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We present experiments and numerical simulations
of hypervelocity impacts of 0.5 mm steel spheres into
graphite, for velocities ranging between 1100 and
4500 m s−1. Experiments have evidenced that, after
a particular striking velocity, depth of penetration
no longer increases but decreases. Moreover, the
projectile is observed to be trapped below the crater
surface. Using numerical simulations, we show
how this experimental result can be related to both
materials, yield strength. A Johnson–Cook model
is developed for the steel projectile, based on the
literature data. A simple model is proposed for
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on the first principal stress as a tensile failure
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strain reaches a maximum value. We show that the
experimental crater diameter is directly related to
the graphite spall strength. Uncertainties on the
target yield stress and failure strength are estimated.
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This article is part of the themed issue ‘Experimental testing and modelling of brittle
materials at high strain rates’.

1. Introduction
The dynamic behaviour of composite materials under hypervelocity impacts (HVI) is a major
concern for the aerospace industry, and a challenging problem for simulation [1–6]. The range
of materials exposed to HVI continuously increases. Metals have been widely studied, both
experimentally [7] and using hydrocodes [8]. Owing to their low density and high mechanical
properties, composite materials are now more and more used in the aerospace industry. For
instance, the behaviour of composites with carbon components has been examined under
HVI [9,10]. Thus, in order to improve the predictive capabilities of hydrodynamic simulations
for such materials, HVI studies on graphite are of particular interest. Published experimental
results give crater dimensions in porous graphite for a large variety of projectile materials
and velocities [11]. However, it has been shown that in the case of a steel sphere projectile,
it remains buried below the surface of the crater [12]. For the highest velocities, i.e. above
4000 m s−1, hydrodynamic simulations have been used to explain this behaviour, likely related
to the damage and rupture process in graphite [12]. More recent results have been obtained at
lower velocities, down to 1200 m s−1, which show that the projectile penetration depth (PPD)
follows a non-monotonic evolution, where the plasticity and rupture of the steel sphere are
expected to play a major role [13]. Similar experimental results showing a decrease in penetration
depth after a particular striking velocity have also been shown for spherical-nose steel projectiles
striking aluminium targets by Forrestal and Piekutowki, emphasizing the effect of the projectile
strength [14].

Indeed, this has been confirmed by hydrodynamic simulations [15] where a specific procedure
was used to estimate the mechanical properties of the projectile and the target. This procedure
allowed a first evaluation of the pressure-dependent yield stress of graphite, but owing to the
simplicity of the plasticity model for the steel projectile (perfect plasticity with constant yield
strength), its precision was questionable.

The purpose of this work is:

— to improve the accuracy of the simulations by using a more complex plasticity model
for steel, which will help us to estimate the uncertainties on the graphite yield stress
determined by our procedure and

— to propose a simple failure model for the graphite target, allowing the simulations to
reproduce the experimental crater diameter and the size of damaged material.

The experiments and numerical tools are described in §2. Then, answers to the two objectives
listed above are provided in §3, where simulation results are presented and compared with
experiments.

2. Material and methods

(a) Experiments
Cratering experiments have been conducted with 0.5 mm diameter AISI 52100 steel spherical
projectiles (hardened in the range 60–65 HRC) and 30 mm diameter, 15 mm long graphite targets.
This graphite, named EDM3, is a commercial grade from the POCO company www.poco.com)
and is macroscopically isotropic with a 1754 kg m−3 density. The main mechanical characteristics
of EDM3 are summarized in table 1, and its behaviour under confined (oedometric) compression
is illustrated in figure 1. More details can be found in [12,13,15,16] and at www.poco.com.

www.poco.com
www.poco.com
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Figure 1. Experimental behaviour of EDM3 under simple (dashed line) and cycled (solid line) oedometric compression tests.

Table 1. Mechanical characteristics of EDM3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density (kg m−3) porous 1754
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compact 2265
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Young modulus (GPa) tension 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compression 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

failure stress (MPa) tension 70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compression 140
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

failure strain (%) tension 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compression 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bulk modulus (GPa) 9.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson ratio 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

porosity (%) 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Projectiles were launched by MICA, a two-stage light-gas gun [12], at velocities ranging
between 1100 and 4500 m s−1. They orthogonally impacted the cylindrical graphite targets,
creating a crater on the front surface. Post-test tomographies revealed that, in most cases,
the projectile remains are buried into the sample (cf. figure 2a). Figure 2 shows the main
dimensions such as diameter, depth and volume of the apparent crater and the maximum depth
of the projectile. All details concerning the shot characteristics and the dimensions are given
elsewhere [13]. The main data are recalled in table 2, and we just provide here a summary of
the observations:

— in the first regime, called R1, and which corresponds to impact velocities below
2000 m s−1, the projectile remains roughly spherical and its penetration depth linearly
increases with impact velocity;

— at higher impact velocities, a second regime (R2) corresponds to plastic deformation of
the projectile (with beginning of damage as shown in figure 2c), associated with a strong
and continuous decrease of the penetration depth as impact velocity increases; and

— for impact velocities exceeding approximately 3200 m s−1, projectile fragmentation is
observed and its penetration depth is almost constant (regime R3).
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Figure 2. Slice from the post-test tomography (3.5µm per px) of a MICA shot at 2685 m s−1, corresponding to regime R2.
(a) Black: empty spaces (crater, cracks); grey: EDM3 graphite; white: steel from projectile (coming from the left), showing strong
deformation. (b) Magnified view of the damaged zone along the projectile path. (c) Magnified view of the projectile with
grey rescaling, suggesting incipient cracking.

The succession of these three regimes suggests that the PPD is strongly related to the projectile
dynamic behaviour, and not only to the target one. The crater diameter has also been measured.
Contrary to the PPD, its evolution with impact velocity is monotonic, and no obvious distinction
between different regimes could be made.

We now present the numerical tools that we have used to interpret these experimental results.

(b) Numerical tools
(i) Hydrocode

Simulations have been made with the Eulerian hydrocode Hesione developed at CEA. This code
solves multi-material flow equations on a two-dimensional Cartesian grid with axial symmetry,
using the BBC numerical scheme [17]. In this study, the mesh size was 12.5 µm, and we checked
that the simulation results (projectile deformation, PPD, crater width, extension of damaged zone)
were not sensitive to further mesh refinement. The Hesione code solves the three conservation
equations (mass, momentum and energy) where stress tensor σ is split into two parts: σ = −PI +
S, where I is the identity matrix, P is the pressure (or hydrostatic stress) and S is the deviatoric

stress tensor, such as tr(S) = 0.

— The pressure P is calculated by means of an equation of state (EOS).

— The deviatoric stress tensor S is computed by an incremental constitutive relation

and limited by a Von Mises criterion:
√

(3/2) S : S ≤ Y, where Y denotes the yield
stress and may be a function of other local variables, such as strain, strain rate or



Table 2. Main characteristics and dimensions for shots on EDM3. Dimensionless sizes are calculated with the initial projectile
diameter dp and volume vp.

dimensionless sizes
shot
number

proj.
velocity
(m s−1)

crater
depth pc
(mm)

crater diam.
dmoy (mm)

crater vol.
vc (mm3)

proj. depth
pb (mm) pc/dp dc/dp pb/dp vc/vp

02_12 1168 0.26 0.96 0.05 2.53 0.52 1.92 5.06 0.76
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03_12 1695 0.40 1.28 0.15 4.02 0.8 2.56 8.04 2.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

01_12 1753 0.38 1.2 0.11 4.07 0.76 2.4 8.14 1.68
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68_13 1872 0.43 1.375 0.21 4.36 0.86 2.75 8.72 3.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70_13 2445 0.54 1.69 0.33 4.52 1.08 3.38 9.04 5.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

72_13 2685 0.74 1.86 0.59 4.22 1.48 3.72 8.44 9.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71_13 2856 0.94 2.065 0.71 3.84 1.88 4.13 7.68 10.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38_09 3072 1.29 3.21 3.43 0 2.58 6.42 0.00 52.41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

120_12 3446 1.34 3.155 3.68 2.59 2.68 6.31 5.18 56.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41_09 3788 0.94 2.94 2.8 0 1.88 5.88 0.00 42.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41_01 3895 1.42 3.42 3.6 2.62 2.84 6.84 5.24 55.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38_01 4003 1.46 3.37 3.9 2.75 2.92 6.74 5.50 59.59
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39_09 4348 1.42 3.64 5.16 2.28 2.84 7.28 4.56 78.84
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21_01 4512 1.85 3.945 6.3 2.31 3.7 7.89 4.62 96.26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pressure or temperature. In the principal system, the extreme deviatoric stresses are
Smax = max(Si)i = 1,3 and Smin = min(Si)i = 1,3.

Damage can be included in the simulations. For each material, a criterion is specified. If one
criterion is exceeded in a mesh, then a cavitation algorithm relaxes pressure and stresses to zero,
and sets a damage variable to 1. This variable, wherever equal to 1, sets the material tensile
strength to zero.

(ii) Material models

Steel

The projectile EOS is described with the 4272 SESAME table of stainless steel. A lack of
knowledge persists for its constitutive relations. Indeed, the very small size of the steel spheres
(500 µm) strongly limits the possibility of elementary dynamic testing. In a previous study [15],
we have shown that an effective elastic limit Yst around 3 GPa allows one to reproduce the
transition between regimes R1 and R2. This high value is consistent with the high hardness
required for bearings [18]. However, it was obtained by using the simplest plasticity model,
assuming a constant yield stress (elastic perfectly plastic (EPP) model). However, it can be
found in the literature that the real behaviour of this kind of steel is more complex, because it
exhibits temperature, strain hardening and strain rate dependence [19]. For more accuracy in the
simulations, an improved model is required that includes all these effects. In this work, we choose
the Johnson–Cook (JC) model [20], recalled in the following equation:

Yst = [A + Bεn][1 + C log ε̇∗][1 − T∗m], (2.1)

with ε̇∗ = max(ε̇, ε̇0)/ε̇0 and T∗ = min(max(0, (T − T0)/(Tm − T0)), 1), and where T0 denotes room
temperature, and ε̇0 = 1 s−1 is a normalization strain rate. We have identified the JC coefficients
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Figure 3. Comparison of our JCmodelwith [19]. (a) Strain rate dependence of theflow stress for three values of plastic strain. (b)
Strain dependence at constant strain rate of 105 s−1. (c) Temperature dependence of the flow stress. (Online version in colour.)

Table 3. Coefficients of the JC model for steel.

A (MPa) B (MPa) n C (MPa) Tm (°C) m G (GPa)

200 2000 0.083 0.03 1200 1.5 80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

corresponding to our steel sphere by fitting the JC model to data published in the literature [19]
(assuming a hardness of 65 HRC). Note that [19] does not present experimental data for the
constitutive steel of projectile with a hardness of 65 HRC, but uses various data to provide
a simple model to extrapolate mechanical properties from the reference hardness to other
hardnesses. Our coefficients are listed in table 3.

A comparison of our steel model with the original data from [19] is presented in figure 3. It
can be seen that our JC model is satisfactory for strain rates above 10 s−1 (figure 3a). We show
in §3 that the strain rates in our simulations will be much above this value. As regards the
strain dependence, our JC model is very close to the original data of [19] for strains that do
not exceed 100% (figure 3b). An important feature in this JC model, when compared with the
effective value of 3 GPa previously identified, is the relatively low value of 200 MPa for the initial
yield stress (i.e. at small strains and small strain rates). However, we note that this feature is in
accordance with [19]. The effect of this difference on the simulations is presented and discussed in
the following sections. Finally, we note in figure 3c that the real temperature dependence is more
complex than what the JC model allows: our fitting of parameters m and Tm only provides a
correct average behaviour of the thermal softening factor, and the resulting parameter Tm should



not be regarded as a true melting temperature, but rather as the temperature above which strength
can be neglected.

Concerning damage, [19] uses a complex criterion in which the principal and hydrostatic
stress play a role. It is not implemented in Hesione, but we used it to post-process a simulation
of dynamic spalling (tensile failure under uniaxial strain): the resulting spall stress was above
15 GPa, which is much above usual data [21]. The explanation is probably that this model, well
adapted to simulate cutting tools, is not valid for dynamic loading. In this paper, a simpler model
is used, and the rupture of the projectile is taken into account via a tensile failure criterion based
on a constant spall strength Σst, i.e. failure occurs when the first principal stress exceeds this
threshold. Following [15], we take Σst = 6 GPa, a value that lies in the upper range of published
data [21].

Graphite

The behaviour of EDM3 is described with the POREQST model [22], which supplies EOS and
constitutive relations for porous materials. In the original model, the behaviour of dense material
is described by a Mie–Grüneisen EOS. The following equation links the pressure Ps to the density
ρ and the internal energy e:

Ps(ρ, e) = Ks

(
ρ

ρs
− 1

) [
1 − Γ

2

(
ρ

ρs
− 1

)]
+ Γρe, (2.2)

where ρs is the density of the dense material at zero pressure and energy, Ks its bulk modulus and
Γ is the Grüneisen coefficient. The shear modulus Gs and yield strength Ys of the solid material
are described with the following relations:

Ys(P, e) = Yg(P)f (e) (2.3a)

and
Gs(P, e) = Gg(P)f (e), (2.3b)

where f is a linear softening function decreasing from 1 to 0 when the internal energy e goes from
0 to the melting energy. Yg ang Gg are functions of pressure, defined by linear interpolation from a
set of specified values. More precisely, if {Pk;Yk}k = 1,N is the set of N values for the yield strength,
with N > 1, the function Yg is defined as follows (similar relations hold for Gg):

P < P1 Y(P) ⇒ Y1,

Pk < P < Pk+1 Yg(P) ⇒ Yk + (P − Pk)
Yk+1 − Yk

Pk+1 − Pk

and PN < P Y(P) ⇒ YN.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.4)

We note that, associated with the Von–Mises yield criterion, this piecewise linear pressure
dependence can be considered as an extension of the Drucker–Prager model.

In order to take the effect of porosity into account, the POREQST model uses intermediate
surfaces defined by their density ρi at zero pressure and energy (with ρi < ρs) and also described
by Mie–Grüneisen EOS

Pi(ρ, e, ρi) = Ki

(
ρTf

ρi
− 1

)
with

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Tf = 1 + Γ ρse
Ks

Ki = Ksf (e)
αi + L1(αi − 1)

L1 = Ks/K0 − α0

α0 − 1
,

(2.5)

where ρ0 and K0 are the density and bulk modulus of the initial porous material, αi = ρs/ρi and
α0 = ρs/ρ0. Note that this model implies that the dilatation coefficient at zero pressure is the same



Figure 4. Algorithm of POREQST.

whatever the intermediate surface. On these intermediate surfaces, the yield stress and the shear
modulus are defined as follows:

Yi(ρ, P, e, ρi) = Yg(P)f (e)
αi + L2(αi − 1)

with L2 = Yg(P)/Y0 − α0

α0 − 1
(2.6a)

and

Gi(ρ, P, e, ρi) = Gg(P)f (e)
αi + L3(αi − 1)

with L3 = Gg(P)/G0 − α0

α0 − 1
, (2.6b)

where Y0 and G0 are the yield stress and the shear modulus of the initial porous material.
The intermediate porous surfaces are limited in compression by the so-called compaction

surface
σc(ρ, e) = Σc(ρ)f (e), (2.7)

where Σc(ρ) results from experimental data of a static uniaxial strain test in compression of the
healthy porous material such as displayed in figure 1 (dashed line).

In traction, the limitation of the intermediate surface is undertaken by a pore re-opening curve
whose intersect at zero energy with the dense material surface occurs at (ρl; −Pl)

σo(ρ, e) = −Pl
ρ

ρl
f (e). (2.8)

Finally, in order to establish what value of pressure the code must use, it is necessary to perform a
series of tests, as shown in figure 4. The schematic in figure 5 presents a typical loading–unloading
path (dashed arrow): first, the behaviour of initial porous material is described by an elastic
surface; then, compaction occurs until unloading, which makes the pressure decrease elastically
on an intermediate surface; if material is put under tension, it follows the same intermediate
surface down to the pore re-opening surface.
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Figure 5. Schematic of the POREQST model in zero internal energy plane.

Table 4. Pressure dependence of the shear modulus of graphite.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P (GPa) 0 18 27.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gg (GPa) 20 50 280
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Pressure dependence of two strength models for graphite.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P (GPa) 0 25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yg1 (GPa) 0.1 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P (GPa) 0 0.5 25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yg2 (GPa) 0.09 0.09 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparison of figures 1 and 5 shows that this model is very close to the actual behaviour of
EDM3 in compression. However, a difference in tension is to be noted: the POREQST model leads
to permanent densification after a loading–unloading path (dashed arrow in figure 5), whereas
the actual material seems to recover almost its initial density. The consequence of this on the
simulation results is discussed later.

We now present the input parameters of the porous graphite model. Standard mechanical
properties of EDM3 such as elastic moduli are used for K0 and G0. A static compression curve
measured in confined tests (dashed line on figure 1) is used to model compaction. Dense graphite
EOS is described with the 7832 SESAME table, which includes a description of the graphite–
diamond phase transition above 20 GPa. It has been validated in laser [23] and plate impact
experiments [24], where compaction is the very dominant feature. The shear modulus of dense
graphite Gg is given in table 4. It has been adjusted to reproduce to sound velocity measurements
under shock experiments. The simulations of these one-dimensional experiments are not sensitive
to the yield stress of the material, which remains essentially unknown.

As regards constitutive relations, we chose an EPP model, but allowing a dependence with
pressure. Two sets of values are used. They are referred to as Yg1 and Yg2, and the corresponding
values are recalled in table 5. Yg1 has been proposed in a previous paper [15]. The second set of
parameters (Yg2) corresponds to a slight reduction of Yg1, mainly at low pressures corresponding
to the first part of compaction (cf. figure 1).



Concerning damage we use a simple tensile failure criterion, considering that the material
breaks instantaneously when tension exceeds the so-called pore re-opening curve defined by
the parameter Pl (cf. figure 5). Our model also includes an additional damage criterion based
on effective plastic strain: above a specified threshold εg, the material loses its tensile strength,
i.e. Pl is numerically set to zero in the corresponding cells. However, we do not consider here
any retroaction of this criterion on the elastic–plastic compressive behaviour. Identification of
parameters Pl and εg is presented in §3d. The study of crater diameters will lead us to use values
for Pl between 200 and 140 MPa. The latter value is consistent with spall signals recorded on laser-
driven shock experiments [25], and we note that it is twice as high as the static value given in
table 1, which is probably owing to dynamic effects. A precise fitting of εg is less straightforward.
No static value of this parameter being available, our choice was to allow a large variation of
εg in order to emphasize its effect on the simulations. We thus let this parameter vary from 10%
to 50%.

3. Simulation results and discussion

(a) Projectile spall strength
Results of simulations made with our steel model defined in §2b(ii) are presented in figure 6 along
with experimental data. The simulations predict no damage at lower impact velocity (regime R1
and beginning of regime R2) and a complete rupture of the projectile at high impact velocities
(regime R3). Between these two extreme behaviours, detailed analysis of the simulations shows
that failure of the projectile occurs for impact velocities between 2900 and 3000 m s−1. This
threshold is slightly below the transition between R2 and R3 (approx. 3200 m s−1) where the
projectile fragmentation is observed in experiments, and slightly above the velocity (2685 m s−1)
at which incipient damage begins, as suggested in figure 2c.

Considering the simplicity of our failure model for the steel sphere, this agreement is
satisfactory.

(b) Projectile yield strength
Below 2000 m s−1 (regime R1), the JC model leads to little deformation of the projectile, which
remains roughly spherical (cf. figure 6). Such behaviour with EPP model required the use of a
relatively high yield stress Yst = 3 GPa [15]. As regards our JC model, for which the initial yield
stress is much lower than 3 GPa, this result is due to the strain and strain rate dependence. For
instance, simulations at 2000 m s−1 indicate that a thin (less than 40 µm) hardened layer with
strains above 10%, associated with a bulk hardening owing to strain rates (more than 106 s−1)
generates sufficiently high yield stress (more than 2 GPa) to roughly preserve the spherical shape
of the projectile. Thus, these simulations can be regarded as a validation of our JC model under
loading conditions corresponding to regime R1.

At higher impact velocities (regime R2), simulations overestimate slightly the projectile
deformation. Several reasons may explain this excessively ‘soft’ behaviour of our JC model. First,
strain rates almost reach 107 s−1 for impact velocities of 3000 m s−1, and this probably exceeds the
range of validity of the data on which our JC model is fitted. Second, we know that our JC model
underestimates the yield stress when plastic strains exceed 100%: this concerns a larger part of
the projectile as impact velocity increases. Finally, the excessive plastic strain gives rise to high
temperatures, also reducing the yield strength via the thermal softening factor.

Further improvement of the steel model may thus be possible, and we consider that our
experimental data can provide useful information at higher strain rates than available, i.e. in the
range from 105 to 107 s−1. Indeed, the possibility of recovering the projectile inside the graphite
target and the determination of its final shapes with X-ray tomography make our experiments an
extrapolation of the well-known Taylor impact test [26] in the hypervelocity regime.
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Figure 6. Final shape of the projectile (coming from the left) for four impact velocities: reconstructions from tomographies are
in grey, simulation results are in a colour scale representing damage (blue for intact, red for fully damaged material). Because
the projectile remains symmetric, only half of the geometry is presented for regimes R1 and R2. (Online version in colour.)
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(c) Graphite yield stress
The experimental and computed PPD are compared in figure 7 over a broad range of impact
velocities. Two models have been used in the simulations for the steel yield strength (EPP and JC),
and two models for the graphite yield strength (Yg1 and Yg2).

We first focus on the simulations with the graphite model Yg1. The JC and EPP models of steel
give very similar results, and quantitative agreement with experiments is observed in regime R1.
This is simply due to the fact that, as discussed in §3b, the projectile remains roughly spherical in
this regime even with the JC model. The PPD is thus directly related to the graphite yield stress.
Regime R2 is more complex, because plastic deformation of the projectile becomes important and
also plays a role in the PPD computation. This regime is thus where the sensitivity to the steel
model is expected to be the strongest. However, the JC model does not improve the simulation
results in this regime, and underestimates the experimental PPD. This may be partly due to the
fact that, as noted in §3b, our JC model predicts too much deformation in regime R2, causing an



excessive drag on the projectile. Another reason may come from the graphite yield strength. For
this reason, a second graphite model Yg2 has also been studied.

The simulations with Yg2 show the sensitivity of the PPD to a slight reduction of the graphite
yield stress. The slight increase of the simulated PPD may look like an improvement in the 1800–
3000 m s−1 velocity range, but the PPD is then overestimated at 1100 m s−1, where the steel sphere
remains spherical. Thus, we cannot really discriminate between both graphite models Yg1 and
Yg2. Moreover, the velocity corresponding to maximum PPD is the same with both graphite
models, suggesting that the main problem remains the steel model. Finally, we use mainly Yg1 in
the rest of this study.

As the main result, we observe that all simulations reproduce the non-monotonic behaviour
noted in experiments. Although two-dimensional axisymmetric simulations cannot reproduce
the three-dimensional aspects of projectile fragmentation observed in regime R3 (the simulations
overestimate the PPD), the comparison with experimental data is satisfactory and confirms
the validity of our phenomenological analysis. Finally, these results confirm the validity of the
procedure that allowed the identification of Yg1 in [15].

(d) Graphite damage model
In a first step, to study the tensile failure model of graphite (parameter Pl), we have imposed the
plastic threshold εg to 10%. Experimental results are presented in figure 8, along with simulations.
The strong sensitivity of the computed crater diameter to parameter Pl is illustrated in figure 8,
especially from the two simulations with the EPP model of steel, for which the best agreement
with all experimental data corresponds to Pl = 200 MPa. On the contrary, the simulation with
the JC model for steel would suggest to use the value Pl = 150 MPa in order to obtain similar
agreement with experimental data. If we focus now on the simulations with EPP and JC using this
value, then we note that the difference increases with impact velocity, and is already significant
at 2000 m s−1, which corresponds to the end of regime R1. This surprising result suggests that
even the small deformation allowed by the JC model in regime R1 could be responsible for the
difference. Thus, the confidence in the steel model seems crucial for the determination of Pl. Three
arguments are in favour of the simulations with the JC model:

— this model is fitted on physical data for this kind of steel (cf. §2b(ii));
— its behaviour in regime R1 is satisfactory (cf. §3b); and
— the value Pl = 150 MPa is closer to the spall stress of 135 MPa deduced from other

dynamic experiments [25].

The second notable result from figure 8 is that the simulated crater diameter shows very little
sensitivity to the graphite yield stress, i.e. Yg1 or Yg2. Thus, the coupled evaluation of damage
parameters Pl and εg will be done using Yg1.

Further simulations show that εg has also a notable effect. The evolution of the simulated crater
diameter with impact velocity is shown in figure 9, for two values of this parameter (10% and
50%). Comparison of both simulations with Pl = 150 MPa leads to significantly different results.
With εg = 50%, it is necessary to decrease Pl from 150 to 140 MPa in order to obtain a good
agreement with experimental data at high velocity. This result reveals that the sensitivity to Pl is
stronger for higher values of εg. Finally, these two values (140 and 150 MPa) may provide upper
and lower bounds of Pl.

To go further in the analysis of these results, we consider an impact at 2685 m s−1,
corresponding to the intermediate regime R2. The effect of εg on the simulated crater diameter
is illustrated in figure 10, with Pl = 150 MPa. It appears that the increase of εg from 10% to 50%
reduces the extent of the damaged zone.

Near the target surface, it also favours the propagation of a crack (owing to tensile failure)
parallel to the surface. A small reduction of Pl is then sufficient to make this crack emerge on
the target surface and thus contribute to the crater formation through the ejection of an annular
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fragment. This annular spalling is probably a real physical mechanism, because it would be
consistent with the experimental crater shape shown in figure 2a (corresponding to the same
impact velocity). The contribution of this crack is the main mechanism that explains the increase of
the simulated crater diameter in figure 9 when Pl is decreased from 150 to 140 MPa with εg = 50%.

It appears from comparison with figure 2b that simulations with both values of εg overestimate
the radial extension of the damaged zone along the projectile path. However, the simulations
show strong densification of the intact material surrounding the damaged zone. The real material
does not undergo such permanent densification because of the hysteresis behaviour shown
in figure 1. The expected resulting movement is indicated in figure 10 with yellow arrows.
Introducing this behaviour in the simulations is not possible with POREQST, but an evolution
of this model has been proposed to take this into account [27]. We expect that it will help the
simulations to allow more quantitative comparison with experimental observations, especially
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the crater closure on the projectile path. We also observe that in the neighbourhood of the
projectile, the increase of εg significantly reduces the extent of the damaged zone.

Finally, we note that the failure model of graphite has only minor influence on the PPD. Indeed,
the main parameter acting on the PPD is the yield strength, which, in our model, is not modified
by damage. Thus, the values of Pl and εg considered here have negligible effect on the simulations
presented in §3c.

4. Conclusion
We have shown in this paper how HVIs of a steel sphere on porous graphite targets can provide
useful experimental data for the modelling of both materials under dynamic loading. Post-
test tomography of the recovered targets allowed a precise characterization of the projectile
deformation and rupture, of its penetration depth inside the target and of the resulting crater
diameter.

As regards the steel projectile, a JC model has been fitted on data from the literature.
This model is found to be in good agreement with our experiments for impact velocities
below 2000 m s−1, because it predicts only minor deformation of the projectile. At higher
impact velocities, this model slightly overestimates the projectile deformation. The high strains
(approx. 1) and strain rates (105–107 s−1) encountered in our experiments could be useful
for further improvement of the steel model under these loading conditions. The simulations
presented here have been made with a tensile failure threshold of 6 GPa, giving reasonable
agreement with experiments.

As regards the graphite yield stress, the simulations presented here confirm the validity
of the phenomenological analysis and of the procedure [15] that allowed the identification of
this important mechanical property. With these models, our simulations reproduce the non-
monotonic evolution of the PPD noted in experiments and suggest that the uncertainty associated
to the determination of the graphite yield stress may not exceed 10%. Moreover, we have shown
how the evolution of the experimental crater diameter with impact velocity can be used to
constrain the damage model of our porous graphite with uncertainty lower than 10%. More
precisely, its tensile strength has been identified to lie between 140 and 150 MPa, a value close to
the spall stress deduced from other dynamic experiments [25], but almost twice the static value.
Finally, the estimation of an ultimate strain in compression appears to be less straightforward.
Improvement of the porous model in order to take the hysteresis into account, and further analysis
of the damaged zone in the samples may help to estimate this parameter in future work.
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