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Abstract

Tumor growth curves are classically modeled by ordinary differential equations. In analyzing the
Gompertz model several studies have reported a striking correlation between the two parameters of
the model.

We analyzed tumor growth kinetics within the statistical framework of nonlinear mixed-effects
(population approach). This allowed for the simultaneous modeling of tumor dynamics and inter-
animal variability. Experimental data comprised three animal models of breast and lung cancers,
with 843 measurements in 94 animals. Candidate models of tumor growth included the Exponential,
Logistic and Gompertz. The Exponential and – more notably – Logistic models failed to describe
the experimental data whereas the Gompertz model generated very good fits. The population-level
correlation between the Gompertz parameters was further confirmed in our analysis (R2 > 0.96 in all
groups). Combining this structural correlation with rigorous population parameter estimation, we
propose a novel reduced Gompertz function consisting of a single individual parameter. Leveraging the
population approach using bayesian inference, we estimated the time of tumor initiation using three
late measurement timepoints. The reduced Gompertz model was found to exhibit the best results,
with drastic improvements when using bayesian inference as compared to likelihood maximization
alone, for both accuracy and precision. Specifically, mean accuracy was 12.1% versus 74.1% and mean
precision was 15.2 days versus 186 days, for the breast cancer cell line.

These results offer promising clinical perspectives for the personalized prediction of tumor age
from limited data at diagnosis. In turn, such predictions could be helpful for assessing the extent of
invisible metastasis at the time of diagnosis.

Author summary

Mathematical models for tumor growth kinetics have been widely used since several decades but mostly
fitted to individual or average growth curves. Here we compared three classical models (Exponential,
Logistic and Gompertz) using a population approach, which accounts for inter-animal variability. The
Exponential and the Logistic models failed to fit the experimental data while the Gompertz model showed
excellent descriptive power. Moreover, the strong correlation between the two parameters of the Gompertz
equation motivated a simplification of the model, the reduced Gompertz model, with a single individual
parameter and equal descriptive power. Combining the mixed-effects approach with Bayesian inference,
we predicted the age of individual tumors with only few late measurements. Thanks to its simplicity, the
reduced Gompertz model showed superior predictive power. Although our method remains to be extended
to clinical data, these results are promising for the personalized estimation of the age of a tumor from
limited measurements at diagnosis. Such predictions could contribute to the development of computational
models for metastasis.
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1 Introduction

In the era of personalized oncology, mathematical modelling is a valuable tool for quantitative description
of physiopathological phenomena [1, 2]. It allows for a better understanding of biological processes and
to generate useful individual clinical predictions, for instance for personalized dose adaptation in cancer
therapeutic menagement [3]. Tumor growth kinetics have been studied since several decades both clinically
[4] and experimentally [5]. One of the main findings of these early studies is that tumor growth is not
entirely exponential, provided it is observed over a long enough timeframe (100 to 1000 folds of increase)
[6]. The specific growth rate slows down and this deceleration can be particularly well captured by the
Gompertz model [7, 6, 8]. The analytical expression of this model reads as follows:

V (t) = Vinje
α
β (1−e

−βt), (1)

where Vinj is the initial tumor size at tinj = 0 and α and β are two parameters.

While the etiology of the Gompertz model has been long debated [9], several independent studies
have reported a strong and significant correlation between the parameters α and β in either experimental
systems [6, 10, 11], or human data [11, 12, 13]. While some authors suggested this would imply a constant
maximal tumor size (given by Vinje

α
β in (1)) across tumor types within a given species [11], others argued

that because of the presence of the exponential function, this so called ’carrying capacity’ could vary over
several orders of magnitude [14]. To date, the generalizability, implications and understanding of this
observation are still a source of active debate in the oncology modeling community.

Mathematical models for tumor growth have been previously studied and compared at the level of
individual kinetics and for prediction of future tumor growth [15, 16]. However, to our knowledge, a
detailed study of statistical properties of classical growth models at the level of the population (i.e.
integrating structural dynamics with inter-animal variability) yet remains to be reported. Longitudinal
data analysis with nonlinear mixed-effects is an ideal tool to perform such a task [17, 18]. In addition,
the reduced number of parameters (from p × N to p + p(p+1)

2 where N is the number of animals and
p the number of parameters of the model) ensures higher robustness (smaller standard errors) of the
estimates. This framework is particularly adapted to study the above-mentioned correlation of the
Gompertz parameter estimates.

Moreover, using population distributions as priors allows to make predictions on new subjects by means
of Bayesian algorithms [19, 20, 21]. The added value of the latter methods is that only few measurements
per individual are necessary to obtain reliable predictions. In contrast with previous work focusing on the
forward prediction of the size of a tumor [15], the present study focuses on the backward problem, i.e. the
estimation of the age of a tumor [22]. This question is of fundamental importance in the clinic since the
age of a tumor can be used as a proxy for determination of the invisible metastatic burden at diagnosis
[23]. In turn, this estimation has critical implications for decision of the extent of adjuvant therapy [24].
Since predictions of the initiation time of clinical tumors are hardly possible to verify for clinical cases, we
developed and validated our method using experimental data from multiple data sets in several animal
models. This setting allowed to have enough measurements, on a large enough time frame in order to
assess the predictive power of the methods.

2 Material and methods

2.1 Mice experiments.

The experimental data comprised three data sets. Animal tumor model studies were performed in
strict accordance with guidelines for animal welfare in experimental oncology and were approved by local
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ethics committees. Precise description of experimental protocols was reported elsewhere (see [15] for the
volume measurements and [25] for the fluorescence measurements).

Breast data measured by volume (N = 66). This data consisted of human LM2-4LUC+ triple negative
breast carcinoma cells originally derived from MDA-MB-231 cells. Animal studies were performed as
described previously under Roswell Park Comprehensive Cancer Center (RPCCC) Institutional Animal
Care and Use Committee (IACUC) protocol number 1227M [PMID: 25167199 and 26511632]. Briefly,
animals were orthotopically implanted with LM2-4LUC+ cells (106 cells at injection) into the right
inguinal mammary fat pads of 6- to 8-week-old female severe combined immunodeficient (SCID) mice.
Tumor size was measured regularly with calipers to a maximum volume of 2 cm3, calculated by the
formula V = π/6w2L (ellipsoid) where L is the largest and w is the smallest tumor diameter. The data
was pooled from eight experiments conducted with a total of 581 observations. All LM2-4LUC+ implanted
animals used in this study are vehicle-treated animals from published studies [PMID: 25167199 and
26511632]. Vehicle formulation was carboxymethylcellulose sodium (USP, 0.5% w/v), NaCl (USP, 1.8%
w/v), Tween-80 (NF, 0.4% w/v), benzyl alcohol (NF, 0.9% w/v), and reverse osmosis deionized water
(added to final volume) and adjusted to pH 6 (see [PMID: 18199548]) and was given at 10ml/kg/day for
7-14 days prior tumor resection.

Breast data measured by fluorescence (N = 8). This data consisted of human MDA-MB-231 cells stably
transfected with dTomato lentivirus. Animals were orthotopically implanted (80,000 cells at injection)
into the mammary fat pads of 6-week-old female nude mice. Tumor size was monitored regularly with
fluorescence imaging. The data comprised a total of 64 observations. To recover the fluorescence value
corresponding to the injected cells, we computed the ratio between the fluorescence signal and the volume
measured in mm3. We used linear regression considering the volume data of a different data set with same
experimental setup (mice, tumor type and number of injected cells). The estimated ratio was 1.52· 109
photons/(s·mm3) with relative standard error of 11.3%, therefore the initial fluorescence signal was 1.22·
107 photons/s.

Lung data measured by volume (N = 20). This data consisted of murine Lewis lung carcinoma
cells originally derived from a spontaneous tumor in a C57BL/6 mouse [26]. Animals were implanted
subcutaneously (106 cells at injection) on the caudal half of the back in anesthetized 6- to 8-week-old
C57BL/6 mice. Tumor size was measured as described for the breast data to a maximum volume of 1.5
cm3. The data was pooled from two experiments with a total of 188 observations.

2.2 Tumor growth models.

We denoted by tI and VI the initial conditions of the equation. At time of injection (tinj = 0), we
assumed that all tumor volumes within a group had the same volume Vinj (taken to be equal to the
number of injected converted in the appropriate unit) and denoted by α the specific growth rate (i.e.
1
V
dV
dt ) at this time and volume.

We considered the Exponential, Logistic and Gompertz models [15]. The first two are respectively defined
by the following equations

dV

dt
= αV,

V (tI) = VI ,

and


dV

dt
= αV

(
1−

(
V

K

))
,

V (tI) = VI .

(2)

In the Logistic equation, K is a carrying capacity parameter. It expresses a maximal reachable size due to
competition between the cells (e.g. for space or nutrients).

The Gompertz model is characterized by an exponential decrease of the specific growth rate with rate
denoted here by β. Although multiple expressions and parameterizations coexist in the litterature, the
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definition we adopted here reads as follows:
dV

dt
=

(
α− β log

(
V

Vinj

))
V,

V (tI) = VI .

(3)

Note that the injected volume Vinj appears in the differential equation defining V . This is a natural
consequence of our assumption of α as being the specific growth rate at V = Vinj. This model exhibits
sigmoidal growth up to a saturating value given by K = Vinje

α
β .

2.3 Population approach.

Let N be the number of subjects within a population (group) and Y i = {yi1, ..., yini} the vector of
longitudinal measurements in animal i, where yij is the observation of subject i at time tij for i = 1, ..., N

and j = 1, ..., ni (ni is the number of measurements of individual i). We assumed the following observation
model

yij = f(tij ;θ
i) + eij , j = 1, ..., ni, i = 1, ..., N, (4)

where f(tij ;θ
i) is the evaluation of the tumor growth model at time tij , θ

i ∈ Rp is the vector of the
parameters relative to the individual i and eij the residual error model, to be defined later. An individual
parameter vector θi depends on fixed effects µ, identical within the population, and on a random effect
ηi, specific to each animal. Random effects follow a normal distribution with mean zero and variance
matrix ω. Specifically:

θi = µ exp(ηi).

We considered a combined residual error model eij , defined as

eij = (σ1 + σ2f(t
i
j ;θ

i))εij ,

where εij ∼ N (0, 1) are the residual errors and σ = [σ1, σ2] is the vector of the residual error model
parameters.

In order to compute the population parameters, we maximized the population likelihood, obtained
by pooling all the data together. Usually, this likelihood cannot be computed explicitely for nonlinear
mixed-effect models. We used the stochastic approximation expectation minimization algorithm (SAEM)
[17], implemented in the Monolix 2018 R2 software [27].

In the remainder of the manuscript we will denote by φ = {µ,ω,σ} the set of the population parameters
containing the fixed effects µ, the covariance of the random effects ω and the error model parameters σ.

2.4 Individual predictions

For a given animal i, the backward prediction problem we considered was to predict the age of the
tumor based on the three last measurements yi = {yini−2, y

i
ni−1, y

i
ni}. Since we were in an experimental

setting, we considered the injection time as the initiation time and thus the age was given by ai = tini−2. To
avoid using knowledge from the past, we first shifted the times of measurement by ai: tij 7→ tij − ai. Then,
we considered as model f(t; θi) the solution of the Cauchy problem (3) endowed with initial conditions(
tI = 0, VI = yini−2

)
. For estimation of the parameters (estimate θ̂

i
), we applied two different methods:

likelihood maximization alone (no use of prior population information) and Bayesian inference (use of
prior). The predicted age âi was then defined by

f
(
−âi; θ̂i

)
= Vinj,
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that is:

âi =
1

β̂i

(
log

(
α̂i

β̂i

)
− log

(
α̂i

β̂i
− log

(
V iI
Vinj

)))
(5)

in case of the Gompertz model.

2.4.1 Likelihood maximization

For individual predictions with likelihood maximization, no prior information on the distribution of the
parameters was used. Parameters of the error model were not re-estimated: values from the population
analysis were used. The constant part σ1 was found negligible compared to the large volumes at late
times, thus only the proportional term of the error model was used (σ = σ2). The log-likelihood can be
derived from (4):

l(θi) = ln

 ni∏
j=ni−2

p
(
yij
∣∣θi)

 (6)

= −3

2
log (2π)− 1

2

ni∑
j=ni−2

log
(
σf
(
tij ,θ

i
))

+

(
yij − f

(
tij ,θ

i
)

σf
(
tij ,θ

i
) )2

 . (7)

In order to guarantee the positivity of the parameters, we introduced the relation θi = g(γi) = eγ
i

and
substituted this in equation(7). The negative of equation (7) was minimized with respect to γi (yielding
the maximum likelihood estimate γ̂i) with the function minimize of the python module scipy.optimize,
for which the Nelder-Mead algorithm was applied. Thanks to the invariance property, the maximum
likelihood estimator of θi was determined as θ̂

i
= eγ̂

i

. Individual prediction intervals were computed
by sampling the parameters θi from a gaussian distribution with variance-covariance matrix of the

estimate defined as ∇g(γ̂i)T ·
(
ŝ2,i(I−1(γ̂i))

)
· ∇g(γ̂i) where ŝ2,i = 1

3−p

(
yij−f

(
tij ,θ̂

i
)

σf
(
tij ,θ̂

i
) )2

, with p the

number of parameters and I(γ̂i) and ∇g(γ̂i) the Fisher information matrix and the gradient of the

function g(γ) evaluated, respectively, in the estimate γ̂i. Denoting by f(γ) =
[
f
(
tij , e

γ
)]ni
j=ni−2

and by

Ω(γ) = diag
(
σ
[
f
(
tij , e

γ
)]ni
j=ni−2

)
, the Fisher information matrix was defined by [28] :

[I(γ)]l,m =

[
∂f(γ)

∂γl

]T
Ω−1(γ)

[
∂f(γ)

∂γm

]
+

1

2
tr
[
Ω−1(γ)

∂Ω(γ)

∂γl
Ω−1(γ)

∂Ω(γ)

∂γm

]
. (8)

2.4.2 Bayesian inference

When applying the Bayesian method, we considered training sets to learn the distribution of the
parameters φ and test sets to derive individual predictions. For a given animal i of a test set, we predicted
the age of the tumor based on the combination of: 1) population parameters φ identified on the training
set using the population approach and 2) the three last measurements of animal i. We set as initial
conditions tI = 0 and VI ∼ N (yini−2, σy

i
ni−2). This last assumption was made to account for measurement

uncertainty on yini−2. We then estimated the posterior distribution p(θi|yi) of the parameters θi using a
Bayesian approach [20]:

p
(
θi|yi

)
=
p
(
θi
)
p
(
yi|θi

)
p(y)

, (9)
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where p
(
θi
)
is the prior distribution of the parameters estimated through nonlinear mixed-effects modeling

and p
(
yi|θi

)
is the likelihood, defined from equation (4). The predicted distributions of extrapolated

growth curves and subsequent âi were computed by sampling θi from its posterior distribution (9) using
Pystan, a Python interface to the software Stan [21] for Bayesian inference based on the No-U-Turn
sampler, a variant of Hamiltonian Monte Carlo [19]. Predictions of âi were then obtained from (5),
considering the median value of the distribution.
Different data sets were used for learning the priors (training sets) and prediction (test sets) by means of
k-fold cross validation, with k equal to the total number of animals of the dataset (k = N , i.e. leave-one-out
strategy). At each iteration we computed the parameters distribution of the population composed by
N − 1 individuals and used this as prior to predict the initiation time of the excluded subject i. The
Stan software was used to draw 2000 realizations from the posterior distribution of the parameters of the
individual i.

3 Results

The results reported below were similar for the three data sets presented in the materials and methods.
For conciseness, the results presented herein are related to the large dataset (breast cancer data measured
by volume). Results relative to the other (smaller) datasets are reported in the Supplemental.

3.1 Population analysis of tumor growth curves

The population approach was applied to test the descriptive power of the Exponential, Logistic and
Gompertz models for tumor growth kinetics. The number of injected cells at time tinj = 0 was 106,
therefore we fixed the initial volume Vinj = 1 mm3 in the whole dataset [15]. We set (tI , VI) = (tinj, Vinj)
as initial condition of the equations.

We ran the SAEM algorithm with the Monolix software to estimate the fixed and random effects [27].
Moreover, we evaluated different statistical indices in order to compare the different tumor growth models.
This also allowed learning of the parameter population distributions that were used later as priors for
individual predictions. Results are reported in Table 1, where the models are ranked according to their
AIC (Akaike Information Criterion), a metrics combining parsimony and goodness-of-fit. The Gompertz
model was the one with the lowest values, indicating superior goodness-of-fit. This was confirmed by
diagnostic plots (Figure 1). The visual predictive checks (VPCs) in Figure 1A compare the empirical
percentiles with the theoretical percentiles, i.e. those obtained from simulations of the calibrated models.
The VPC of the Exponential and Logistic models showed clear model misspecification. On the other hand,
the VPC of the Gompertz model was excellent, with observed percentiles close to the predicted ones and
small prediction intervals (indicative of correct identifiability of the parameters). Figure 1B shows the
prediction distribution of the three models. This allowed to compare the observations with the theoretical
distribution of the predictions. Only the prediction distribution of the Gompertz model covered the entire
dataset. The Logistic model exhibited a saturation of tumor dynamics at lower values than compatible
with the data.

Moreover, the distribution of the residuals was symmetrical around a mean value of zero with the
Gompertz model (Figure 1C), strengthening its good descriptive power, while the Exponential and Logistic
models exhibited clear skewed distributions. The observations vs individual predictions in Figure 1D
further confirmed these findings.

These observations at the population level were confirmed by individual fits, computed from the mode
of the posterior conditional parameter distribution for each individual (Figure 2). Confirming previous
results [15], the optimal fits of the Exponential and Logistic models were unable to give appropriate
description of the data, suggesting that these models should not be used to describe tumor growth, at
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least in similar settings to ours. Fitting of late timepoints data forced the proliferation parameter of the
Exponential model to converge towards a rather low estimate, preventing reliable description of the early
datapoints. The converse occurred for the Logistic. Constrained by the early data points imposing to
the model the pace of the growth deceleration, the resulting estimation of the carrying capacity K was
biologically irrelevant (much too small, typical value 1332 mm3, see Table 2), preventing the model to
give a good description of the late growth.

Table 2 provides the values of the population parameters. The relative standard error estimates
associated to population parameters were all rather low (<4.39%), indicating good practical identifiability
of the model parameters. Standard error estimates of the constant error model parameters were found to
be slightly larger (<22.3%), suggesting that for some models a proportional error model might have been
more appropriate - but not in case of the Exponential model. Since our aim was to compare different
tumor growth equations, we established a common error model parameter, i.e. a combined error model.
Relative standard errors of the standard deviations of the random effects ω were all smaller than 9.6%
(not shown).

These model findings in the breast cancer cell line were further validated with the other cell lines. For
both the lung cancer and the fluorescence-breast cancer cell lines, the Gompertz model outperformed the
other competing models (see Supplementary Tables S1 and Tables S2 for the two data sets), as also shown
by the diagnostic plots (Figures S1,S2). For the fluorescence-breast cancer cell line we used a proportional
error model (i.e., we fixed σ1 = 0). In this case the inter-individual variability was found to be modest.
This was due to the small number of animals in the data set and to a considerable intra-individual
variability (Supplementary Figure S4) associated to large measurement error (see Table S4).

Together, these results confirmed that the Exponential and Logistic models are not appropriate models
of tumor growth while the Gompertz model has excellent descriptive properties, for both goodness-of-fit
and parameter identifiability purposes.

Model -2LL AIC BIC

Gompertz 7128 7142 7157
Reduced Gompertz 7259 7269 7280
Logistic 7584 7596 7609
Exponential 8652 8660 8669

Table 1. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical indices are
the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

3.2 The reduced Gompertz model

3.2.1 Correlation between the Gompertz parameters.

During the estimation process of the Gompertz parameters, we found a high correlation between α
and β within the population. At the population level, the SAEM algorithm estimated a correlation of
the random effects equal to 0.981. At the individual level, αi and βi were also highly linearly correlated
(Figure 3A, R2 = 0.968). This motivated the reformulation of the alpha parameter as follows:

αi = kβi + c, (10)

where k and c are representing the slope and the intercept of the regression line, respectively. In our
analysis we found c to be small (c = 0.14), thus we further assumed this term to be negligible and fixed it
to 0. This suggests k as a characteristic constant of tumor growth within a given animal model [11, 29].
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1Figure 1. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess
goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles
(together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions.
C) Individual weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: Exponential,
Center: Logistic, Right: Gompertz models.
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1Figure 2. Individual fits from population analysis. Three representative examples of individual fits
computed with the population approach relative to the Exponential (left), the Logistic (center) and the Gompertz
(right) models.
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Model Parameter Unit Fixed effects CV
(%)

R.S.E. (%)

Gompertz α day−1 0.573 34.73 2.56
β day−1 0.0705 391.49 3.61
σ - [19.1, 0.12] [18.3, 7.36]

Reduced Gompertz β day−1 0.0725 180.69 1.91
k - 7.98 0 0.363
σ - [13.9, 0.183] [22.3, 5.17]

Logistic α day−1 0.324 42.90 1.88
K mm3 1332 0.02 4.39
σ - [57.2, 0.136] [9.8, 8.74]

Exponential α day−1 0.229 34.98 1.35
σ - [283, 0.254] [6.06, 14.3]

Table 2. Fixed effects (typical values) of the parameters of the different models. CV = Coefficient of Variation,
expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect and
multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard
errors (R.S.E.) of the estimates.

In turn, this implies an approximately constant limiting size

Ki = Vinje
αi

βi ' Vinje
k ' 2900 mm3, ∀i.

The other data sets gave analogous results. The estimated correlations of the random effects were
0.967 and 0.998 for the lung cancer and for the fluorescence-breast cancer, respectively. The correlation
between the parameters was also confirmed at the individual level (see Supplementary Figures S5A and
Supplementary Figures S6A, R2 was 0.961 and 0.99 for the two data sets, respectively).

3.2.2 Biological interpretation in terms of the proliferation rate.

By definition, the parameter α is the specific growth rate at the time of injection. Assuming that the
cells don’t change their proliferation kinetics when implanted, this value should thus be equal to the in
vitro proliferation rate (supposed to be the same for all the cells of the same cell line), denoted here by λ.
The value of this biological parameter was assessed in vitro and estimated at 0.837 [23]. Confirming our
theory, we indeed found estimated values of α close to λ (fixed effects of 0.585), although strictly smaller
estimates were reported in the majority of cases (Figure 3A). We postulated that this difference could
be explained by the fact that not all the cells will be successfully grafted when injected in an animal.
Denoting by V̂ iinj < Vinj the volume of these cells, our mathematical expression of λ would now read as:

λ = αi − βi log

(
V̂ iinj

Vinj

)
,

which is consistent with our findings since this leads to values of λ > αi. In turn, this gives estimates of
the percentage of successful egraftment at 18%± 5.9%.

3.2.3 Population analysis of the reduced Gompertz model.

The high correlation among the Gompertz parameters, combined to the biological rationale explained
above, suggested that a reduction of the degrees of freedom (number of parameters) in the Gompertz
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model could improve identifiability and yield a more parsimonious model. We considered the expression
(10), assuming c negligible. We therefore propose the following reduced Gompertz model:

dV

dt
=

(
βk − β log

(
V

Vinj

))
V, (11)

where β has mixed effects, while k has only fixed effects, i.e., is constant within the population.
Figure 3 shows the results relative to the population analysis performed. Results of the diagnostic plots
indicated no deterioration of the goodness-of-fit as compared with the Gompertz model (Figure 3B-D).
Only on the last timepoint was the model slightly underestimating the data (Figure 3D), which might
explain why the model performs slightly worse than the two-parameters Gompertz model in terms of
strictly quantitative statistical indices (but still better than the Logistic or Exponential models, Table
1). Individual dynamics were also accurately described (Figure 3E). Parameter identifiability was also
excellent (Table 2).

The other two data sets gave similar results (see Supplementary Figures S5 and S6).

Together, these results demonstrated the accuracy of the reduced Gompertz model, with improved
robustness as compared to previous models.

3.3 Prediction of the age of a tumor

Considering the increased robustness of the reduced Gompertz model (one individual parameter less
than the Gompertz model), we further investigated its potential for improvement of predictive power. We
considered the problem of estimating the age of a tumor, that is, the time elapsed between initiation
(here the time of injection) and detection occurring at larger tumor size (Figure 4). For a given animal
i, we considered as first observation yini−2 and aimed to predict its age ai = tini−2 (see Methods). We
compared the results given by the Bayesian inference with the ones computed with standard likelihood
maximization method (see Methods). To that end, we did not consider any information on the distribution
of the parameters. For the reduced Gompertz model however (likelihood maximization case), we used the
value of k calculated in the previous section (Table 2), thus using information on the entire population.
Importantly, for both prediction approaches, our methods allowed not only to generate a prediction of ai
for estimation of the model accuracy (i.e. absolute relative error of prediction), but also to estimate the
uncertainty of the predictions (i.e. precision, measured by the width of the 90% prediction interval (PI)).

Figure 4 presents a few examples of prediction of three individuals without (LM) and with (Bayesian
inference) priors relative to the breast cancer measured by volume. For the other two cell lines, see the
Supplementary Figures S7 and S9. The reduced Gompertz model combined to Bayesian inference (bottom
row) was found to have the best accuracy in predicting the initiation time (mean error = 12.1%, 9.4% and
12.3% for the volume-breast cancer, lung cancer and fluorescence-breast cancer respectively) and to have
the smallest uncertainty (precision = 15.2, 7.34 and 23.6 days for the three data sets, respectively). Table
3 gathers results of accuracy and precision for the Gompertz and reduced Gompertz models under LM and
Bayesian inference relative to the three data sets. With only local information of the three last data points,
the Gompertz model predictions were very inaccurate (mean error = 205%, 175% and 236%) and the
Fisher information matrix was often singular, preventing standard errors to be adequately computed. With
one degree of freedom less, the reduced Gompertz model had better performances with LM estimation but
still large uncertainty (mean precision under LM = 186, 81.6 and 368 days) and poor accuracy using LM
(mean error = 74.1%, 66.1% and 91.7%). Examples shown in Figure 4 were representative of the entire
population relative to the breast cancer measured by volume. Eventually, for 97%, 95% and 87.5% of the
individuals of the three data sets the actual value of the age fell in the respective prediction interval when
Bayesian inference was applied in combination with the reduced Gompertz models. This means a good
coverage of the prediction interval and indicates that our precision estimates were correct. On the other
hand, this observation was not valid in case of likelihood maximization, where the actual value fell in the
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likelihood maximization (second row); Gompertz with Bayesian inference (third row) and reduced Gompertz
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respective prediction interval for only 40.9%, 30% and 87.5% of the animals when the reduced Gompertz
model was used.

As a general result, addition of a priori population information by means of Bayesian estimation
resulted in drastic improvement of the prediction performances (Figure 5). Results relative to the other
data sets are shown in Supplementary Figures S7, S8 for the lung cell line and S9, S10 for the breast cell
line measured by fluorescence. For the fluorescence-breast cancer cell line we could not report a significant
difference in terms of accuracy between the Gompertz and the reduced Gompertz when applying Bayesian
inference. This can be explained by the low number of individuals included in the data set.

Overall, the combination of the reduced Gompertz model with Bayesian inference clearly outperformed
the other methods for prediction of the age of experimental tumors.

Cell line Model Estimation
method

Error PI

Breast, volume Reduced Gompertz Bayesian 12.1 (1.02) 15.2 (0.503)
Reduced Gompertz LM 74.1 (11.6) 186 (52.8)
Gompertz Bayesian 19.6 (1.77) 40.1 (1.94)
Gompertz LM 205 (55.4) -

Lung, volume Reduced Gompertz Bayesian 9.4 (1.57) 7.34 (0.33)
Reduced Gompertz LM 66.1 (31) 81.6 (71.7)
Gompertz Bayesian 19.6 (2.99) 18.2 (2.38)
Gompertz LM 175 (69.6) -

Breast, fluorescence Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)
Reduced Gompertz LM 91.7 (21.1) 368 (223)
Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)
Gompertz LM 236 (150) -

Table 3. Accuracy and precision of methods for prediction of the age of experimental tumors of the three cell
lines. Accuracy was defined as the absolute value of the relative error (in percent). Precision was defined as the
width of the 95% prediction interval (in days). Reported are the means and standard errors (in parenthesis). LM
= likelihood maximization

4 Discussion

We have analyzed tumor growth curves from multiple animal models and experimental techniques, using
a population framework (nonlinear mixed-effects [17]). This approach is ideally suited for experimental or
clinical data of the same tumor types within a given group of subjects. Indeed, it allows for a description
of the inter-subject variability that is impossible to obtain when fitting models to averaged data (as often
done for tumor growth kinetics [30]), while enabling robust population-level description that does not
require individual fits. As expected from the classical observation of decreasing specific growth rates
[6, 31, 8, 32, 33], the Exponential model generated very poor fits. More surprisingly given its popularity
in the theoretical community (probably due to its ecological ground), the Logistic model was also rejected,
due to unrealistically small inferred value of the carrying capacity K. This finding confirms at the
population level previous results obtained from individual fits [15, 34]. It suggests that the underlying
theory (competition between the tumor cells for space or nutrients) is unable – at least when considered
alone – to explain the d decrease of the specific growth rate, suggesting that additional mechanisms need
to be accounted for. Few studies have previously compared the descriptive performances of growth models
on the same data sets [15, 35, 16]. In contrast to our results, Vaidya and Alexandro [16] found admissible
description of tumor growth data employing the Logistic model. Beyond the difference of animal model,
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we believe the major reason explaining this discrepancy is the type of error model that was employed, as
also noticed by others [34]. Here we used a combined error model, in accordance to our previous study
that had examined repeated measurements of tumor size and concluded to rejection of a constant error
model (used in [16]). To avoid overfitting, we also made the assumption to keep the initial value VI fixed
to Vinj. As noted before [15], releasing this constraint leads to acceptable fits by either the Exponential or
Logistic models (to the price of deteriorated identifiability). However, the estimated values of VI are in
this case are biologically inconsistent.

On the other hand, the Gompertz model demonstrated excellent goodness-of-fit in all the experimental
systems that we investigated. This is in agreement with a large body of previous experimental and clinical
research work using the Gompertz model to describe unaltered tumor growth in syngeneic [36, 6, 10, 34]
and xenograft [37, 38] preclinical models, as well as human data [32, 13, 12, 8]. The poor performances of
the Logistic model compared to the Gompertz model can be related to the structural properties of the
models. The two sigmoid functions lie between two asymptotes (V = 0 and V = K) and are characterized
by an initial period of fast growth followed by a phase of decreasing growth. These two phases are
symmetrical in the Logistic model, that is indeed characterized by a decrease of the specific growth rate
1
V
dV
dt at constant speed. On the other hand, the Gompertz model exhibits a faster decrease of the specific

growth rate, at speed − β
V , or e−βt as a function of t, and the sigmoidal curve is not symmetric around its

inflexion point.

Similarly to previous reports [6, 10, 39, 11, 12, 13], we also found a very strong correlation between
the two parameters of the Gompertz model, i.e. α the proliferation rate at injection and β the rate of
decrease of the specific growth rate. Of note, this is not due to a lack of identifiability of the parameters
at the individual level, which we investigated and found to be excellent. Such finding motivated our choice
to introduce a novel model, the reduced Gompertz model, with only one individual-specific parameter,
and one population-specific parameter. We rigorously assessed its descriptive power and found that
performances were similar to the two-parameters Gompertz model. Critically, while previous work had
demonstrated that two individual parameters were sufficient to describe tumor growth curves [15], these
new results now show that this number can be reduced to one. Interestingly, the values of k that we
inferred were different for the breast and the lung cancer cell lines measured in volume (k = 7.98 - 9.51,
respectively), in contrast with previous results [11]. This suggests that there might not be a characteristic
constant of tumor growth within a species [29] but the correlation could be a typical feature of a tumor
type in an animal model. Indeed a small variation of the parameter k is associated to a large variation of
the carrying capacity K = Vinj exp(k). Moreover, we believe that our formulations of the Gompertz (3)
and reduced Gompertz (11) give to α a physiological meaning (the in vitro proliferation rate) that could
be used clinically to predict past or future tumor growth kinetics based on proliferation assays, derived
for example from a patient’s tumor sample.

The reduced Gompertz model, combined to Bayesian estimation from the population prior, allowed
to reach good levels of accuracy and precision of the time elapsed between the injection of the tumor
cells and late measurements, used as an experimental surrogate of the age of a given tumor. Importantly,
performances obtained without using a prior were substantially worse. The method proposed herein
remains to be extended to clinical data, although it will not be possible to have a firm confirmation since
the natural history of neoplasms since their inception cannot be reported in a clinical setting. Nevertheless,
the encouraging results obtained here could allow to give approximative estimates. Importantly, the
methods we developed also provide a measure of precision, which would give a quantitative assessment of
the reliability of the predictions. For clinical translation, Vinj should be replaced by the volume of one cell
Vc = 10−6 mm3. Moreover, because the Gompertz model has a specific growth rate that tends to infinity
when V gets arbitrarily small, our results might have to be adapted with the Gomp-Exp model [40, 23].

Personalized estimations of the age of a given patient’s tumor would yield important epidemiological
insights and could also be informative in routine clinical practice [22]. By estimating the period at which
the cancer initiated, it could give clues on the possible causes (environmental or behavioral) of neoplastic
formation. Moreover, reconstruction of the natural history of the pre-diagnosis tumor growth might inform
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on the presence and extent of invisible metastasis at diagnosis. Indeed, an older tumor has a greater
probability of having already spread than a younger one. Altogether, the present findings contribute to
the development of personalized computational models of metastasis [23, 41].
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Population analysis

Table S1 (lung). Statistical indices of the tumor growth models

Model -2LL AIC BIC

Gompertz 2232 2246 2253
Reduced Gompertz 2256 2266 2271
Logistic 2315 2327 2333
Exponential 2644 2652 2656

Table S1: Lung, volume. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical indices
are the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

Table S2 (breast-fluorescence). Statistical indices of the tumor growth models

Model -2LL AIC BIC

Reduced Gompertz 2953 2961 2962
Gompertz 2953 2965 2966
Logistic 3009 3019 3020
Exponential 3097 3103 3104

Table S2: Breast, fluorescence. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical
indices are the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

Table S3 (lung). Parameter values estimated with the SAEM algorithm

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Gompertz α day−1 0.713 22.57 3.79
β day−1 0.0731 318 5.77
σ - [28.2,0.081] - [13.8,14.3]

Reduced Gompertz β day−1 0.0757 158.37 10.7
k - 9.51 - 5.26
σ - [27.6,0.106] - [14.03,11.7]

Logistic α day−1 0.477 25.48 2.84
K mm3 1.65e+03 0.006 4.67
σ - [38.5,0.11] - [13.2,14.01]

Exponential α day−1 0.403 28.01 2.75
σ - [87.8,0.37] - [19.1,14.8]

Table S3: Lung, volume. Fixed effects (typical values) of the parameters of the different models. CV = Coefficient of
Variation, expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect
and multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard errors
(R.S.E.) of the estimates.
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Table S4 (breast-fluorescence). Parameter values estimated with the SAEM algorithm

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Reduced Gompertz β day−1 0.0771 95.8 4.21
k - 9.85 - 0.935
σ - [0,0.324] - [0,10.2]

Gompertz α day−1 0.758 11.9 4.52
β day−1 0.0768 128.4 5.69
σ - [0,0.32] - [0,10.3]

Logistic α day−1 0.405 12.1 2.39
K mm3 1.19e+10 1.18e-9 8.78
σ - [0,0.476] - [0,11.7]

Exponential α day−1 0.077 39.98 9.58
σ - [0,596] - [0,17.1]

Table S4: Breast, fluorescence. Fixed effects (typical values) of the parameters of the different models. CV = Coefficient
of Variation, expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect
and multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard errors
(R.S.E.) of the estimates.
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Figure S1 (lung). Diagnostic plots from population analysis.
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Figure S1: Lung, volume. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess
goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles (together
with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions. C) Individual weighted
residuals (IWRES) with respect to time. D) Observations vs predictions Left: exponential, Center: logistic, Right: Gompertz
models.
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Figure S2 (breast-fluorescence). Diagnostic plots from population analysis.
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Figure S2: Breast, fluorescence. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks
assess goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles
(together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions. C) Individual
weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: exponential, Center: logistic, Right:
Gompertz models.
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Figure S3 (lung). Individual fits from population analysis.
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1Figure S3: Lung, volume. Three representative examples of individual fits computed with the population approach relative
to the exponential (left), the logistic (center) and the Gompertz (right) models.
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Figure S4 (breast-fluorescence). Individual fits from population analysis.
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1Figure S4: Breast, fluorescence. Three representative examples of individual fits computed with the population approach
relative to the exponential (left), the logistic (center) and the Gompertz (right) models.
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The reduced Gompertz model

Figure S5 (lung). Correlation between the Gompertz parameters and diagnostic plots of the reduced Gompertz
model with the population approach.
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Figure S5: Lung, volume. Correlation between the individual parameters of the Gompertz model (A) and results of the
population analysis of the reduced Gompertz model : visual predictive check (B), examples of individual fits (C) and scatter
plots of the residuals (D).
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Figure S6 (breast-fluorescence). Correlation between the Gompertz parameters and diagnostic plots of the re-
duced Gompertz model with the population approach.
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Figure S6: Breast, fluorescence. Correlation between the individual parameters of the Gompertz model (A) and results
of the population analysis of the reduced Gompertz model : visual predictive check (B), examples of individual fits (C) and
scatter plots of the residuals (D).
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Prediction of the age of a tumor

Figure S7 (lung). Backward predictions computed with likelihood maximization (LM) and with bayesian inference.
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1Figure S7: Lung, volume. Three examples of backward predictions of individuals A, B and C computed with likelihood
maximization (LM) and bayesian inference: Gompertz model with likelihood maximization (first row); reduced Gompertz
with likelihood maximization (second row); Gompertz with bayesian inference (third row) and reduced Gompertz with
bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The grey area is the
90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive distribution. The red line is
the predicted initiation time and the black vertical line the actual initiation time.
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Figure S8 (lung). Error analysis of the predicted initiation time.
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1Figure S8: Lung, volume. Accuracy of the prediction models. Swarmplots of relative errors obtained under likelihood
maximization (A) or bayesian inference (B). (C) Absolute errors.
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Figure S9 (breast-fluorescence). Backward predictions computed with likelihood maximization (LM) and with
bayesian inference.

A B C

Gompertz
(LM)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

Reduced
Gompertz

(LM)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

Gompertz
(Bayesian
inference)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

Reduced
Gompertz
(Bayesian
inference)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

0 tn 2
Time (days)

1.215e+05

1.215e+07

1.215e+09

Vinj

Fl
uo

re
sc

en
ce

 (p
ho

t./
s)

1Figure S9: Breast, fluorescence. Three examples of backward predictions of individuals A, B and C computed with
likelihood maximization (LM) and bayesian inference: Gompertz model with likelihood maximization (first row); reduced
Gompertz with likelihood maximization (second row); Gompertz with bayesian inference (third row) and reduced Gompertz
with bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The grey area
is the 90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive distribution. The red line
is the predicted initiation time and the black vertical line the actual initiation time.
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Figure S10 (breast-fluorescence). Error analysis of the predicted initiation time.
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1Figure S10: Breast, fluorescence. Accuracy of the prediction models. Swarmplots of relative errors obtained under
likelihood maximization (A) or bayesian inference (B). (C) Absolute errors.
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