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ABSTRACT 

Background and Purpose- Chronic administration of medication can have an important impact on 

metabolic enzymes leading to physiological adaptations. Morphine metabolism in the liver has been 

extensively studied following acute morphine treatment but morphine metabolic processes in the 

central nervous system are poorly characterised. Long-term morphine treatment is limited by the 

development of tolerance, resulting in a decrease of its analgesic effect. Whether or not morphine 

analgesic tolerance affects in vivo brain morphine metabolism and blood-brain barrier (BBB) 

permeability remains a major pending question. Thus, our aim was to characterise the in vivo 

metabolism and BBB permeability of morphine after long-term treatment at both central and 

peripheral levels. 

Experimental Approach- Mice were injected with morphine or saline solution for 8 consecutive 

days in order to induce morphine analgesic tolerance. On the ninth day, both groups received a final 

injection of morphine (85%) and d3-morphine (morphine bearing three 2H; 15%, w/w). Mice were 

then euthanized and blood, urine, brain and liver samples were collected. LC-MS/MS was used to 

quantify morphine, its metabolite morphine-3-glucuronide (M3G) and their respective d3-labelled 

counterparts.  
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Key Results and conclusions- We found no significant differences in morphine CNS uptake and 

metabolism between control and tolerant mice. This suggests that morphine analgesic tolerance is not 

linked to an increase of morphine glucuronidation into M3G or an alteration of the drug’s global BBB 

permeability. Interestingly, d3-morphine metabolism was decreased compared to morphine without 

any interference with our study.  

 

KEYWORDS- Deuterated morphine, stable isotope, metabolism, mass spectrometry, blood-brain 

barrier, morphine, morphine-3-glucuronide, UGT, morphine tolerance, mouse. 

 

ABBREVIATIONS - ACN, acetonitrile; BBB, blood-brain barrier; CID, collision gas; CNS, 

central nervous system; d3-morphine, morphine bearing three 2H; LC-MS/MS, liquid 

chromatography coupled to tandem mass spectrometry; LOD, limit of detection; MS, mass 

spectrometry; LOQ, limit of quantification; M3G, morphine-3-glucuronide; M6G, morphine-6-

glucuronide; MOR, mu opioid receptor; MPE, maximal possible effect; MRM, multiple reaction 

monitoring mode; KIE, kinetic isotope effect; SKIE, secondary kinetic isotope effect; TDM, 

therapeutic drug monitoring; UGT, UDP-glucuronosyl-transferase. 

 

INTRODUCTION  

Chronic administration of medication (Sweeney & Bromilow, 2006) such as anticancer drugs (Hu, 

Mackenzie, Lu, Meech & McKinnon, 2015), pain killers (codeine (Antonilli et al., 2012)), antibiotics 

(rifampin (Lee et al., 2006)) or antiepileptic drugs (phenobarbital (Sakakibara, Katoh, Kondo & 

Nadai, 2016)) can crucially impact metabolic enzymes and ultimately lead to physiological 

adaptations. Among painkillers, opiate metabolism in the liver has been extensively studied following 
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acute morphine treatment (Chau et al., 2014; Smith, 2009). Although morphine’s analgesic effect 

mainly involves central binding to the mu type of opioid receptors (MORs), its metabolism in the 

central nervous system (CNS) is poorly characterised (Laux-Biehlmann, Mouheiche, Veriepe & 

Goumon, 2013). Previous studies have demonstrated how long-term administration results in 

tolerance, i.e. a decrease in the analgesic effect of morphine (Williams et al., 2013). While progress 

has been made towards understanding the cellular basis of morphine analgesic tolerance (Williams et 

al., 2013), whether it affects in vivo morphine blood-brain barrier (BBB) permeability and CNS 

metabolism remains a major pending question (Chaves, Remiao, Cisterninoa & Decleves, 2017; 

Strazza et al., 2016; Yousif et al., 2008). Intriguingly, naloxone still induces hyperalgesia and 

precipitates withdrawal symptoms in both tolerant and dependent animals and patients (Morgan & 

Christie, 2011). This implies that a pool of MORs remains functional in such states. Thus, the 

possibility that chronic morphine treatment leads to tolerance through upregulation of central 

morphine catabolism and overproduction of its pro-algesic and pro-inflammatory metabolite 

morphine-3-glucuronide (M3G) (Lewis et al., 2010; Roeckel, Le Coz, Gaveriaux-Ruff & Simonin, 

2016) represents an interesting hypothesis. 

The major route of morphine metabolism is glucuronidation and relies on the UDP-glucuronosyl-

transferase (UGT) family of enzymes expressed in hepatocytes (Stone, Mackenzie, Galetin, Houston 

& Miners, 2003), neurons and glial cells of the CNS (King, Rios, Assouline & Tephly, 1999). In 

mice, UGT2B36 mainly converts morphine to M3G whereas morphine-6-glucuronide (M6G) is 

absent (Kuo, Hanioka, Hoshikawa, Oguri & Yoshimura, 1991; Milne, Nation & Somogyi, 1996; 

Oguri, Hanioka & Yoshimura, 1990; Xie et al., 2016; Zelcer et al., 2005). 

Monitoring morphine metabolism in chronic treatments represents a challenge due to the residual 

presence of precursors or metabolites from previous administrations (Rubovitch, Pick & Sarne, 2009). 

Chronic administration of a drug can also change drug pharmacokinetics. Furthermore, alterations of 
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brain metabolism cannot be distinguished from peripheral metabolism or a change in blood-brain 

barrier (BBB) permeability. Molecules labelled with stable isotopes have been used for decades, in 

both animals and humans, to study drug pharmacokinetic differences induced by chronic treatments 

(for review: (Mutlib, 2008; Schellekens, Stellaard, Woerdenbag, Frijlink & Kosterink, 2011). As an 

example, in neonates under maintenance therapy, labelled phenobarbital and phenytoin were used to 

determine clearance, half-life and volume of distribution of the drugs without interference with the 

ongoing therapy (Malik, Painter, Venkataramanan & Alvin, 2003).  

The present study uses stable isotope-labelled morphine to study morphine BBB permeability and 

metabolism after morphine chronic treatment. We show that morphine analgesic tolerance is not 

linked to metabolic changes or alterations in the drug’s overall blood-brain barrier permeability.  

 
 

METHODS 

Experimental design 

Studies are reported following the ARRIVE Guidelines for reporting experiments involving animals 

(McGrath, Drummond, McLachlan, Kilkenny & Wainwright, 2010). Experiments were carried out 

in a randomised and blind manner, and statistical analyses were done in a manner blind to treatment. 

At least three technical replicates were used for in vitro experiments. Mice were assigned an identity 

number and assigned to groups randomly so that the experimenter was blind to treatment when 

performing behavioural assays. We chose to use ten animals per group to ensure sufficient statistical 

power while reducing the number of animals as much as possible. Because morphine analgesia and 

analgesic tolerance have been shown to differ between males and female animals (Loyd & Murphy, 

2014), and to avoid using too many animals by doing all experiments on both sexes, we chose to only 

use male mice.. 
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Animals 

All procedures were performed in accordance with European directives (86/609/EEC) and were 

approved by the regional ethics committee and the French Ministry of Agriculture (license No. 

00456.02 to Y.G.). Experiments were performed with 45 day-old adult male C57BL/6 mice weighing 

24 ± 3g (Charles River, L’Arbresle, France). In each group, equal numbers of male mice were used. 

Animals were given free access to food and water (autoclaved tap water), with a 12h light–dark cycle 

at a temperature of 22°C ± 2°C. Cage bedding was from Anibed (Pontvallain, France; reference AB3) 

and food from SAFE (Augy, France; reference A04). Mice were kept group-housed at 5 per cage 

(Type II cage, 370cm2, height 14cm). Mice were habituated to their experimental environment and 

handled for one week before starting the experiments. Particular efforts were made to minimise the 

number of mice and the pain they experienced. Behavioural tests were performed blind to treatment.  

 

Acute Morphine and d3-Morphine Injection 

All intraperitoneal (i.p.) injections of morphine and d3-morphine were performed in the morning 

(light phase at 10AM). Mice were weighed and then i.p. injected with 10mg/kg morphine 

(Euromedex, Souffelweyersheim, France) or pure d3-morphine ((5a, 6a)-7,8-didehydro-4,5-epoxy-

17-(methyl-d3) morphinane-3,6-diol; Alsachim, Illkirch Graffenstaden, France) diluted in NaCl 0.9% 

(w/v). Mice were euthanized 90 min later (see below).  

 

Tolerance Induction and d3-Morphine Injection 
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Mice were injected (i.p.) with 10 mg/kg of morphine diluted in NaCl 0.9% (w/v), or an equivalent 

volume of saline for 8 consecutive days (Singh, Jain & Kulkarni, 2003). On the ninth day, both groups 

received a final injection of 10mg/kg of morphine (85%) and d3-morphine (15%, w/w; Fig. 1a). As 

additional controls for tolerance induction, two other groups of mice received only chronic morphine 

or chronic saline for 9 consecutive days. Because our objectives were to determine if morphine central 

glucuronidation and BBB permeability were affected, mice were euthanised 90 min after the last 

injection (see the section “Tissues, Plasma and Urine Recovery”). This 90 min time point has been 

chosen because it represents a good compromise between morphine’s half life in the blood and in the 

CNS of mice (Dalesio et al., 2016; Webster, Shuster & Eleftheriou, 1976; Xie, Bouw & Hammarlund-

Udenaes, 2000) 

 

Nociception Assays 

Tolerance development was assessed every day 30 min after each injection. Mice were placed on a 

hot plate (Bioseb, Vitrolles, France) set at 54°C for the measurement of heat nociceptive responses. 

Latency before the first sign of hind paw discomfort (hind paw licking or jumping) was recorded with 

a 30 s cut-off. Prior to morphine or saline injections, a baseline response latency was obtained for 

each mouse. Data are expressed as % maximal possible effect (% MPE) according to the following 

formula: 

% 𝑀𝑃𝐸 ൌ
ሺ𝑡𝑒𝑠𝑡 𝑙𝑎𝑡𝑒𝑛𝑐𝑦ሻ െ ሺ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦ሻ

ሺ𝑐𝑢𝑡 െ 𝑜𝑓𝑓 𝑙𝑎𝑡𝑒𝑛𝑐𝑦ሻ െ ሺ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦ሻ
ൈ 100 

 

Tissues, Plasma and Urine Recovery 
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Mice were anesthetized with ketamine/xylazine (ketamine: 17 mg/mL, i.p., xylazine: 2.5 mg/mL, 

i.p., 4 mL/kg; Centravet, Taden, France). Proper anaesthesia was ensured by pinching the hind paws 

with tweezers and observing no motor response. Blood was obtained by the intracardiac route using 

heparinized syringes (0.5 ml; 22Gx1½ needle). Plasma was prepared from blood recovered in lithium-

heparin tubes (BD, ref 367526) by centrifugation at 1,300g for 15 min. After decapitation, 

intrabladder puncture was used to recover urine (22Gx1½ needle) and stored into low-binding 

microtubes (Sorenson, SafeSeal, ref 27210) . Brain and liver were immediately collected.  

 

Cell Culture and Treatment 

The murine microglial cell line BV-2 was a kind gift from Dr. Nancy Grant (CNRS UPR3212, 

Strasbourg, France). BV-2 cells were maintained in RPMI 1640 medium (Thermo Fisher Scientific, 

Illkirch Graffenstaden, France) supplemented with 10% heat-inactivated fetal bovine serum (FBS; 

Thermo Fisher Scientific) and antibiotics (penicillin 100 U/ml, streptomycin 100 μg/ml; Thermo 

Fisher Scientific) at 37°C under a humidified atmosphere with 5% CO2.  

BV-2 cells (106) were seeded in 6 cm diameter culture dish for 24 h in presence of FBS. Then, the 

medium was replaced with 3ml of fresh medium containing 20 µM of morphine in the absence of 

FBS. Conditioned medium was recovered after 48 h for extraction and LC-MS/MS analysis. 

 

Preparation of Tissues and Fluids 

Brain and liver were homogenised with an Ultra Turrax instrument (Ika, Staufen, Germany) in 1 ml 

and 5 ml of H2O, respectively, containing protease inhibitors (cOmplete Mini, EDTA-free, Roche, 

Basel, Switzerland). The homogenates were then sonicated (2 times 10 s, 90W) with a Vibra Cell 

apparatus (Sonics, Newtown, U.S.A.) and centrifuged (14,000g, 30 min) at 4°C. Supernatant was 
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recovered and protein concentration determined using the Bradford method (Protein Assay, Bio-Rad, 

Marnes-la-Coquette, France). In order to quantify opiates in the brain and liver, 100 µl of tissue 

extract, plasma or BV2-conditioned media were acidified with 700 µl of 0.5% formic acid (v/v). After 

centrifugation (14,000g, 15 min, 4°C), supernatants were collected prior to solid phase extraction 

(SPE). The SPE procedure was performed with a positive pressure manifold (Thermo Electron, 

Courtaboeuf, France). HyperSep PGC SPE-cartridges (1 cc, 25 mg, Thermo Electron) were first 

activated with 1 ml of acetonitrile (ACN) and then washed twice with 1 ml of H2O / formic acid 0.1% 

(v/v) and samples were loaded on SPE-cartridges. Cartridges were dried for 1 min under vacuum, and 

were washed with 1 ml of H2O / formic acid 0.1% (v/v). Pre-elution was performed with 1 ml of ACN 

2% / H2O 97.9% / formic acid 0.1% (v/v/v). Elution was performed with 800 µl of ACN 20% / H2O 

79.9% / formic acid 0.1% (v/v/v). Eluates were collected in low binding 1.5 ml tubes and centrifuged 

(14,000g, 10 min, 4°C). Supernatants were dried under vacuum and resuspended in 100 µl of H2O / 

formic acid 0.1% (v/v) prior to MS analysis (see below). Urine (10 µl) was diluted with H2O / formic 

acid 0.1% (v/v) by a factor of 100 prior to direct LC-MS/MS (liquid chromatography coupled to 

tandem mass spectrometry) analysis. For brain, liver and plasma samples, a volume of 10 µl was 

injected on the HPLC column; for urine, 5 µl of the diluted samples were injected. 

 

Enzymatic Activity Assay 

250 µg of liver extracts were used to perform morphine glucuronidation enzymatic assays. First, 

extracts were incubated for 30 min at 4°C in the presence of alamethicin (50µg/mg of protein; Sigma 

Aldrich) adjusted to a final volume of 112 µl with H2O. Then, the enzymatic reaction was performed 

in 100 mM phosphate buffer (pH 7.4), 4 mM MgCl2, and increasing concentrations of morphine or 

d3-morphine (0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 4 and 6 mM) in a final volume of 200 µl at 

37°C for 32 min. After 5 min of equilibration at 37°C, the reaction was started by the addition of 
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UDPGA to a final concentration of 5 mM. Reactions were terminated by precipitation with perchloric 

acid (0.7% final concentration, v/v). Samples were centrifuged (20,000g, 15 min, 4°C). Supernatants 

were collected and 10 µl of supernatant were directly analysed by LC-MS/MS. 

Km and Vmax were obtained from a Michaelis-Menten representation after a nonlinear curve fit 

with the least-squares method using Graphpad Prism 6 software. 

 

LC-MS/MS Instrumentation and Analytical Conditions 

Analyses were performed on a Dionex Ultimate 3000 HPLC system (Thermo Scientific, San Jose, 

USA) coupled with a triple quadrupole Endura mass spectrometer (Thermo Scientific). The system 

was controlled by Xcalibur v. 2.0 software (Thermo Electron). Samples were loaded onto an 

Accucore C18 RP-MS column (ref 17626-102130; 100 x 2.1 mm 2.6 μm, Thermo Scientific) heated 

at 40°C. The presence of morphine, d3-morphine and corresponding 3-O-glucuronides was studied 

using the multiple reaction monitoring mode (MRM). Elution was performed at a flow rate of 400 

µl/min by applying a linear gradient of mobile phases A/B. Mobile phase A corresponded to ACN 

1% / H2O 98.9% / formic acid 0.1% (v/v/v), whereas mobile phase B was ACN 99.9% / formic acid 

0.1% (v/v). The gradient used is detailed in Table 1.  

Electrospray ionization was achieved in the positive mode with the spray voltage set at 3,750 V. 

Nitrogen was used as the nebulizer gas and the ionization source was heated to 250°C. Desolvation 

(nitrogen) sheath gas was set to 45 Arb and Aux gas was set to 15 Arb. The Ion transfer tube was 

heated at 350°C. Q1 and Q2 resolutions were set at 0.7 FWHM, whereas collision gas (CID, argon) 

was set to 2 mTorr. Identification of the compounds was based on precursor ion, selective fragment 

ions and retention times obtained for morphine, M3G, d3-morphine (Alsachim) and d3-M3G 

standards (Lipomed, Arlesheim, Swiss). Selection of the monitored transitions and optimization of 
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collision energy and RF Lens parameters were manually determined (see Table 1 for details). 

Qualification and quantification were performed in MRM mode. Quantification was obtained using 

Quan Browser software (Thermo Scientific). For tissues and fluids, alkaloids were quantified using 

calibration curves of external standards (morphine, M3G, d3-morphine and d3-M3G; 1 fmol to 100 

pmol/injection) added to urine, plasma, brain, and liver extract of naive mice and submitted to the 

same procedure described for respective fluids and tissue recovery. Limits of detection (LOD) for 

morphine, d3-morphine, M3G and d3-M3G were typically around 1-50 fmol, depending on the nature 

of the matrix (Supplementary Table 1). LOD was defined as the lowest detectable amount of analyte 

with a signal-to-noise (S/N) ratio > 3. Limit of quantification (LOQ) was defined as the lowest 

detectable amount of analyte with a signal-to-noise (S/N) ratio > 10 (Supplementary Table 1).  All 

amounts of opiates measured in samples fit within the standard curve limits, with typical analytical 

ranges (the range of amounts that can be accurately quantified) from 1 fmol – 100 pmol to 150 fmol 

– 100 pmol. Recoveries (extraction efficiency) for morphine, d3-morphine, M3G and d3-M3G were 

respectively 30±7%, 31±8%, 93±5% and 96±5%. Accuracy values (defined as the measured amount 

of analyte versus the theoretical added amount in spiked naive samples) for morphine, d3-morphine, 

M3G and d3-M3G were respectively 118±14%, 119±15%, 93±5% and 96±5%. Precision (CV% 

between repeated injections of the same sample) values were <1% for same-day measurements and 

<5% for inter-day measurements.  

 

Statistics 

Due to potential intra-group variations, a number of 10 animals has been used to achieve a 

statistically relevant analysis. Statistical analysis was performed using Graphpad Prism 6 software. 

Groups were compared using the Mann-Whitney U test. A p-value <0.05 was considered statistically 

significant. 
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RESULTS 

Methodology validation 

We have compared, in vitro, the glucuronidation of native and d3-morphine (Fig. 1a; morphine 

bearing three 2H, resulting in a mass excess of 3 Da compared to the parent drug) into M3G and d3-

M3G, respectively. First, we used microglial cells able to convert morphine into M3G (Togna et al., 

2013). The murine microglial BV-2 cell line was incubated with morphine or d3-morphine (20 µM, 

48 h). LC-MS/MS analysis revealed a significant decrease of d3-M3G formation in vitro by 22% 

compared to M3G (183±10 vs 236±13 pmol/mg protein, n=6, p<0.05, Mann-Whitney U-test). A 

similar result was also observed in vivo in mouse urine after acute injection of morphine or d3-

morphine. Urine d3-M3G was significantly lower than M3G (400±70 vs 458±60 nmol/ml) while d3-

morphine was higher than morphine (114±18 vs 76±12 nmol/ml) despite both groups receiving an 

equal dose of the parent drug (7.5 mg/kg, i.p.; Supplementary Table 2). Accordingly, the metabolic 

ratio of d3-M3G/d3-morphine was almost reduced by half compared to M3G/morphine (Fig. 1b and 

Supplementary Table 2, p<0.05, Mann-Whitney U-test). 

In vitro experiments performed on control mice liver extracts revealed a Vmax of 2775 pmol/mg 

protein/min and a Km of 0.54 mM for morphine glucuronidation, while d3-morphine glucuronidation 

exhibited a Vmax of 1172 pmol/mg protein/min and a Km of 0.76 mM (Fig. 1c). Thus, it is likely that 

d3-M3G formation is decreased in vitro and in vivo compared to native M3G, at least in part due to 

altered enzyme kinetics.  

As a substitution of deuterium for the N-methyl hydrogens of morphine (Fig. 1a) decreases its 

analgesic effect almost by half (Elison, Rapoport, Laursen & Elliott, 1961), we chose for our 

following in vivo experiments to use a mix of morphine/d3-morphine (85%/15%, w/w, 10 mg/kg i.p.) 

to ensure both an acceptable level of antinociception in mice and reliable quantification of d3-

morphine and its metabolite d3-M3G. After i.p. administration of this mixture to mice, remarkable 
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correlations between liver morphine and d3-morphine (Fig. 1d) as well as between M3G and d3-

M3G were obtained (Fig. 1e). This clearly shows that, despite reduced d3-morphine glucuronidation 

compared to morphine (Fig. 1b, see also metabolic ratios in Table 2 and Supplementary Fig. 1a), 

individual variations in morphine metabolism are accurately reflected by d3-morphine metabolism. 

Therefore, we conclude that (i) d3-morphine can be used to quantify newly produced d3-M3G and 

that (ii) a 85%/15% ratio of morphine/d3-morphine can be used to study morphine glucuronidation 

and CNS uptake alterations in vivo. 

We then determined if chronic morphine treatment for 8 days alters in vivo morphine metabolism 

(Fig. 2a). The hot plate test was used to monitor the onset of morphine analgesic tolerance 30 min 

after injection. On the ninth day, a mix of morphine and d3-morphine (85%/15% w/w, 10 mg/kg i.p.) 

was injected and animals were euthanised 90 min later. 15% of d3-morphine affects only weakly 

morphine-induced analgesia. Indeed, morphine-naive animals reached 71±10% MPE following 

injection of this mix on day 9 (Fig. 2b) whereas naive mice injected with pure morphine reached 

100% of MPE. Regardless of whether they were injected with 100% morphine or a 15%/85% mix of 

d3-morphine and morphine on day 9, morphine-tolerant animals returned to % MPE values similar 

to naïve saline-treated mice. 

 

Morphine glucuronidation and brain uptake in tolerant mice 

With this protocol, morphine and M3G amounts found in tolerant mice may include morphine and 

M3G resulting from previous injections (days 1 to 8) (Rubovitch, Pick & Sarne, 2009) while d3-

morphine and d3-M3G levels reflect only CNS uptake and catabolism due to the last injection (day 

9). Therefore, only results for d3-labelled molecules will be discussed in detail. Full quantification 

data for all four compounds are available in Table 2. Since d3-morphine is injected on the last day, 

it should be noted that quantification of morphine, M3G, d3-morphine and d3-M3G in mice relies on 
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external standard calibration curves, since no internal standards for absolute quantification are 

available. We were unable to detect any M6G in our experiments as mice are known to convert 

morphine into M3G but not M6G (Kuo, Hanioka, Hoshikawa, Oguri & Yoshimura, 1991; Milne, 

Nation & Somogyi, 1996; Oguri, Hanioka & Yoshimura, 1990; Xie et al., 2016; Zelcer et al., 2005). 

In the brain, morphine and M3G contents were found to be similar in chronically treated animals 

compared to control mice (Mann-Whitney U test, p>0.05). De novo synthesis of d3-M3G, 

corresponding solely to d3-morphine glucuronidation on day 9, was not modified in tolerant animals 

compared to naive mice receiving only morphine/d3-morphine on the last day. Accordingly, the brain 

metabolic ratio (d3-M3G/d3-morphine) was similar in control and tolerant animals (Fig. 3a and 

Table 2). As expected, d3-morphine glucuronidation was reduced in the brain of control and tolerant 

mice, as reflected by the reduced d3-M3G/d3-morphine ratios compared to M3G/morphine ratios 

(Fig. 3b and Table 2). However, as seen with the liver in our validation study (Fig. 1d and 1e). There 

were remarkable correlations between brain morphine and d3-morphine levels (Fig. 3c) and between 

M3G and d3-M3G contents in control and tolerant animals (Fig. 3d). Together, these results 

demonstrate that analgesic tolerance is not associated with an upregulation of brain morphine 

glucuronidation. The presence of similar amounts of d3-morphine in the brain of naive and tolerant 

mice also shows that morphine BBB permeability is not globally altered.  

In order to determine if morphine glucuronidation was modified at the peripheral level, we have 

analyzed liver tissues (Fig. 4a), plasma (Fig. 4b) and urine (Fig. 4c) of control and tolerant mice. 

Briefly, neither d3-morphine nor d3-M3G levels, nor d3-M3G/d3-morphine metabolic ratios were 

altered in tolerant animals (Fig. 4 and Table 2). Despite reduced glucuronidation of the d3-morphine 

compared to native morphine (Supplementary Fig. 1a-c), LC-MS/MS analysis revealed again 

remarkable correlations between morphine and d3-morphine levels (Supplementary Fig. 2a-c) and 

between M3G and d3-M3G contents (Supplementary Fig. 3a-c) in the periphery. Together, these 

results demonstrate that peripheral morphine glucuronidation is not affected in tolerant mice. 
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DISCUSSION 

Effect of morphine N-methyl deuteration on glucuronidation activity 

Different studies have described important differences in the metabolism of various drugs in 

vitro and in vivo (Mutlib, 2008; Sanderson, 2009; Schellekens, Stellaard, Woerdenbag, Frijlink & 

Kosterink, 2011). Replacement of hydrogen with deuterium may lead to significant alterations of 

drug metabolism and cause changes in the biological effects of drugs, including altered metabolism, 

pharmacokinetics, and toxicity profiles (Timmins, 2014). Such changes are called kinetic isotope 

effects (KIE; for review (Atkins & de Paula, 2006; Guengerich, 2017)). In the case of d3-morphine, 

a reduction in the rate of oxydative N-demethylation and a weakening of the binding to the enzyme 

active center have been decribed in vitro (Elison, Rapoport, Laursen & Elliott, 1961). However, no 

data is currently available on the impact of deuteration on drug glucuronidation by UGT enzymes. 

Because of the lack of a crystal structure of the UGT N-terminal domain, which is the region involved 

in substrate binding, our current understanding of UGT-morphine interactions and activity remains 

limited. The 3 deuterium atoms located on the N17-methyl group of morphine were not expected to 

influence the glucuronidation step involving the C3-OH because these two groups are at opposite 

ends of the morphine skeleton (Fig. 1a). Therefore, the impact of deuteration of the N-methyl on 

glucuronidation is a secondary kinetic isotope effect (SKIE), because no bond to the deuterium 

substituted atom is broken or involved in a modification (Atkins & de Paula, 2006). SKIEs are usually 

much smaller than primary kinetic isotope effects and are largely determined by the vibrations of the 

carbon-deuterium bond (Westaway, 2006). In our case, the SKIE due to deuteration of the N17-

methyl group revealed a major implication of that moiety into UGT catalytic activity. While it may 

seem counterintuitive at first, a study of UGT2B7-morphine interactions (Coffman, Kearney, 

Goldsmith, Knosp & Tephly, 2003) provides plausible structural arguments to explain this 
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phenomenon. Indeed, it was shown that binding of morphine to the N-terminus of UGT2B7 involves 

a pocket made of amino acids 96 to 101. Amino acid 99 (Asp) was critical for morphine binding to 

UGT2B7, which was predicted to occur between Asp99 and the morphine nitrogen. Additional 

structural studies (i.e. crystallography) are required to fully understand how the morphine N17 

interacts with the Asp99 of the N-terminal domain of the UGT. However, since the crucial amino 

acid for morphine binding interacts with the nitrogen, it seems plausible that alteration of the N-

methyl group (e.g. triple deuteration) would affect this binding and therefore glucuronidation activity. 

Furthermore, the fact that d3-morphine is surprisingly much less analgesic than native morphine 

(Elison, Rapoport, Laursen & Elliott, 1961) suggests that N-methyl deuteration affects morphine 

pharmacology to a stronger extent than what is usually seen with deuterated drugs. Overall, this shows 

the importance of assessing the impact of stable isotope labelling on drug pharmacology in 

metabolism studies using such drugs. 

Deuterated drugs as probes for metabolic studies 

We have used an in vivo methodological approach enabling to monitor CNS stable isotope-

labelled drug uptake and degradation during chronic treatment without interference from ongoing 

drug administration and metabolite presence due to previous injections. Our protocol was adapted 

from previous pharmacological studies using stable isotopes (Malik, Painter, Venkataramanan & 

Alvin, 2003).  

The use of a deuterated analogue for metabolic studies calls for controls in order to determine 

if the stable-isotope labelled drug behaves in the same way as the reference drug. Notably, it is 

important to determine: (i) the distribution of the precursor drug and its metabolites in situ; (ii) 

whether the native and stable isotope-labelled drugs undergo similar metabolism in vivo; (iii) kinetic 

parameters (Km, Vmax) for normal and stable-isotope labelled drugs in vitro. If the stable isotope-

labelled drug exhibits altered pharmacokinetics, it is essential to determine if this will hinder its use 
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as a probe for the native drug’s metabolism. The key issue is whether an injection of stable isotope-

labelled drug can mimic individual variations in the native drug’s metabolism and disposition in vivo. 

In other words, poor and extensive metabolizers of the native drug should also be poor and extensive 

metabolizers of the stable isotope-labelled drug. 

In the present study, d3-morphine metabolism was altered compared to morphine, but we 

conclude that it was without any interference with our study. Indeed, after i.p. administration of a 

mixture of morphine and d3-morphine to mice, remarkable correlations between the levels of morphine 

and d3-morphine (Fig. 1d) as well as between M3G and d3-M3G were observed in all tissues and fluids 

(Supplementary Fig. 2 and 3). Our results show that intrinsic differences in metabolism and 

physiological properties of stable-isotope labelled drugs compared to the native drugs do not preclude 

their use as metabolic probes.  

LC-MS/MS can identify and quantify low amounts of target compounds with a selectivity of 

>99% (Manes, Mann & Nita-Lazar, 2015). It allows the analysis of metabolites of interest following 

acute or chronic treatments and can be easily applied to study the pharmacokinetics of other 

homeostatic and metabolic processes by adding heavier precursors (2H, 13C…) at defined times. One 

limitation of our study is the fact that we assessed morphine metabolism at a single time point and in 

the whole brain. However, in vivo longitudinal studies in animals and humans could be achieved using 

different stable isotope-labelled precursors (d3-morphine, d6-morphine…) and periodical MS analysis 

of blood, urine, as well as microdialysis samples. Furthermore, while our tolerance induction protocol 

is widely accepted in the literature (Elhabazi, Ayachi, Ilien & Simonin, 2014; Ueda, Yamaguchi, 

Tokuyama, Inoue, Nishi & Takeshima, 1997), it does not accurately reflect the morphine treatment 

schedule in patients. Thus, our study’s clinical relevance could benefit from using extended release 

morphine formulations or from increasing the number of injections per day. In the latter case, we 

observed identical results when injecting mice twice per day with 10 mg/kg (data not shown).  
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In addition to monitoring drug metabolism, our methodology can assess modifications of BBB 

permeability after chronic treatment. No differences of d3-morphine brain content were observed 

between acute and chronic morphine treatments. However, the use of stable isotope-labelled drugs 

needs to be carefully performed because BBB-permeability for the deuterated analog might be altered. 

For instance, Dewar & colleagues have shown an increased penetration of deuterated beta-

phenylethylhydrazine into the rat brain compared to non-deuterated beta-phenylethylhydrazine 

(Dewar, Dyck, Durden & Boulton, 1988; Timmins, 2014). This might be explained by a differential 

affinity between deuterated and non-deuterated compounds for specific BBB transporters. 

Notably, our approach could be applied to therapeutic drug monitoring (TDM) and enzyme 

autoinduction assays during chronic treatments (Kang & Lee, 2009; Sinz, Wallace & Sahi, 2008). 

Indeed, as stable isotope-labelled drugs are analytically distinct but pharmacologically similar to the 

parent therapeutic molecule, they allow more accurate measurements without disturbing ongoing 

treatment. While stable isotope-labelled drugs are currently too costly for routine use in the clinic, they 

could be useful as probes for in vivo metabolic and BBB permeability alterations in the case of 

therapeutic drugs that do not respond well to classical TDM (e.g. drugs with extensive half-lives). 

 

M3G involvement in chronic morphine side effects 

Kinetic parameters obtained on liver extracts (Km of 0.54 mM and Vmax of 2.77 nmol/mg 

protein/min, Fig. 1c) are in agreement with values published in the literature (Km of 0.42 mM and 

Vmax of 19 nmol/mg protein/min (Shiratani, Katoh, Nakajima & Yokoi, 2008)). The lower Vmax 

might be due to the fact that we used liver extracts instead of purified liver microsomes, which are 

enriched with UGT enzymes. Similarly, our data is consistent with previous studies reporting morphine 

and M3G plasma levels (low µM ranges) 90 minutes after morphine injection (Andersen, Ripel, Boix, 

Normann & Morland, 2009; Zelcer et al., 2005). 
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Neither morphine CNS uptake nor its glucuronidation were altered in chronically treated 

animals compared to acutely treated mice. This result argues against a role of global M3G 

overproduction in the development of tolerance and hyperalgesia following morphine chronic 

treatment. However, since we used whole brain samples, we cannot rule out local CNS alterations in 

morphine metabolism and uptake. Furthermore, M3G could still play a role in morphine analgesic 

tolerance and hyperalgesia through alterations of its effects at the receptor level (i.e. through TLR4 

and MOR (Lewis et al., 2010; Roeckel et al., 2017)). Therefore, additional studies focusing on local 

(e.g. in the PAG, which is the main site of morphine analgesia) M3G synthesis and modulation of 

TLR4/MOR signalling are needed to clarify whether or not M3G is involved in morphine tolerance 

and hyperalgesia. 

Previous studies of a potential alteration in BBB function following morphine treatment used 

either in vitro (Strazza et al., 2016) or in vivo approaches (blue Evans-albumin tracer, [131I]-albumine 

and [14C]-sucrose) (Chaves, Remiao, Cisterninoa & Decleves, 2017; Sharma & Ali, 2006; Yousif et 

al., 2008). Contrasting effects have been described (i.e., increase or no increase of BBB permeability). 

Our in vivo approach, which we believe is more physiological than previous studies, suggests that 

global morphine BBB permeability is not altered and does not play a role in the development of 

negative side effects following chronic morphine. 

 

Conclusions 

We confirmed the importance of deuterated compounds as a means of studying metabolic 

adaptations that follow chronic drug administration. Interestingly, N-methyl deuteration affected 

morphine pharmacology to a stronger extent than what is usually seen with deuterated drugs. This 

highlights the importance of proper kinetic isotope effect characterisation when using stable isotope-

labelled drugs for pharmacological studies. To our knowledge, no study prior to ours had directly 
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investigated morphine uptake and glucuronidation in the CNS of tolerant animals. Using d3-morphine 

in the mouse, we have shown that analgesic tolerance is not linked to an increase in morphine 

glucuronidation into M3G or to a modification of the drug’s global blood-brain barrier permeability.  
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TABLES AND FIGURES LEGENDS 

TABLES  

Table 1- LC and MS conditions for the purification and the detection of morphine, M3G and 

their respective d3-labelled counterparts. Mobile phase A corresponded to ACN 1% / H2O 98.9% 

/ formic acid 0.1% (v/v/v), whereas mobile phase B was ACN 99.9 % / formic acid 0.1% (v/v).  

 

HPLC gradient 

Time (min)  0  2.5  4.5  6.5  7.5  8  12 

% B mobile phase  1  1  30  99  99  1  1 

 

MS ionization, selection, fragmentation and identification parameters 

Compound  Polarity 
Precursor 
(m/z) 

Product 
(m/z) 

Ion product 
type 

Collision 
Energy (V) 

RF Lens 
(V) 

Morphine  Positive  285.98  201.11  Quantification 26.23  183 

Morphine  Positive  285.98  165.36  Qualification  40.89  183 

Morphine  Positive  285.98  181.06  Qualification  36.24  183 

d3‐morphine  Positive  288.98  201.06  Quantification 26.48  178 

d3‐morphine  Positive  288.98  153.13  Qualification  43.16  178 

d3‐morphine  Positive  288.98  165.04  Qualification  39.02  178 

M3G  Positive  462.19  286.11  Quantification 30.02  276 

d3‐M3G  Positive  465.19  289.17  Quantification 29.92  242 
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Table 2- Quantification of morphine, M3G, and respective d3-labelled analogs in the brain, 

liver, plasma and urine of control and tolerant mice after injection of a mix of morphine/d3-

morphine (85%/15%, w/w, 10 mg/kg i.p.) on day 9. Data expressed as mean ± SEM, n = 10. *, 

p<0.05 vs M3G/morphine, Mann-Whitney U-test. 

 

 Brain (pmol/mg protein)  Metabolic ratio 

  morphine  d3‐morphine  M3G  d3‐M3G  M3G/morphine  d3‐M3G/d3‐morphine

Control  33 ± 5.8  6.3 ± 1.1  3.7 ± 0.6  0.4 ± 0.07  0.13 ± 0.02  0.07 ± 0.01* 

Tolerant  22 ± 2.3  4.0 ± 0.4  2.8 ± 0.3  0.3 ± 0.03  0.14 ± 0.01  0.08 ± 0.01* 

        

 Liver (pmol/mg protein)  Metabolic ratio 

  morphine  d3‐morphine  M3G  d3‐M3G  M3G/morphine  d3‐M3G/d3‐morphine

Control  27 ± 6.4  5.8 ± 1.2  18 ± 4.1  2.0 ± 0.47  0.82 ± 0.13  0.4 ± 0.07* 

Tolerant  27 ± 3.7  5.3 ± 0.7  14 ± 2.3  1.5 ± 0.28  0.59 ± 0.09  0.32 ± 0.05* 

        

 Plasma (pmol/ml)  Metabolic ratio 

  morphine  d3‐morphine  M3G  d3‐M3G  M3G/morphine  d3‐M3G/d3‐morphine

Control  1254 ± 401  261 ± 80  1892 ± 406  234 ± 56  2.27 ± 0.42  1.25 ± 0.24 

Tolerant  679 ± 119  129 ± 19  1352 ± 202  162 ± 24  2.66 ± 0.65  1.46 ± 0.26 

        

 Urine (nmol/ml)  Metabolic ratio 

  morphine  d3‐morphine  M3G  d3‐M3G  M3G/morphine  d3‐M3G/d3‐morphine

Control  270 ± 72  55 ± 14  954 ± 124  110 ± 14  4.61 ± 0.6  2.53 ± 0.31* 

Tolerant  273 ± 72  56 ± 15  1471 ± 395  174 ± 51  5.49 ± 0.51  2.98 ± 0.26* 
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Fig. 1- Method validation. (a) Structures of morphine, M3G and their respective d3-labelled 

counterparts. (b) Metabolic ratios for M3G/morphine and d3-M3G/d3-morphine in the urine of mice 

having a single injection of morphine or d3-morphine (7.5 mg/kg, i.p.). Data expressed as mean ± 

SEM; n = 10 per group; Mann-Whitney U test. *, p<0.05. (c) Michaelis–Menten kinetics of M3G and 

d3-M3G formation from morphine and d3-morphine respectively using liver extracts of control mice. 

Correlation between (d) d3-morphine and morphine, and between (e) d3-M3G and M3G levels in the 

liver of control mice after injection of a mix of morphine/d3-morphine (85%/15%, w/w, 10 mg/kg, 

i.p.).  
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Fig. 2- Tolerance induction protocol. (a) Protocol of morphine tolerance induction across days 

1 to 8 (D1-D8, 10 mg/kg i.p.) and a single injection of 85%/15% morphine/d3-morphine (w/w, 10 

mg/kg i.p.) on day 9. Two additional groups received only chronic morphine or chronic saline (not 

shown). (b) Development of morphine tolerance. Antinociception is expressed as % maximum 

possible effect (% MPE) on the hot plate test observed 30 min after morphine or saline injection 

across days. Values of MPE are expressed as mean ±SEM; n=10 mice per group. 
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Fig. 3- Morphine brain uptake and glucuronidation is not altered in tolerant mice. 

Quantification was done in control and morphine-tolerant mice 90 min after a single injection of a 

mix of morphine/d3-morphine (85%/15%, w/w, 10 mg/kg i.p.) on day 9. (a) LC-MS/MS 

quantification of brain d3-morphine and d3-M3G and corresponding metabolic ratios in control and 

tolerant animals. (b) Brain M3G/morphine and d3-M3G/d3-morphine ratios of control and tolerant 

mice. (c) Correlation between brain amounts of d3-morphine and morphine. (d) Correlation between 

brain amounts of d3-M3G and M3G. Spearman’s r, p-value and R2 of the linear regression fit are 

indicated in each panel. Each data point represents one animal and is expressed as mean ±SEM; n = 10 

; Mann-Whitney U test. *, p<0.05. 
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Fig. 4- Peripheral morphine glucuronidation is not altered in tolerant mice. LC-MS/MS 

quantification of d3-morphine and d3-M3G was done in control and morphine-tolerant mice 90 min 

after a single injection of a mix of morphine/d3-morphine (85%/15%, w/w, 10 mg/kg i.p.) on day 9. 

(a)  Liver. (b) Plasma. (c) Urine. Metabolic ratios correspond to d3-M3G/d3-morphine. Each data 

point represents one animal, data expressed as mean ±SEM; n = 10 for all samples; Mann-Whitney U 

test. 
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Supplementary Table 1- Limits of detection (LOD), limits of quantification (LOQ) and 

reportable ranges for morphine, d3-morphine, M3G and d3-M3G in brain, liver, plasma and 

urine samples. LOD was defined as the lowest detectable amount of analyte with a signal-to-noise 

(S/N) ratio > 3. LOQ was defined as the lowest detectable amount of analyte with a signal-to-noise 

(S/N) ratio > 10. Data are presented as the mean ± SEM of 5 measurements. Reportable range reflects 

the range of analyte amounts that fit within the linear standard curve limits. 

 

  
morphine 

(fmol ± SEM)  

d3-morphine  

(fmol ± SEM) 

M3G  

(fmol ± SEM) 

d3-M3G  

(fmol ± SEM) 

Brain LOD 3.01 ± 1.04 2.17 ± 0,18 2.50 ± 0.13 0.29 ± 0.02 

Brain LOQ 10.02 ± 3.45 4.82 ± 2.43 8.32 ± 0.44 0.98 ± 0.07 

Reportable range 10 fmol - 100 pmol 10 fmol - 100 pmol 10 fmol - 100 pmol 1 fmol - 100 pmol

Liver LOD 27.67 ± 1.24 31.31 ± 8.23 1.86 ± 0.003 2.16 ± 0.31 

Liver LOQ 92.13 ± 4.12 104.26 ± 27.41 6.19 ± 0.01 7.19 ± 1.04 

Reportable range 100 fmol - 100 pmol 150 fmol - 100 pmol 10 fmol - 100 pmol 10 fmol - 100 pmol

Plasma LOD 39.08 ± 11.99 15.20 ± 0.82 2.14 ± 0.29 0.29 ± 0.02 

Plasma LOQ 130.13 ± 39.93 50.61 ± 2.73 7.12 ± 0.98 0.97 ± 0.08 

Reportable range 150 fmol - 100 pmol 100 fmol - 100 pmol 10 fmol - 100 pmol 1 fmol - 100 pmol

Urine LOD 

Urine LOQ 

Reportable range 

0.61 ± 0.09 

2.02 ± 0.29 

10 fmol - 100 pmol

 

0.45 ± 0.02 

1.62 ± 0.06 

10 fmol - 100 pmol

 

1.63 ± 0.11 

5.44 ± 0.36 

10 fmol - 100 pmol 

0.32 ± 0.04 

1.06 ± 0.12 

10 fmol - 100 pmol

  

  



34 

 

 

Supplementary Table 2- Quantification of morphine, M3G, and respective d3-labelled analogs 

in mouse urine after acute injection of morphine or d3-morphine (7.5 mg/kg, i.p.). Data expressed 

as mean ± SEM. Mann-Whitney’s U-test; *, p<0.05  for the comparison of metabolic ratios. 

 
morphine 
(nmol/ml) 

M3G 
(nmol/ml) 

M3G/morphine  
Metabolic ratio 

morphine  
treatment 
(7.5 mg/kg, 
n=7 mice) 

76 ± 12 458 ± 60 6.5 ± 0.6 

     

 
d3-morphine 

(nmol/ml) 
d3-M3G 

(nmol/ml) 
d3-M3G/d3-morphine 

Metabolic ratio 

d3-morphine  
treatment 
(7.5 mg/kg, 
n=8 mice) 

114 ± 18 400 ± 70 3.6 ± 0.4 (*) 
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Supplementary Fig. 1- Metabolic ratios for M3G/morphine and d3-M3G/d3-morphine in 

control and tolerant mice. Quantifications were done in control and morphine-tolerant mice treated 

with a single injection of a mix of morphine/d3-morphine (85%/15%, m/m) on day 9. (a) Liver. (b) 

Plasma. (c) Urine. Data expressed as mean ± SEM; n = 10 for all samples; Mann-Whitney U test. *, 

p<0.05. 
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Supplementary Fig. 2- Correlation between amounts of d3-morphine and morphine in 

tissues and fluids of control and tolerant mice. (a) Liver. (b) Plasma. (c) Urine. Spearman’s r, p-

value and R2 of the linear regression fit are indicated in each panel; n=10 for all tissues. 
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Supplementary Fig. 3- Correlation between amounts of d3-M3G and M3G in tissues and 

fluids of control and tolerant mice. (a) Liver. (b) Plasma. (c) Urine. Spearman’s r, p-value and R2 

of the linear regression fit are indicated in each panel; n=10 for all tissues. 

 

 


