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ABSTRACT
The equilibrium of incompressible spheroid–ring systems in rigid rotation is investigated by
numerical means for a unity density contrast. A great diversity of binary configurations is
obtained, with no limit either in the mass ratio or in the orbital separation. We found only
detached binaries, meaning that the end-point of the ε2-sequence is the single binary state in
strict contact, easily prone to mass exchange. The solutions show a remarkable confinement
in the rotation frequency–angular momentum diagram, with a total absence of equilibrium for
�2/πGρ � 0.21. A short band of degeneracy is present next to the one-ring sequence. We
unveil a continuum of bifurcations all along the ascending side of the Maclaurin sequence
for eccentricities of the ellipsoid less than ≈0.612 and which involves a gradually expanding,
initially massless loop.

Key words: gravitation – methods: numerical – stars: interiors – (stars:) binaries: general –
stars: rotation.

1 IN T RO D U C T I O N

Despite its academic character, the theory of figures gives essential
information on self-gravitating fluids like the mass, size, shape,
rotation rate, and energy content, which can be confronted with
observations (Horedt 2004). A broad range of applications is
concerned, e.g. normal and compact stars, binaries, interstellar
cores, planets (and initially the Earth), and galaxies (see e.g. Chan-
drasekhar 1969). There is a large variety of allowed configurations
depending on the equation of state, prescribed rotation profile,
internal circulations, and environmental effects like external gravity,
magnetic fields, or ambient pressure (see e.g. Hachisu 1986a;
Fujisawa & Eriguchi 2014; Huré, Hersant & Nasello 2018). The
possibility of discovering new states, even in the incompressible and
axisymmetrical limits, is an exciting source of motivation and also
very challenging from a technical point of view (Hachisu & Eriguchi
1984; Hachisu, Eriguchi & Nomoto 1986b; Nishida, Eriguchi &
Lanza 1992; Woodward, Sankaran & Tohline 1992).

In a pioneering paper, Eriguchi & Hachisu (1983) studied the
conditions for ‘core–ring’ and especially ‘ring–ring’ equilibria and
their position in the classical ω2–j2 diagram. In particular, they
showed that there is a maximum rotation rate for core–ring states
in rigid rotation. More recently, Ansorg, Kleinwächter & Meinel
(2003) have characterized the bifurcations along the descending
part of the Maclaurin sequence (MLS) with an unprecedented
accuracy from spectral decomposition of the fluid boundary (see
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also Hachisu, Eriguchi & Nomoto 1986a). They computed new
series of figures, denoted εk ≥ 2, which display a strong flattening
and a marked wavy shape. When k is an even number, k

2 pinchings
are present on both sides of the equatorial plane. At the end-point
of the corresponding sequence, the spheroid is on the verge of
splitting into a central core surrounded by m − 1 = k

2 ring(s). A
similar phenomenon exists when k is an odd number (a single ring
may lead to multiple, concentric ringlets). We have continued this
investigation for k = 2 (i.e. the ‘spheroid–ring’ case) to determine
which states can really exist beyond the sequence ending. This kind
of configuration is important for the physics of accretion discs and
tori around normal and compact stars (Abramowicz, Karas & Lanza
1998; Masuda, Nishida & Eriguchi 1998), mass transfer, rotation
and angular momentum exchange between the two components. For
this purpose, we have used a new version of the DROP code (Huré &
Hersant 2017), which enables us to take into account m > 1 detached
bodies in mutual interaction. The wide exploration of the parameter
space permits us to answer several major pending questions. In
particular, no contact binary other than the one reported in Ansorg
et al. (2003) was detected. The equilibrium states clearly fill the
bottom part of the ω2–j2 diagram (the rotation frequency must not
exceed a certain threshold), while they slightly overtake the one-ring
sequence (ORS) (e.g. Hachisu 1986a). In some cases, two different
states are characterized by the same rotation rate and angular
momentum. Besides, we find a collection of new routes linking the
MLS and the ORS for ellipsoids with an initial eccentricity lower
than ≈0.612. These results, once expanded to compressible systems,
might have interesting implications in various domains, e.g. the
physics of fast rotators and transient rings around Be stars (Meilland
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Figure 1. Configuration for a spheroid–ring system. The relative separation
is s = B1A2/OB1 and the axis ratios are ei =OAi/OBi (i = 1, 2). Points M
refer to the maximum enthalpy.

et al. 2006), accretion around compact stars (Trova et al. 2018), the
torus in active galactic nuclei (Mason 2015), massive discs and
rings orbiting proto-stars (Kratter & Matzner 2006; Takahashi &
Inutsuka 2016), planetary rings (Wisdom & Tremaine 1988), and
the formation of the Earth–Mooon system (Lock & Stewart 2017).

2 TH E O R E T I C A L BAC K G RO U N D

A figure of equilibrium basically obeys a first integral for the fluid
motion and thermodynamical content H − � − 	 = const., which
combines the enthalpy H = ∫

dP/ρ of the fluid, the gravitational
potential �, and the centrifugal potential 	 (Horedt 2004). As for
any self-gravitating fluid, � and ρ are linked through the Poisson
equation 
� = 4πGρ. In the incompressible limit of interest here,
the potential can be expressed as a one-dimensional integral over the
fluid boundary (Wong 1974; Ansorg et al. 2003), which introduces a
substantial simplification. An equation-of-state (EOS) P(ρ) as well
as a rotation profile (through 	) is to be prescribed in addition. Part
of the technical difficulty in solving this coupled equation comes
from the fact that neither the fluid boundary nor the mass density
is known in advance. A traditional way to capture the solutions
is the self-consistent-field (SCF) method, which iterates on the
enthalpy field from an initial seed until convergence (Ostriker &
Mark 1968; Hachisu 1986a). Note that this method is also used
in Eriguchi & Hachisu (1983), while Ansorg et al. (2003) can
directly solve, without any iteration, a linear system where the
unknowns are the coefficients describing the fluid boundary. The
case of multibody configurations, i.e. systems consisting of several
detached bodies in mutual interactions, introduces new difficulties.
There are more degrees of freedom (Hachisu 1986b). For m bodies,
we have typically 2m − 1 parameters, which are for instance m axis
ratios and m − 1 orbital separations. More options are possible,
since each body can also have its own EOS and rotation profile
(Hachisu et al. 1986).

The results reported here are based upon the DROP code, whose
capabilities are described in Huré & Hersant (2017). A new version
allowing us to compute the equilibrium of concentric m-bodies
in mutual interaction is fully operational. We focus on the case
with m = 2 where a ring (body number 2, or the secondary)
surrounds a central body (body number 1, or the primary). The
system is depicted in Fig. 1. The problem is scale free. We work
in dimensionless cylindrical coordinates (R̂, Ẑ). The spheroid and
the ring are both homogeneous (zero polytropic index) and they
share the same rigid rotation law (i.e. 	̂ = − 1

2 R̂2). An important
assumption concerns the mass density contrast, which scales the
density of each body with respect to its neighbour (or to a reference
body), namely

η = ρ2/ρ1. (1)

Figure 2. Equilibrium state at the end-point of the ε2-sequence to be
compared with Ansorg et al. (2003). Colours stand for the fluid boundary
where the enthalpy vanishes (bold pink), and a few isopotential lines are
given (dashed black); see also Fig. 1 and Table 1.

This quantity is set to unity in the following, as in Eriguchi &
Hachisu (1983). In practicality, each body has its own computational
grid, which is nominal in terms of the accuracy and stability of
the SCF method. The two Poisson equations are discretized at
second order and solved by using the multigrid method (Briggs,
Henson & McCormick 2000). Neumann boundary conditions (BCs)
are implemented at Ẑ = 0 for the ring, and additionally at R̂ = 0 for
the central body, and Dirichlet BCs elsewhere. All volume integrals
(BCs and output quantities) take into account the fluid boundaries,
which are detected through an 8-point directional Freeman chain
code from the enthalpy maps. This is essential to get clean solutions,
especially for a ‘hard’ EOS where ∂ln P/∂ln ρ < 1.

If the mass density contrast is fixed and the rotation law is the
same for both components, then there are only three parameters for
m = 2. The most natural triplet is composed of the two axis ratios
ei = OAi/OBi and the relative orbital separation B2A1/OB1 ≡ s
(see Fig. 1). With such a choice, however, the mass density contrast
between the two bodies is not under control. We can easily impose
a specific value if η is part of the input set. We then take (η = 1,
e2, s) as parameters, which means that the axis ratio of the central
body e1 becomes an output quantity. As observed, this does not
alter the convergence properties of the SCF method. The code
has been extensively checked for m = 1, and more recently for
m up to 7 (Boutin-Basillais & Huré 2018). The computations have
been performed with N = 129 grid nodes per direction, which
corresponds to  = 7 levels of multigrid. Numerical schemes being
second-order accurate in the grid spacing, errors (including the virial
parameter) are of the order of 1/N2 ∼ 10−4 typically (the results are
given with four significant digits at most).

3 SU RV E Y O F TH E PA R A M E T E R SPAC E

We have first detected the end-point of the ε2-sequence computed
in Ansorg et al. (2003). The equilibrium is shown in Fig. 2 and the
output data are gathered in Table 1 (rows 1 and 2). We see that
our results are in excellent agreement, given the adopted resolution.
Next, we have generated a large number of equilibria by varying the
axis ratio e2 of the ring and the separation s (while holding η = 1). In
contrast with single-body equilibria, any pair of parameters does not
necessarily lead to a solution. The number of successful runs is of
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4506 B. Basillais and J.-M. Huré

Table 1. Values obtained for the equilibria shown in Figs 2 and 3 (see text for the numerical set-up). Columns 1 and 2 are input parameters. See also Fig. 4.

Input pa-
rameters
e2 s M M1/M2 j2 ω2 e1 Comment/Ref.

0.5162a 0.0000 0.4105 0.029 72 0.054 33 0.3413 Ansorg et al. (2003)
0.5162a 0.0051 8.8511 0.4095 0.029 73 0.054 19 0.3413 configuration a, Fig. 2

0.9900 1.1204 3.6708 1026.8 0.000 88 0.031 07 0.8807 configuration b, Fig. 3
0.6380 0.3516 4.7567 1.0632 0.020 56 0.054 70 0.6092 configuration c, Fig. 3
0.9000 1.9118 5.3008 2.7043 0.011 48 0.013 18 0.9304 configuration d, Fig. 3
0.6000 5.0000 5.3798 0.0042 0.031 09 0.030 55 0.5548 configuration e, Fig. 3
0.7100 1.2021 11.558 0.3472 0.032 57 0.028 83 0.7240 configuration f, Fig. 3
0.6200 3.0844 143.49 0.0174 0.032 60 0.028 81 0.5926 configuration g, Fig. 3
0.9990 0.6910 3.2874 3 × 105 0.001 70 0.053 06 0.7906 critical point C, Fig. 4

aEnd-point of the ε2-sequence.

Figure 3. Same legend as for Fig. 2 but for six equilibria among the many runs performed (see Table 1 for associated key quantities). For panel (b), the details
of the ring structure are given in the inset.

the order of 33 000. All computed solutions are such that e1 � 0.33
and e2 � 0.51. There is no limit in the mass ratio M1/M2 ∈ [0,
∞[. Besides, the orbital separation s ranges from 0 to ∞. A few
examples of converged structures are given in Fig. 3. Associated
data are listed in Table 1 (rows 3 to 9). Unsurprisingly, binarity
induces deviations in shape with respect to single-body figures. The
central body shows a slight contraction between the pole and the
equator, while the ring is substantially flatter. The volume of each
fluid is therefore reduced compared to the single-body case. All
bodies have a convex shape. We find only detached binaries (see
Section 5). This means that the only system in contact system is the
end-point of the ε2-sequence (Ansorg et al. 2003).

Fig. 4 shows the results plotted in the ω2–j2 diagram, where ω

and j are respectively the dimensionless rotation rate � and the

dimensionless angular momentum J defined by
⎧⎪⎪⎨
⎪⎪⎩

ω2 = �2

4πGρ
,

j 2 = J 2

4πGM10/3ρ−1/3
,

(2)

where M = M1 + M2 is the total mass. Note that there is no
ambiguity in the definition of ρ since the mass density contrast
is unity. We have superimposed the MLS, the ORS, and the Jacobi
sequence for convenience. We clearly see that all solutions are
concentrated between the ascending part of the MLS and a first
limit curve (hereafter, the ‘high-ω limit’), which meets the MLS at
the critical point C (0.001 71,0.053 06) where the axis ratio of the
primary is e1 ≈ 0.791 and the orbital separation is s ≈ 0.691. There
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Rigidly rotating spheroid–ring systems 4507

Figure 4. The spheroid–ring solutions (grey dots) populate the ω2–j2

diagram in between the MLS, the high-ω limit, and the high-j limit (see text
for explanations). The MLS, ORS, Jacobi sequence, Hamburger sequence,
and ε2-sequence are also shown (plain lines). Points labelled a to f (cross)
correspond to equilibria shown in Fig. 3; see also Table 1. There is a band
of degeneracy rightward to the ORS (green dashed zone).

is no solution for ω � ωl(j). An analogue is known for binary stars
(Hachisu & Eriguchi 1984). In the left part of it, this limit curve is
close to linear, with

ω2
l ≈ 0.0536 + 0.09j 2. (3)

The right part of it is slightly bended and meets the end-point of the
ε2-branch where e1 ≈ 0.341. This is due to the critical rotation (see
Fig. 3c). The configurations located close to the MLS consist of a
prominent central body and a small ring (Fig. 3b). The orbital sep-
arations are moderate to large, but non-zero (see below). For points
located well in between the MLS and the ORS (Fig. 3d), the two bod-
ies are comparable in size and mass. The solutions overtake the ORS,
and reach a second limit curve (hereafter, the ‘high-j limit’), which
asymptotically merges with the ORS for large values of j, and attains
the end-point of the ε2-sequence where j2 ∼ 0.03. There is probably
a slight abuse of convention here in naming this limit since it does not
correspond to a unique, impassable value of j (this remark holds for
the high-ω limit). We simply mean that, for a given value of ω, there
is a maximal allowed value for j (with no equilibrium beyond). These
maximal values tend to ∞ when ω → 0. Another interesting point is
the presence of a zone of degeneracy located between the ORS and
the high-j limit (Figs 3f and g), where two different configurations
correspond to a single pair (j2, ω2). A point located close to the
ORS can correspond to two very different configurations. Either
the spheroid has a small size and relative mass, the ring dominates,
and the orbital separation s is large (Figs 3e and g). Then the ring

resembles very much the single ring. Or the spheroid and the ring
have comparable mass and size. In this case, the ring (in particular,
its axis ratio) is very different from the single ring equilibrium
(Fig. 3f). In this region where the rings are among the largest in
size, the convergence of the SCF method is tricky (the number of
SCF iterations rises, and the virial parameter deteriorates).

4 EQU I LI BRI UM SEQUENCES

4.1 Sequences with a variable orbital separation (the growth
of the primary)

The top panel of Fig. 5 shows four sequences bifurcating from the
ORS and corresponding to a decreasing orbital separation s, while
the axis ratio of the secondary e2 is held fixed. Since s is infinite on to
the ORS, leaving this branch means the birth and growth of a central
spheroid and the decrease of the diameter of the ring. We see that,
whatever the axis ratio of the initial ring on the ORS, one can never
reach the MLS, but the high-ω limit where j � 0.00171. When
e2 is significantly lower than unity, one reaches the high-ω limit
more directly. When e2 → 1, the sequence is first quasi-horizontal,
and then goes vertically along the MLS to finally attain the high-ω
limit. Asymptotically, for e2 → 1, one leaves the ORS at infinity
and one reaches the critical point C where s ≈ 0.691 (see below).
As s diminishes, we observe that e1 is decreasing as well, which
means that the central body flattens as the ring comes closer. The
total mass M decreases along the sequence (j decreases) whereas
the mass ratio M1/M2 increases.

4.2 Sequences with a variable axis ratio for the ring (the
growth of the equatorial ring)

The middle panel of Fig. 5 shows three new sequences branching
off from the MLS, which are obtained for a given value of the orbital
separation. Leaving the MLS implies the creation and subsequent
growth of an equatorial, fictitious ring with an axis ratio e2 = 1 (i.e.
a massless loop), positioned at an initial separation s. The lowest
permitted value happens to be ≈0.691. This occurs at the critical
point C. Therefore, any bifurcation from the MLS means that s
stands in the range [0.691, ∞[, while e1 � 0.791. By gradually
enlarging the ring, one gets closer to the ORS. We observe that the
central spheroid flattens; i.e., e1 decreases. The mass ratio M1/M2 is
plotted versus e2 in Fig. 6 for these sequences. When the axis ratio
of the ring is close to unity, the relative mass tends to zero and the
overall equilibrium is guided by the central body (i.e. near the MLS).
As soon as e2 starts to decrease, the initial massless ring grows in
size and in mass, and it finally dominates the equilibrium when e2

→ 0.55 (i.e. near the ORS). The total mass M increases along the
sequence (j increases) whereas the mass ratio M1/M2 decreases.

4.3 Sequence with fixed ring’s centre

It is interesting to consider a series of solutions obtained by holding
the main radius of the ring Rc = OA2 + 1

2 A2B2 fixed relative to
the size of the primary. The bottom panel of Fig. 5 shows the
results obtained for five values of Rc/OB1. As above, we start
from the MLS by enlarging an initial massless loop (a fictitious
ring with zero diameter) at a relative separation s = Rc/OB1 −
1. Again, bifurcations from the MLS are possible as long as we
stay below the critical point C. As the ring grows, the axis ratio
of the primary e1 decreases as one goes towards the ORS. For the
largest values of Rc/OB1, the sequences have a large amplitude,
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4508 B. Basillais and J.-M. Huré

Figure 5. Sequences obtained for constant values of e2 when leaving the
ORS (ton panel), for constant orbital separation s (middle panel), and
constant position of the ring centre relative to the spheroid (bottom panel)
when bifurcating from the ORS; see also Fig. 4. Curves are labelled with
the actual values of the fixed parameter.

cross the diagram rather horizontally (ω ∼ const.), then overtake
the ORS sequence, and go inside the band of degeneracy. These
sequences end when e2 reaches the nominal value of ≈0.55. The
case with Rc/OB1 = 1.735 is remarkable as it almost coincides with
the high-ω limit. The run of M and M1/M2 is the same as for the case
with s = const.

4.4 Sequences with a constant mass ratio M1/M2

As in Eriguchi & Hachisu (1983), we have built sequences for which
the mass ratio M1/M2 is held constant. This corresponds to systems
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Figure 6. Relative mass of the ring versus its axis ratio for the three
sequences obtained with a constant s (see Fig. 5, middle panel).
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Figure 7. Sequences obtained for constant values of the mass ratio M1/M2

(top panel), and for constant values of the total mass M (bottom panel). For
a given total mass, some sequences seem to converge towards the end-point
of the ε2-sequence.

undergoing mass exchange between the two components, or even
mass-loss or accretion from the ambient medium. We can easily
extract from the data cube a subset of solutions corresponding to
a given output quantity x ± 
x, where the bandwidth 
x depends
on the density of the data cube (the parameter survey does not have
an infinite numerical resolution in s and e2). Sequences obtained
for M1/M2 ∈ {0.01, 0.5, 1, 2, 10, 100} with an error on M1/M2

of about ≈10−4 typically are shown in Fig. 7 (top panel). When
M1/M2 → 0, the sequence is located near the ORS. This is expected
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Rigidly rotating spheroid–ring systems 4509

since the equilibrium is mostly dominated by the ring. On the
contrary, when M1/M2 → ∞, the sequence is close to the MLS,
and it terminates on the high-ω limit. This is in agreement with
Eriguchi & Hachisu (1983). In all cases, we observe that the axis
ratios e1 and e2 and the separation s are gradually decreasing while ω

increases.

4.5 Sequences with a constant total mass

Sequences associated with a constant total mass M = M1 + M2

are also of particular interest, since a spheroid–ring system may
evolve over some period with a given amount of matter, without
any contact with the environment. Sequences obtained for M = {4,
5, 6, 8, 10.20, 100} (still with a precision of the order of 10−4 in
relative) are displayed in Fig. 7 (bottom panel). The sequences start
next to the ORS where M1 and M2 are comparable and, as they
approach the high-ω limit, M1 decreases while M2 increases. Along
this sequence, values of e1, e2, and s are again decreasing while ω

increases.

5 C ON C LUSION AND PERSPECTIVES

We have studied the figures of equilibrium for spheroid–ring sys-
tems, assuming rigid rotation and incompressibility, by surveying
the parameter space (e2, s) for a unity density contrast. This work
is complementary to the papers by Eriguchi & Hachisu (1983) and
Ansorg et al. (2003). While, for single-body equilibria, there is a
solution for any axis ratio, this is no more true for a spheroid–
ring system. As shown, a limited set of input parameters leads to
a solution, and the rotation rate must be rather low. There is no
contact binary except the end-point of the ε2-equilibrium. Many
states of critical rotation populate the equilibrium diagram in the
vicinity of this singular point, for which the SCF method struggles
with converging. In this zone, indeed, the configurations are highly
sensitive to the input parameters. A very small change in the rotation
rate or/and the angular momentum implies a drastic modification
of the orbital separation and/or axis ratio, and vice versa. This
sensitivity, already pointed out in Eriguchi & Hachisu (1983), might
be of great importance regarding the stability and evolution of the
binary. The end-point of the ε2-equilibrium seems an ideal state
for any potential exchange of matter between the two components.
A perturbation in the mass and dynamical content might drive the
system to a very different configuration, unless some kind of self-
regulation sets in. It would be interesting to investigate this question
in more detail (e.g. Woodward et al. 1992; Abramowicz et al. 1998;
Montero, Font & Shibata 2010).

Eriguchi & Hachisu (1985) have shown that the MLS bifurcates
towards the ORS through an intermediate body that is concave in
shape. Direct routes from the MLS to the ORS are in fact possible in
the ascending part of the MLS at much lower rotation rates, provided
the axis ratio of the central spheroid is greater than ≈0.791. At the
new bifurcation points, a massless fictitious ring takes root at a
relative orbital separation s � 0.691, and grows up when leaving
the MLS towards the ORS, while the spheroid depreciates. This
clearly indicates that tiny self-gravitating rings can orbit at some
distance around massive quasi-spherical bodies, planets (Wisdom &
Tremaine 1988) and stars (Meilland et al. 2006). This meets the
fundamental question of the stability of all solutions in the data
cube, which would be interesting to analyse, for instance through
time-dependent simulations.

We can envisage a similar approach for each εk > 2 sequence
unveiled by Ansorg et al. (2003), with multiple detached rings

possibly present. In particular, the end-point of the ε3-sequence
should lead to another kind of detached binary, i.e. a ring–ring
configuration (Eriguchi & Hachisu 1983). Despite such a system
probably being highly unstable, it would be interesting to see if
such systems display similar features (limited domain of solutions,
degenerate states, bifurcations).

Finally, two severe assumptions would be worth reconsidering.
The first one concerns the mass density contrast, which has been
set to unity. There is no reason to believe that gravitationally
interacting fluids evolve with the same mass density. How will
the configurations computed here and the associated sequences
be modified if the condition η = 1 is relaxed? Besides, we have
considered only incompressible fluids, which is another strong
hypothesis. It would be interesting to examine the case of ‘softer’
EOSs. How are the results changed for a non-zero polytropic index?
The impact of the rotation law can also be investigated.
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Boutin-Basillais B., Huré J.-M., 2018, in SF2A-2018: Proceedings of the

Annual Meeting of the French Society of Astronomy and Astrophysics,
Multi-Body Figures of Equilibrium in Axial Symmetry. p. 111

Briggs W. L., Henson V. E., McCormick S. F., 2000, A Multigrid Tutorial,
2nd ed., Society for Industrial and Applied Mathematics, Philadelphia,
PA

Chandrasekhar S., 1969, Ellipsoidal Figures of Equilibrium. Yale Univ.
Press, New Haven and London

Eriguchi Y., Hachisu I., 1983, Prog. Theor. Phys., 69, 1131
Eriguchi Y., Hachisu I., 1985, A&A, 148, 289
Fujisawa K., Eriguchi Y., 2014, MNRAS, 438, L61
Hachisu I., 1986a, ApJS, 61, 479
Hachisu I., 1986b, ApJS, 62, 461
Hachisu I., Eriguchi Y., 1984, Ap&SS, 99, 71
Hachisu I., Eriguchi Y., Nomoto K., 1986a, ApJ, 308, 161
Hachisu I., Eriguchi Y., Nomoto K., 1986b, ApJ, 311, 214
Horedt G. P., ed., 2004, Astrophysics and Space Science Library, Vol. 306,

Polytropes – Applications in Astrophysics and Related Fields. Kluwer
Academic Publishers, Dordrecht, Boston, London
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