. But
the particular form of our problem, especially the fact that τ is an odd function,
implies

F0(0) > F0(x̄(t)).

Indeed we have from the definition of Fx̄(x) that

F0(0)− F0(x̄(t)) = r(0)− r(x̄(t)) + τ(x̄− x̄)− τ(0) = drx̄(t)2 > 0.
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Consequently that for all λ ∈ [0, 1]

λF0(0) + (1− λ)Fx̄(t)(0) > λF0(x̄(t)) + (1− λ)Fx̄(t)(x̄(t)).

It shows that 0 remains the fittest trait during all the process of invasion, and
therefore that 0 will actually invade, i.e that x̄(t) will actually jump towards 0
at time T+.

1.4.4 Threshold for cycles

In the previous section, we described the possible evolutionary rescue, i.e the
possible jumps in the dynamics of x̄(t) towards x = 0. When a jump occurs,
a new cycle begins: it leads to a periodical behavior of x̄(t), hence the cycling
phenomenon.

We recall that a jump corresponds to a rescue of the population concentrated
at x̄(t) by the small population with trait x = 0. It is possible only if x̄(t) > δ
and if 0 is fitter than x̄(t) during a sufficiently large interval of time (which is
the time needed for the small population at x = 0 to regrow). Note that 0 is
fitter than x̄(t) if and only if

Fx̄(t)(0) ≥ Fx̄(t)(x̄(t)) iff br − τ0 ≥ br − drx̄(t)2, (20)

iff x̄(t) ≥ xresc :=

√
τ0
dr
.

But if no jump occurs, x̄(t) formally follows (17), thus x̄(t) < x? and x̄(t)
converges to x? when t→ +∞ (with x? is defined in (19)).

Statement 3. Under assumptions (12)-(15), the evolutionary rescue phenom-
ena occurs if and only if

τ0 > τcyc := 4drδ
2. (21)

Note that the condition τ0 > τcyc is equivalent to xresc < x? , which are
defined respectively in (19) and (20).

1.4.5 Threshold for extinction.

The population is said to be ”extinct” at time t if ρ(t) = 0. According to (11),
we define xext as to solve r(xext) = 0, i.e

xext :=

√
br
dr
, (22)

that is, a population concentrated at trait x̄ is extinct iff x̄ ≥ xext.
The picture is simple in the case of stabilization without cycles, i.e when

τ0 ≤ τcyc (see (21)). In this case, we recall that x̄(t) formally follows (17) for
all t > 0, thus x̄(t) < x? and x̄(t) converges to x? when t → +∞ (where x?
is defined in (19)). Thus, if x? ≤ xext, we have ρ(t) > 0 for all t > 0; on the
contrary, if x? > xext, there exists a time text > 0 for which ρ(t) = 0 for all
t ≥ text. It gives a sharp threshold for extinction of the population: indeed,
the population eventually gets extinct if and only if x? > xext, which naturally
leads us to the following statement.
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Statement 4. Under assumptions (12)-(15), if τ0 ≤ τcyc, then the population
eventually gets extinct if and only if

τ0 > τext := 2
√
brdrδ.

We point out that, surprisingly enough, τext is an increasing function of
the death rate dr, meaning that under a higher death rate, the population
can survive to a higher HT rate. The interpretation we propose is that if dr is
high, the population driven outward x = 0 dies rapidly, thus the population that
remained closer to 0 undergoes a milder HT, which makes the overall population
more resistant to a high HT rate.

Let us now focus on the case where the cycling phenomenon occurs, i.e when
τ0 > τcyc. In this case, x̄(t) will follow (17) and will periodically jump to x = 0.
First, note that if x? < xext, x̄(t) remains below xext for all t and the population
does not get extinct:

if τ ≤ τext, then ρ(t) > 0, ∀t > 0.

The most intricate case is when x? > xext, which contains cases of extinction
and non-extinction, depending on whether the jump of x̄(t) towards 0 happens
before or after x̄(t) has passed beyond xext. In other words, extinction can be
avoided if the evolutionary rescue happens before the dominant trait is led to
extinction, i.e if x̄(T−) ≤ xext, where T is the time where the jump of x̄(t)
towards 0 occurs. However, we are not able to give a satisfactory formula or
estimate on T .

Besides, when the jump of x̄(t) occurs, it can happen that the trait x = 0
is not fit enough to avoid extinction: in this case the evolutionary rescue does
not manage to sustain the population. It corresponds to the case xresc > xext.
We have the following threshold: the evolutionary rescue is able to sustain the
population iff r(0) + τ0 > 0, which is equivalent to

τ0 < τsus := br.

If τ ≥ τsus, the population eventually gets extinct. If τ < τsus, the popu-
lation is effectively rescued by the evolutionary rescue, even in the case where
it passed through an episode of extinction during the previous cycle: in some
cases the population is able to regrow after being extinct, which can be seen
on Figure 5c. We think this is an interesting feature that the Hamilton-Jacobi
approach is able to grasp. Regarding the stochastic model, an episode of extinc-
tion on Hamilton-Jacobi corresponds to an interval of time where the population
reaches extremely small values (of order e−

1
ε , with ε the variance of the muta-

tion kernel), and the probability that every individual dies is bigger than the
survival of the population.

Statement 5. Assume (12)-(15) and τ0 > τcyc.

• if τ0 ≤ τext, the population never gets extinct.

• the evolutionary rescue effectively manages to sustain the population if and
only if τ0 < τsus := br.

10



1.4.6 Characteristics of a Hamilton-Jacobi equation

Denoting

−H(t, x, p) := −(d(x) + Cρ(t)) + b(x)

∫
R
m(z)epzdz + τ(x− x̄(t)),

from (8) we have ∂tu(t, x) +H(t, x,∇xu(t, x)) = 0. Since H is convex in the p
variable, we have the following representation formula (see Lions (1982)).

u(t, x) = inf
γ∈C0(R+,R)
γ(t)=x

[∫ t

0

L (s, γ(s), γ̇(s)) ds+ u0(γ(0))

]
, (23)

where L(t, x, v) is the Lagrangian of the equation, obtained through a Legendre
transform (or a convex conjugate) of H.

Every γ which is admissible as a minimizer in (23) is called a characteristic
of the Hamilton-Jacobi equation (8). Note that every characteristic γ formally
satisfies the condition

d

ds
[∂vL (s, γ, γ̇(s))] = ∂xL (s, γ(s), γ̇(s)) . (24)

(24) holds because γ is a critical point of the functional defined in (23). Note

that if we replace H by H̃(x, p) = −x
2

2 + p2

2 + 1, the Legendre transform of H̃
can be computed explicitly:

L̃(x, v) =
x2

2
+
v2

2
− 1.

Then (24) becomes
γ̈(s) = γ(s).

2 Numerical tests

In this section we perform several numerical tests for the presented models
considering different values of parameters, replicating different scenarios: sta-
bilization around an optimal value, cycles (occurring through the evolutionary
rescue phenomena) and the extinction.We then compare the numerical results
obtained for the stochastic and deterministic approaches, using in particular
an asymptotic-preserving scheme which allows us to observe the population dy-
namics on the passage from the integro-differential equation (5) to a limit (7).
Throughout this section we define the birth, death rates and the mutation kernel
to those given in (12)-(14) respectively, with the parameters fixed throughout
all the experiments to b ≡ 1, dr ≡ 1, C ≡ 0.5 respectively (unless otherwise
stated).

2.1 Stochastic model

2.1.1 The scheme

Our aim is to simulate the population dynamics over a fixed interval [0, T ].
We begin by simulating an initial population of size N0. We assume that the

11



population is normally distributed around the mean trait x0
mean with a standard

deviation σ0 so that the resulting vector X0 ∈ RN0

. We know that in a time
step ∆, an individual can die, give birth, or be a subject to HT. Each event
happens according to a certain probability that we compute from the rates.
More detailed description of the simulations is provided in Algorithm 1.

Note that in our setting it is possible that 1, 2 or 3 events happen within
the same time step. Keeping a discretization time step small helps us to keep a
biological sense in our simulation: even if the event of horizontal transfer with
an ”already dead” individual is possible in our setting (if Td ≤ THT ≤ ∆), this
event is extremely rare.

Algorithm 1: Population dynamics on time interval [0, T ]

Random initialization of a population X0 := N (x0
mean, σ

0)×N0 ;
while i∆ ≤ T do

Xi = Xi−1, N i−1 = size(Xi−1);
for ∀x ∈ Xi do

Rb := b(x), Rd := d(x)+CN i−1, RHT :=
∑
y∈Xi hK(x− y,N i−1);

Tb := λ(Rb), Td := λ(Rd), THT := λ(RHT ), where λ denotes an
exponential random law;
if Tb ≤ ∆ then

pick up a new trait z from N (x, σ);
add a new individual with trait z to Xi;

end
if THT ≤ ∆ then

pick a trait y ∈ Xi−1 according to the law hK(x−y,Ni−1)∑
y∈Xi hK(x−y,Ni−1) ;

remove individual with trait x and add individual with trait y;
end
if Td ≤ ∆ then

remove the individual with trait x from Xi

end

end
return Xi

end

We simulate the population of initial size N0 = 10000 up to time T = 1000
with ∆ = 0.01, with the parameters being defined at the beginning of the
section, and α is a Heaviside function. Even if a Heaviside function is not the
most easy to analyze when we pass to the deterministic limit of the system (see
Subsections 1.2 and 1.3), we use it for the stochastic simulation, since it is the
most straightforward model for HT in biological context, and is much faster to
compute than a smooth function. We fix all constants but τ0, which regulates
the Horizontal Transfer, and study how it affects the dynamics. Then we plot
the density of the population at each moment of time (left side of each Figure):
brighter colors on plot mean that there is a big amount of individuals with
very similar traits. On the right top and right bottom we plot the normalized
population size (ratio between the actual size and the carrying capacity of the
system), and the mean trait.

Depending on the parameters we may observe three types of behavior (see
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Figure 1). First possibility, for small values of τ0, is the stabilization (Figure 1a).
In this case the population rapidly reaches the equilibrium and concentrates
around the optimal trait, which is close to 0.1 (with stochastic fluctuations).
Note that in this case, the mean trait is shifted in comparison to the optimal
trait without HT (which is x = 0).

Second option, for intermediate values of τ0, is the cycling behavior (Figure
1b). Since the transfer rate is sufficiently large, the population is driven towards
a deleterious trait, which is eventually less fit than the trait x = 0. If the drift
is not too strong, the very few individuals which were not affected by HT and
remained fit (with x close to 0) manage to regrow and eventually repopulate
the environment, which launches the cycle again.

The last possibility, for large values of the horizontal transfer rate τ0, is the
extinction of the population (Figure 1c). It occurs because too many individuals
were affected by deleterious traits of their neighbors, so that they die faster than
is needed for replicating the population.

(a) Stabilization: τ0 = 0.02

(b) Cycles: τ0 = 0.4 (c) Extinction: τ0 = 0.9

Figure 1: Behavior of the population dynamics as the mutation rate τ0 is chang-
ing, (br = dr = 1, σ = 10−2, K = 104, σ0 = 10−2, x0

mean = 0, N0 = 104).

To understand better this phenomenon, we have to give a precise definition
of what do we actually refer to, when we say ”the critical value” of the transfer
rate? In stochastic setting the answer is not trivial, and that is where the
individual-based model reaches its limit. What we observe experimentally is
the following when we change the value of HT rate starting from zero, the
cycles in the population dynamics become more clearly visible, the fluctuations
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of the mean trait and the population size become more ample, until at some
point the probability of extinction overweights the probability of survival and,
finally, at the value of τ0, which we call ”critical” we obtain an almost sure
extinction.

But since we are working with a point process, giving a strict definition of a
”critical value for an extinction” in terms of probability measures seems to be out
of reach. Even in the experimental setting this notion is ambiguous: when the
value of τ0 is getting closer to a ”critical” (numerically we observe an almost
sure extinction at τ0 = 0.49), in different repetitions of the same experiment
we may observe different types of behavior: either cycles, or extinction, which
occurs after several cycles. It is illustrated on Figure 2, where the computations,
launched with exactly the same set of parameters, give very different results.
Furthermore, it is not always clear how to differentiate between the stabilization
and cycles, especially when the variance of the mutation kernel is large. To the
best of our knowledge, there is no straightforward way to analytically measure
the probability of each outcome under given initial conditions, which makes the
model difficult to analyse.

This constraint of an individual-based model naturally leads us to studying
a limiting system described in Subsection 1.2.
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(b) Cycle and extinction
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Figure 2: Different behaviors for τ0 = 0.46 (and the other parameters as in
Figure 1).
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2.1.2 Lineages

With the help of the stochastic model we can keep track of the lineage of an
individual i which lives at a final observed time T . More precisely, we are
interested in a history of a phenotype which leads to a long-term survival of an
individual.

We illustrate some numerical experiments on Figure 3. The four simulations
are done with the same parameters. In the background, every point with coor-
dinates (t, x) represents an individual with trait x living at time t (as in Figure
1). The solid lines represent the lineages of the individuals that live at final
time. Small fluctuations are the results of birth with mutation, while the large
upwards jumps correspond to an occurrence of a HT.

First of all, we can see on the plot that all the lineages are gathered into one
line up to t = 400. It means that all individuals that live at final time t = 700
emanate from one single ancestor of the initial population. This phenomenon is
well known and referred to as coalescence in the literature (see for instance King-
man (1982), or Arenas and Posada (2014, 2010) for a mathematical description
of a classical population genetics theory).

Besides, we see that the lineages remain centered around x = 0 during almost
all the observed time. It is explained by the fact that every lineage that goes to
a high value of x (corresponding to deleterious phenotype) cannot recover (since
the mutations are small), and eventually goes extinct. This illustrates that the
population manage to sustain because of the very few individuals that were not
affected by HT throughout the history.

Figure 3: Simulations on the stochastic model with lineages. τ0 = 0.4, Tmax =
700, dT = 0.1, K = N0 = 1000 and other parameters as in Figure 1.
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2.2 Numerical scheme for the PDE model

In this subsection, a numerical scheme for (5) is presented, and its properties are
numerically investigated. For the discretization of (5), we consider a bounded
space of traits [Xmin, Xmax], discretized with Nx points. Denoting Nx the num-
ber of discretization points of the interval [Xmin, Xmax], we define

∆x =
Xmin −Xmax

Nx − 1
,

and
xi = Xmin + i∆x, 0 ≤ i ≤ Nx − 1.

We consider the time interval [0, Tmax], discretized with Nt points tn = n∆t, for
0 ≤ n ≤ Nt − 1, and where ∆t is defined as

∆t =
Tmax

Nt − 1
.

The approximations of the solution f of (5) at (tn, xi), and of its density ρ at
tn are denoted fni and ρn respectively. We recall that the initial condition f0

is a smooth function of x given in (16) and the initial density ρ0 is computed
using a left-point quadrature rule for f0 as follows:

ρ0 = ∆x

Nx−1∑
i=0

f0(xi).

The scheme is written with an explicit Euler scheme, in which the integrals are
computed with a left-point quadrature rule. For n ≥ 1 and 0 ≤ i ≤ Nx − 1, it
reads

ε
fn+1
i − fni

∆t
= (d(xi) + Cρn) fni + [m ∗ (bf)]

n
i +fni ∆x

Nx−1∑
j=0

τ(xi−xj)
fnj
ρn
. (25)

In (25), the convolution product [m ∗ (bf)]
n
i is computed with a left-point

quadrature rule, as well of the other integrals. To do so, a grid in the z variable
is defined as for the x variable. Let Zmin and Zmax, and the number Nz of
discretization points be given. The grid in z is defined as

∀0 ≤ k ≤ Nz − 1, zk = Zmin + k∆z,

where ∆z = (Zmax − Zmin) / (Nz − 1). When xi+εzk ∈ [Xmin, Xmax], the value
of f(tn, xi + εzk) is approximated by linear interpolation of the (fni )0≤i≤Nx−1.
When xi + εzk < Xmin, or xi + εzk > Xmax, it is computed with a linear
extrapolation of the (fni )0≤i≤Nx−1, using the slope at the corresponding end
of the X domain. Using the notation fn(xi + εzk) for the approximation of
f(tn, xi + εzk), we then define

[m ∗ (bf)]
n
i = ∆z

Nz−1∑
k=0

m(zk)b(xi + εzk)fn(xi + εzk).
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2.2.1 Case ε = 1: comparison with stochastic model

First thing that we are interested in is whether under identical parameters and
initial conditions we may reproduce the same behavior as in the stochastic
model. Thus, we conduct several experiments, fixing parameter ε to 1 (thus, we
do not rescale time, nor mutation rate), leaving all the other parameters fixed
to the same values as in the stochastic simulation case.
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(a) Stabilization: τ0 = 0.02
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(b) Cycles: τ0 = 0.4
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(c) Extinction and cycles: τ0 = 0.9
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(d) Full Extinction τ0 = 1.2

Figure 4: Behavior of the population dynamics described by a PDE model as
the mutation rate τ0 is changing, (br = dr = 1, σ = 0.01, ε = 1).

As we may see on Figure 4, simulations in overall correspond to those of the
stochastic model. Indeed, when the HT rate τ0 is small enough the population
rapidly stabilizes around its equilibrium state (see Figure 4a), as in the stochas-
tic simulations. Further similarity between two models is that in both cases the
optimal trait is shifted a bit above 0. It is caused by the HT phenomenon.

For larger values of τ0, where we would expect to have distinguishable cycles,
we observe indeed damped oscillations, see Figure 4b. We stress out that for the
stochastic model it is not the case, see Figure 1b. The way we understand the
damping in the oscillations is that the PDE model and the numerical algorithm
that we use are not designed to have a precise grasp on the exponential small
values of f , on which the cycling phenomenon relies. This limitation suggests
to perform the change of variable (6), and to write a numerical scheme which
converges uniformly when ε → 0. This is what the next subsection is devoted
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to.
On Figure 4c, we observe that as τ0 becomes larger the population gets ex-

tinct, and then, surprisingly enough, ”reborns” after a period of extinction. This
scenario can only be reproduced on density-based models, since in individual-
based model any extinction is definitive. On Figure 4d we observe a full extinc-
tion of the population without regrowth. We will give further insights on those
two cases in the next subsection.

2.3 The scheme for the Hamilton-Jacobi equation

2.3.1 Case ε→ 0: description of the numerical scheme

As the rescaling parameter ε goes to 0, the model given by (7) gets closer to
its limiting state (8). However, numerical approximation of the (5) for ε � 1
is not a trivial task. Indeed, for small ε, the solution fε of (5), is expected
to concentrate around the dominant trait. To be able to catch its stiffness
numerically, one has to refine the grid in x, to ensure enough precision in the
computation of f . As a consequence, the computational cost of the numerical
simulations increases when ε → 0, and reaching the asymptotic regime with
this scheme is not possible. In this part, we present a numerical scheme for (5)
which enjoys stability properties in the limit ε→ 0.

To avoid the increase of computational cost when reaching the asymptotics,
and to ensure the scheme approaches the limit Hamilton-Jacobi equation for
small ε, a scheme for the solution uε of (7) which enjoys the Asymptotic Pre-
serving (AP) property is proposed here. Such schemes have been introduced
in Klar (1998, 1999), Jin (1999), their properties are often summarized by the
following diagram:

Pε
ε→0−−−−−−−→ P0

h
→

0
−−
−−
−−
→

h
→

0
−−
−−
−−
→

Shε
ε→0−−−−−−−→ Sh0

It should be understood as follows: when the parameter ε > 0 is fixed, the
scheme Shε is consistent with the ε-dependent problem Pε. When ε goes to 0,
the solution of Pε converges to the solution of the limit problem P0. The AP
scheme Shε is stable along the transition to the asymptotic regime. It means that,
when ε goes to 0 with fixed discretization parameters h, the scheme becomes a
limit scheme Sh0 , which is consistent with the limit problem P0.

As an AP scheme is required to enjoy stability properties when ε is going
to 0, one has to ensure that all the quantities that have to be computed en-
joy this property. In the case we are considering, the main concerns are the
computation of the integral containing the birth term, the computation of the
integral containing the transfer term and the computation of ρ. If all of them
are correctly defined, the scheme we propose reads

un+1
i − uni

∆t
= −(d(xi) + Cρn+1) +Bni + Tni , (26)
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where Bni stands for an approximation of∫
R
m(z)b(xi + εz)e(uε(t

n,xi+εz)−uε(tn,xi))/εdz, (27)

and Tni is for ∫
R
τ(xi − y)

f(tn, y)

ρ(tn)
dy. (28)

Here, we used the notations and discretization grids defined in the beginning of
Section 2.2, and the dependencies in ε are omitted to simplify the notations. In
what follows, we present how Tni , Bni and ρn+1 can be computed in a way that
ensures they are consistent with their definition for fixed ε, that they can be
computed with a constant computational cost with respect to ε, and that their
asymptotic behavior when ε goes to 0 is meeting the continuous one (8).

• Computation of Tni . The direct approximation of (28) with a quadra-
ture rule is consistent for ε ∼ 1. However, since f is expected to concen-
trate when ε→ 0, it lacks precision in the asymptotic regime. Especially,
the convergence of f/ρ to a Dirac is not ensured when the integral is
approximated directly. Remarking that

fε(tn, y)

ρε(tn)
=

eu
ε(tn,y)/ε∫

R
eu
ε(tn,z)/εdz

=
e
(uε(tn,y)−max

x
uε(tn,x))/ε∫

R
e
(uε(tn,z)−max

x
uε(tn,x))/ε

dz

,

(28) is computed with a left-point quadrature rule in the integrals of the
previous expression. It reads

Tni = ∆x

Nx−1∑
j=1

τ(xi−yj)
e
(unj −max

l
unl )/ε

∆x

Nx−1∑
k=0

e
(unk−max

l
unl )/ε

=

Nx−1∑
j=1

τ(xi − xj)e
(unj −max

l
unl )/ε

Nx−1∑
k=0

e
(unk−max

l
unl )/ε

.

(29)
For fixed ε, (29) is consistent with (28). Since all the arguments of the
exponentials are nonpositive, the limit of (29) for small ε can be read on
that expression. Denoting j0 the index such that

unj0 = max
l
unl ,

and supposing that there exists a unique such j0, the limit of (29) for small
ε is

τ(xi − xj0).

This is consistent with the last term in the limit Hamilton-Jacobi equation
(8).

• Computation of Bni . Once again, the numerical approximation of (27) is
done with a quadrature in the integral. Using the notations of Section 2.2,
a grid in z is defined. The functions m and b are respectively evaluated at
zk and xi+εzk, but the interpolation of un at xi+εzk has to be done with
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special care to make the scheme enjoy the expected asymptotic behavior.
Using a left-point quadrature rule, (27) is approximated by

∆z

Nz−1∑
k=0

ε|zk|≤dx

m(zk)b(xi + εzk)ezk∇
ε,small
n,i,k + ∆z

Nz−1∑
k=0

ε|zk|>dx

m(zk)b(xi + εzk)ezk∇
ε,large
n,i,k ,

where ∇εn,i,k stands for an approximation of

uε(tn, xi + εzk)− uε(tn, xi)
εzk

.

In both cases, it is computed with a linear interpolation of the values uni .

Hence, ∇ε,largen,i,k is given by

∇ε,largen,i,k =
ũni,k − uni
εzk

,

where ũni,k is computed as the linear interpolation of (uni )1≤i≤Nx at xi+εzk.
If xi + εzk < Xmin or xi + εzk > Xmax, the extrapolation is done linearly
using the slope at the first or last point of the interval. Since εzk >
∆x, no stability issue is faced in this computation. Still using a linear
interpolation, when 0 < εzk ≤ ∆x, it is worth noticing that

ũni,k − uni
εzk

=
uni+1 − uni

∆z
,

and when 0 > εzk ≥ −∆x,

ũni,k − uni
εzk

=
uni − uni−1

∆x
.

as a consequence, we define:

∇ε,smalln,i,k =


uni+1 − uni

∆x
, if 0 < εzk ≤ ∆x

uni − uni−1

∆x
, if −∆x ≤ εzk < 0

0, if zk = 0.

This definition of Bni is consistent with (27). Moreover, when ε goes to 0
with fixed numerical parameters, such as Zmin and Zmax, the expression
∇ε,largen,i,k is not used at all, and

Bni =
ε→0

Bn,0i = ∆z

Nz−1∑
k=0
zk<0

m(zk)b(xi)e
zk

uni −u
n
i−1

∆x + ∆zm(0)b(xi)+

∆z

Nz−1∑
k=0
zk>0

m(zk)b(xi)e
zk

uni+1−u
n
i

∆x . (30)
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• Computation of ρn+1. In (26), ρn+1 is considered in an implicit way, to
make the limit scheme be consistent with the limit equation (8). Since

ρ(t) =

∫
R

eu(t,x)/εdx,

for ε > 0, we define

ρn+1 = ∆x

Nx−1∑
i=0

eu
n+1
i /ε.

A closed equation on ρn+1 can be deduced from (26). Indeed, (26) yields

eu
n+1
i /ε = e−∆tρn+1/εe(uni +∆t[−d(xi)+B

n
i +Tni ])/ε,

and so

ρn+1 = ∆x e−∆tρn+1/ε
Nx−1∑
i=0

eA
n
i /ε, (31)

where Ani denotes uni + ∆t (−d(xi) +Bni + Tni ) to simplify the notations.
Eventually, ρn+1 is the solution of h(y) = 0, where

h(y) = ye∆ty/ε −∆xeA
n
i0
/ε
Nx−1∑
i=0

e(Ani −A
n
i0

)/ε, (32)

where Ani0 = max
i
Ani has been taken apart to get an uniform estimate with

respect to ε on the remaining sum. It is also a solution of the equivalent
equation g(y) = 0, with

g(y) = −ε ln(y)−∆ty + ε ln(∆x) +Ani0 + ε ln

(
Nx−1∑
i=0

e(Ani −A
n
i0

)/ε

)
. (33)

To find ρn+1, a Newton’s method is applied on expression (32) or on (33).
Both expressions are smooth convex functions of ρ, and are equivalent.
Hence, the Newton’s method converges whatever is used. Nevertheless, it
must be chosen with care. (32) is to be chosen when ρn+1 is close to 0
(for large values it becomes less accurate), whereas (33) is more adapted
when ρn+1 is not small, since it is more prone to accumulate numerical
errors when ρn+1 → 0. In the effective implementation of the method,
either one formulation or the other is chosen, depending on the values
reached during the iterations of the algorithm. Eventually, to ensure the
stability of the numerical resolution of (31) when ε→ 0, the inverse of the
derivatives of h and g are analytically computed and implemented as

1

h′(y)
=

ε

ε+ ∆t
e−∆ty/ε,

1

g′(y)
= − y

ε+ ∆t
.

Since y > 0, these two expressions are uniformly bounded with respect to
ε when ∆t is fixed. As a consequence, the cost of the numerical resolution
of (31) does not increase with ε.
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When ε > 0 is fixed, the scheme (26) is consistent with (7), since only quadrature
formula and interpolation methods have been used to write it. The way all
the terms are computed, as well as the numerical resolution of the non-linear
equation (31), ensures the stability of the numerical computations in the small
ε regime. Hence, when ε → 0 with fixed discretization parameters, the scheme
(26) becomes

un+1
i − uni

∆t
= −

(
d(xi) + Cρn+1

)
+Bn,0i + τ(xi − xj0),

where j0 is such that unj0 = max
i
uni , and Bn,0i has been defined in (30).

We do not give a strict proof of consistency of this scheme with respect to
the limiting Hamilton-Jacobi equation (8), since it is out of scope of the project.
However, we draw the attention to few important points which need to be taken
into account while working with the scheme. In particular, the behaviour of the
quantity ρ(t) is not well understood in the case of an extinction. The problem is
that intuitively ρ(t) must represent the density of the population — so that when
it goes to zero, we expect an extinction. However, in a Hamilton-Jacobi case
even when the ρ(t) reaches zero, the population can still regrow after some time.
This can be explained by the fact that after two limiting procedures (passing
first to the infinite system size, and then to the infinite time horizon), the ”size”
of the population can not be described straightforwardly. Accurate link between
the quantities obtained as a result of stochastic and PDE simulation is also a
question which requires further investigation when ρ(t)� 1.

2.3.2 Case ε→ 0: the numerical results

In this subsection we simulate the dynamics of the population by considering a
small value of ε and discuss the obtained results in order to compare them with
previous simulations. Note that, in order to compare both, the stochastic and
the Hamilton-Jacobi behaviours, the first thing to do is to obtain the simula-
tions for the stochastic model also in the case where the HT rate is a smooth
function as we do for the Hamilton-Jacobi case. We recall that, in subsection
2.1 simulations for stochastic model are done with a Heaviside function as HT
rate since it is a more natural choice for simulation of a jump process.

On Figure 5 we simulate the population dynamics for ε = 0.01. Upon
rescaling time (for chosen ε time scale T = 10 corresponds, in fact, to T

ε = 1000
in previous simulations) and the variance parameter, we see the same patterns,
with few differences.

On Figure 5a, we observe a stabilization of the mean trait, as in Figure 1a.
Similarly, on Figure 5b, we observe cycles, but on the contrary to the PDE
model oscillations are not damped. Moreover, it is worth pointing out that the
duration of a cycle here corresponds to what we observe in the corresponding
stochastic plot (on Figure 1b) multiplied by ε = 0.01. On Figure 5c, we also
observe a cycling behavior, but the population goes periodically extinct (i.e the
population reaches exponentially small value, of order e1/ε), and then reborn.
On the stochastic model, it corresponds to what is illustrated in Figure 2. It is
not surprising that this behavior is difficult to observe on the stochastic model,
since very small populations are likely to go extinct.

On Figure 5d, we can see that the population goes completely extinct. The
most interesting case to comment is probably the ”partial” extinction seen on
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(a) Stabilization: τ0 = 0.02
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(b) Cycles: τ0 = 0.4
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(c) Cyclic extinction: τ0 = 0.9
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(d) Full extinction: τ0 = 1.2

Figure 5: Behavior of the population dynamics described by a PDE model for
ε = 0.01 as the mutation rate τ is changing, (br = dr = 1, σ = 1).

5c. Note that despite the fact that ρ remains at 0 for some time, the population
regrows. The point is that, as it was already mentioned above, this numerical
parameter has no 1:1 correspondence to the population size parameter Nt

K used
in stochastic model. Also note that similar behaviour of stochastic and HJ
model are reproduced under a bit different values of parameters. It is caused
by the rescaled time and mutation kernel, so that the rigorous link between two
models is still to be developed.

Another interesting thing to comment is that on Figure 5b we may notice
that, from the dynamics of the mean trait and the density of the population,
it is easy to estimate the periods of the system. Indeed, since the system is
deterministic, we just have to compute the distances between local maxima
on each curve. For the stochastic system this task is more difficult, especially
for a small population, because it includes filtering problem of a noisy signal.
To get more accurate results in stochastic model we have to increase the time
scale and number of individuals, which is costly from computational point of
view. However, if our goal is to study numerically the lineages which lead to
the evolutionary rescue of the population, it is still more straightforward to use
the individual-based model.

To finish with, let us give some flavor on the computational cost of the
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simulations for each type. In Table 1 we give a short overview of the elapsed
time for the same values of parameters, but for different schemes. As expected,
individual-based model is the most expensive to compute. All the computations
were performed in numpy library of Python on MacBook Pro (Intel Core i5
processor, 2,7GHz).

∆ = 0.1, T = 10 ∆ = 0.01, T = 10
SM (N = 1000) 3.883s 38.145s

SM (N = 10000) 15.805s 153.255s
PDE (ε = 1) 0.186s 1.673s

HJ (ε = 10−2) 0.191s 1.636s
HJ (ε = 10−6) 0.195s 1.656s

Table 1: Elapsed time for simulation of population dynamics for different models
(other parameters are fixed to values used throughout all the other simulations,
τ = 0.5).

2.4 Comparison of the theoretical analysis of the Hamilton-
Jacobi equation and the numerical simulations of the
stochastic model

2.4.1 Formal computations

In this section, we propose some formal computations on the stochastic model,
based on the analysis of the Hamilton-Jacobi equation performed in the previous
section. To fix ideas, we assume n = 1 and (3)-(12)-(13), and we fix all constants
but τ0, as in the previous section. However, we choose the function α as a
Heaviside function (this is what has been used in the simulations), which is not
a smooth function, and thus will lead to minor modifications compared to the
previous section.

We make a strong formal assumption: taking K � 1, we assume that the
population behaves like a normally distributed random variable all the time, i.e

νKt (dx) = ρ(t)
1√

2πs(t)
e
− |x−x̄(t)|2

2s(t)2 dx,

for some standard deviation s(t) and for x̄(t) defined in (9). We expect s(t)
to be of the same order as σ, but giving a general estimate for s(t) in function

of x̄(t) seems intricate. The normalized size of the population ρ(t) :=
NKt
K is

approximately given by (see (11))

ρ(t) =
1

C
r(x̄(t)), (34)

where r is defined in (18).
We now formally compute the evolutionary singular state x?. But as α is

a Heaviside function (which formally corresponds to the case when δ → 0 in
(19)), our derivations must be slightly adapted. In particular, τ(x− x̄(t)) in (8)
has to be replaced by ∫

R
τ(x− y)

νKt (dy)

ρ(t)
,
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and accordingly, recalling that the weak derivative of a Heaviside is a Dirac
mass at 0, τ ′(0) in (19) has to be replaced by∫

R
τ ′(x̄(t)− y)

ν(dy)

ρ(t)
=

2τ0√
2πs(t)

.

We find
x? =

τ0√
2πs?dr

, (35)

where s? is an unknown corresponding to the standard deviation of the popu-
lation at equilibrium concentrated at x = x?. Note that it corresponds to (19)
with δ̃ := s?

√
π/2.

We now try to estimate s?. Formally, s? should be such that u?(x) :=
−(x−x?)2

2s2?
is a stationary solution of (8). Differentiating twice, and applying at

x = x? we find
0 = brσ

2 (u′′?(x?))
2 − 2dr,

(with the reasonable assumption τ ′′(0) = 0), which gives

s? =

√
σ

√
br

2dr
.

Numerically, we find s? = 0.12. We end up with the following formula:

x? =
τ0√

2πσdr

4

√
2dr
br
. (36)

2.4.2 Stabilization

We run a numerical test on the stochastic model corresponding to stabilization,
for τ0 = 0.02, and the other parameters as in Figure (1a). In this case, x?
correspond to the mean trait of the population for large time. From, (36) we
find x? = 0.067, and from (34), we obtain ρ? = 1.99, which corresponds to what
we can see on Figure (1a).

2.4.3 Threshold for cycles

Since equation (20) remains unchanged, we obtain the following threshold for
cycles (corresponding to (21)):

τcyc = 2πdrσ

√
br

2dr
.

With our choice of parameters, we obtain τcyc = 0.09. This threshold corre-
sponds to the numerical simulations (however, characterizing precisely whether
cycles occurs or not on the numerical simulations is not easy when τ0 is close to
the threshold).
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2.4.4 Threshold for extinction

Using (22), we can also find a threshold for extinction:

τext :=
√

2πbrdrσ
4

√
br

2dr
.

For our choice of parameters, we obtain τext = 0.30.
We now compare this formula with numerical experiments on the individual-

based model. They are organized as follows: we fix the birth br or the death
rate dr, and save the first value of τ0 under which the extinction occurs. Then,
we increase the rate and save the next HT rate under which we have an extinc-
tion. Resulting curve for the birth rate is saved on Figure 6a (for death rate:
Figure 6b). Non-concerned parameters remain fixed as in Subsection 2.1.

The numerical results, in particular, justify at the first glance surprising fact
that the extinction threshold depends on the birth and death rate in the same
manner. It seems logical to assume that while the higher birth rate contributes
to a bigger survival probability even with a relatively big horizontal transfer
rate, higher death rate must have an opposite effect. However, in conditions of
a very ”harsh” environment individuals with non-fit traits die out before they
manage to transfer their genetic information to the other individuals. As a
consequence, value of the critical τ increases as the value of the birth (or death)
rate constant increases.

(a) Birth dependency (b) Death dependency

Figure 6: Dependency on the threshold for extinction τext with respect to the
birth rate br and death rate dr

Conclusions

First achievement of the paper consists in an accurate numerical study con-
ducted on the stochastic model given by a point measure (1). To the best of our
knowledge, in-depth analysis of the influence of the HT rate on the evolutionary
dynamics has not been yet attempted. Along with its accuracy, the stochastic
model reveals its limitation: an accurate theoretical description of what actually
happens in each observed scenario from a mathematical point of view seems to
be out of reach. However, we show that this model can be used for tracing back
the lineage of the survived individuals through several generations.
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On the next step, in a numerical comparative study between the stochastic
(individual based) and the PDE (density) model both models exhibit the same
behavior for a given set of parameters, which justifies theoretical results from
Billiard et al. (2018, 2015). Minor differences (in particular, the presence of
damping oscillations) can be explained by a choice of a numerical scheme. How-
ever, further analysis shows that the classical PDE model defined by (1.2) leads
to instabilities if we try to pass to an asymptotic setting under the small mu-
tation assumption. Those instabilities are then resolved by a transformation of
an initial model to a Hamilton-Jacobi type equation and using an asymptotic-
preserving scheme. Further advantage of this approach is that the resulting
equation (7) makes an easier subject of a theoretical analysis.

Finally, in a Hamilton-Jacobi setting we manage to numerically replicate
the evolutionary rescue of a small population which we observe in the stochas-
tic model. This phenomena is illustrated for stochastic, PDE and HJ simulation
on Figure 7. On Figures 7a-7c we trace the moment of the regrowth for different
models. Figure 7a show the state of the population at certain moment of time:
we see how the individuals are centered around a mean trait. For PDE and
HJ model (red and green line respectively) we simply plot the density function,
and on the first (blue) plot we approximate a histogram which describes ratio
Nt
K sorted by traits in stochastic model. Stochastic simulations show the evo-
lutionary rescue in more distinct manner: we see how the very small number
of non-mutated individuals rescues the whole population from extinction (tran-
sition from 7b to 7c). On the contrary, the transition on the PDE model is
dumped, and the regrowth is not clearly visible. It is due to, again, numerical
instability of the PDE scheme for small values of the density function. Finally,
HJ explicitly shows how the cycle occurs: the regrow of the ”fit” individuals
we see in stochastic plot is reproduced by a change of the maximum point (see
again 7b to 7c).

We highlight again that in order to compare the models on a more applied
level, we have to give a formal definition of a quantity represented by ρ in
a Hamilton-Jacobian case. In this work we have made few steps toward the
theoretical analysis of the limiting equation and an accurate description of each
event (evolutionary rescue, extinction, etc) in terms of solutions of a PDE.
Even though establishing a rigorous mathematical link between the behavior
observed in the individual-based model and the Hamilton-Jacobi equation is
out of scope of this project, obtained analytical results already give a flavor of
how the analysis of the evolutionary dynamics can be simplified in the future.
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(a) t = 167 (b) t = 198

(c) t = 216

Figure 7: Comparison of numerical simulations between the different models.
τ0 = 0.4, ε = 0.1, δ = 0.001 and other parameters as in Figure 1. Blue line
stands for the stochastic model, red line: for a PDE, green — for a Hamilton-
Jacobi PDE

References

Achdou, Y., Barles, G., Ishii, H., and Litvinov, G. L. (2013). Hamilton-Jacobi
equations: approximations, numerical analysis and applications, volume 2074
of Lecture Notes in Mathematics. Springer, Heidelberg; Fondazione C.I.M.E.,
Florence. Lecture Notes from the CIME Summer School held in Cetraro,
August 29–September 3, 2011, Edited by Paola Loreti and Nicoletta Anna
Tchou, Fondazione CIME/CIME Foundation Subseries.

Arenas, M. and Posada, D. (2010). Coalescent simulation of intracodon recom-
bination. Genetics, 184(2):429–437.

Arenas, M. and Posada, D. (2014). Simulation of genome-wide evolution un-
der heterogeneous substitution models and complex multispecies coalescent
histories. Molecular Biology and Evolution, 31(5):1295–1301.

Barles, G. (1994). “Solutions de viscosité des équations de Hamilton-Jacobi”.
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