
HAL Id: hal-02165785
https://hal.science/hal-02165785

Preprint submitted on 26 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Let there be Chaining: How to Augment your IGP to
Chain your Services

Adrien Wion, Mathieu Bouet, Luigi Iannone, Vania Conan

To cite this version:
Adrien Wion, Mathieu Bouet, Luigi Iannone, Vania Conan. Let there be Chaining: How to Augment
your IGP to Chain your Services. 2019. �hal-02165785�

https://hal.science/hal-02165785
https://hal.archives-ouvertes.fr

Let there be Chaining: How to Augment your IGP
to Chain your Services

Adrien Wion∗†, Mathieu Bouet∗, Luigi Iannone†, Vania Conan∗
∗Thales, Gennevilliers, France
{firstname.name}@thalesgroup.com
†Telecom ParisTech, Paris, France
{firstname.name}@telecom-paristech.fr

Abstract—Ever since Network Functions Virtualization has
replaced dedicated appliances, ISPs have been able to add a
degree of flexibility in their traffic engineering. However, it
also has increased the complexity of the optimization problem,
because it is now necessary to place virtual functions and route
traffic jointly. Insofar, a logically centralized approach has been
taken, where a so-called orchestrator, having full knowledge of
the network, the virtual functions, and the traffic, run complex
algorithms to find a suitable solution to the problem. The outcome
of the algorithms are then translated to network configurations to
be pushed to all of the appliances. We argue that there is no need
to fully centralize every decision, rather we can leverage existing
network intelligence to achieve the same goal. In particular we
propose to augment the routing layer with the notion of services,
so to rely on the robustness and scalability of Interior Gateway
Protocols (IGP). Our solution leverages on existing distributed
routing protocols where, in addition, autonomous nodes announce
information about the virtual services they provide. Our design is
modular and incrementally deployable and has been implemented
in what we call a NFV Router. In our evaluation, we show
that (i) NFV Routers distributed chaining decisions are close
to optimal centrally-computed paths, (ii) on a large scale testbed
deployment, NFV Routers efficiently steer traffic through chains
and only add a small overhead to control traffic and (iii) our
distributed system, because of its local control loop, has a faster
reaction to network events than centralized solutions.

I. INTRODUCTION

Network services used to be built as an ordered set of
physically wired hardware appliances that processed traffic for
security or optimization purpose. With Network Functions Vir-
tualization (NFV), middleboxes are more and more software-
based running on top of virtualization-enabled commodity
equipment, thus allowing cost reduction and network flexi-
bility. Nevertheless, with this new paradigm, new challenges
have arisen. Indeed, the set of service functions, often chained
to offer complex services, are completely separated from
the physical topology and virtual Service Functions (vSF)
are more ephemeral and dynamic in nature. Steering traffic
through these sparsely located virtual entities, without com-
promising end-users’ sessions and Quality of Service (QoS),
is therefore a complex challenge.

Even though Internet Service Providers (ISPs) critically rely
on middleboxes for security and policy compliance [1], most
of existing NFV management solutions rely on an omnipotent
logically centralized entity, generally named orchestrator. Such
centralized approaches, as they require a holistic view of

the whole network to perform service chaining, introduce
control reactivity and resiliency (e.g., single point of failure)
issues. Also, this may be quite costly for operators, since it
requires the deployment of a whole new management and
control infrastructure. In addition, the control part, which is
meant to modify network configuration so to implement the
orchestrator decisions, tends to be poorly interoperable with
legacy appliances and is thus hard to deploy incrementally.

We believe that centralizing every orchestration decision for
service function chaining is not necessary. Even if some high-
level long-term decision should remain centralized, we believe
that service chain establishment is not one of them. We argue
that service availability would gain from a distributed and
dynamic design. To that extent, we propose to augment the
network routing layer to make it service-aware. In particular,
we argue in this paper that it is possible to leverage on
any Interior Gateway Protocol (IGP), anycast addressing,
and any service chaining encapsulation, to construct a dis-
tributed service-aware control-plane. We propose a modular
architecture that we name NFV-Router (NFV-R for short). We
show that it does not require complex elements and remains
interoperable with legacy appliances. We analytically compare
NFV-R’s distributed chaining decisions to a centralized ap-
proach, formulating the service chaining problem as an Integer
Linear Program. In this way, we were able to evaluate the
cost and the path stretch induced by hop-by-hop routing. We
also implemented an NFV Router and emulated real-world
ISP topologies. We show how our system successfully steers
traffic through the intended service chains. We also evaluated
the induced overhead and the network dynamics in different
configurations.

The rest of the paper is organized as follows. First, we
overview related work in Sec. II. We then introduce in Sec. III
our modular approach to augment IGP so to allow distributed
service chaining. We detail in Sec. IV the architecture of our
augmented node: the NFV Router. In Sec. V, we describe the
methodology we used in our evaluation. In Sec. VI, we sow
the results obtained through the analytic analysis and a large-
scale emulation. Finally, Sec. VII concludes the paper.

II. RELATED WORK

Most of existing solutions manage service chains by relying
on a central control. Based on a holistic network view, they

run an offline resource allocation algorithm to place vSF and
assign flow paths [2], [3]. Even if these solutions provide
theoretical optimized placement for batch of requests, they
can hardly be ported in real networks. Indeed, they assume
that (i) requests are known in advance, and (ii) vSF and flows
can be placed at the same time. Some works, integrate in
their orchestration scheme the technical limitations induced
by their chain placements, such as vSF flow affinity [4].
Nonetheless, they mainly rely on real-time response from a
remote central controller to monitor vSF and network state
and enforce per flow static path, which thus increases their
system fragility (single point of failure, control loop delay). We
instead propose to decouple traffic steering and vSF placement
decision: service chains should be steered in a fast loop so to
enforce traffic engineering policies on existing vSFs, while a
slower decision loop should adapt vSF provisioning.

To enforce service function paths, several traffic steering
techniques have been proposed. Most of existing works lever-
age on a central controller to populate fine-grained forwarding
rules on every network appliances along a flow path [4]–[8].
Several limitations of this approach have been identified. First,
these rules grow with the number of flows, policies and chains’
size, while forwarding state on network appliance is limited
by costly memory [9]. Second, they grow in complexity when
a vSF make a hard to handle change in network headers
(e.g., Network Address Translation service) [7], [8], [10].
Recent works, instead, propose to (i) encode service chains
as a set of waypoints in the packet header, and (ii) rely on
the network routing layer for waypoint connectivity [9], [11],
[12]. This approach is not only interoperable with regular IP
networks but also reduce forwarding state. Indeed, flow path
is either fully described in packet headers [9], [11] or stored
on waypoints at flow initialization [12]. Several techniques
have been proposed to encode the path of service function
chains [11]–[13]. In Segment Routing v6 [11] and Dysco [12],
an ingress node is in charge of setting a list of locations to
reach before being delivered using IPv6 and TCP extensions
respectively. Recent work at the Internet Engineering Task
Force (IETF) proposes Network Service Header (NSH) as
a dedicated encapsulation header for service chaining [13].
We follow this line of thoughts to build service functions
chains and, in addition and differently from previous work, we
propose a generic method to build a distributed control plane
based on existing routing protocols for service chaining.

The majority of vSFs, store session state about the flow
they process, which hardens service elasticity. Indeed, vSF
instances can be created, scaled or destroyed due to fluctuation
in flow volumes, migrated for resource optimization, or just
recovered due to failure. When these events happen, flow’s
paths can be modified and flow’s session state can be migrated
from a vSF to another. Some solutions have been proposed
to coordinate forwarding and session state. OpenNF [5] and
Split/Merge [14] propose to add an open interface on vSF so to
allow a central control point to coordinate flow re-routing and
session state migration with a make-before-break approach.
Dysco [12] argue instead that forwarding and session state

IDS @IPFW

@IPFW

@IPIDS

FW

FW

(a) Network topology.

FWIDS

(b) IGP logical view.

Fig. 1: Network topology composed of 6 NFV-Rs, with 3 of
them hosting a vSF instance (Fig. 1a). The IGP views the two
FW instances as a single entity, since they announce the same
anycast IP address (Fig. 1b). A first flow (plain red line) is
routed through the IDS and the top FW instance. A second
flow (dashed blue line) is then routed through the IDS and the
bottom FW instance as the top FW instance is already loaded
with the first flow.

should be consolidated in vSFs and rely on a distributed
session protocol to reconfigure a service chain. Kablan et
al. [15] avoid this state coordination problem by making
vSF stateless. They consolidate session state in a consistent
high-speed back-end data store, which limits this solution to
vSF sharing the same location. We argue that even if state
coordination and consolidation are suitable for local changes
(happening on the same Point of Presence); they do not scale
to multi-site environment, which would be better served by a
distributed protocol.

III. DISTRIBUTED CHAINING WITH IGP SERVICE
AUGMENTATION

In this section, we present how the network routing layer can
be augmented to enable distributed service function chaining.
For shortness and clarity, we explicitly limit our scope to
Interior Gateway Protocol (IGP) and let the case of external
gateway protocol for future work. Indeed, any network IGP
can be directly leveraged to convey the location, the type, and
the necessary information associated to a virtual appliance and
build an augmented network view. Based on this enhanced
topology, any routing scheme can be used to steer traffic
through service functions, that is to chain services. Such an
approach enables to fully benefits of the IGP field-proven
scalability and robustness.

An IGP enables gateways (in general routers) to exchange
routing information. This routing information is then used by
each gateway to construct an IGP network view and route

network-layer protocols. We propose to augment such a view
with the concept of service. We call it the service plane
topology. It is composed of two types of nodes: NFV Routers
(NFV-R), which are equivalent to IGP gateway nodes, and
virtual Service Functions (vSF), which is a new type we
introduce. NFV-Rs are physical appliances that not only run
the IGP but also host vSFs. NFV-Rs can be classic IP routers
with VNF hosting capabilities, Points of Presence or even
datacenters. vSFs correspond to virtual service function, also
named virtual network function, instances. They can provide
different services depending on their type: Intrusion Detection
System (IDS), Firewalling, NAT, stream encoding etc. These
instances are hosted by NFV-Rs, which allow them to directly
announce on the IGP the functions they can provide.

We also propose to leverage on anycast addressing to in-
clude vSF in the service plane topology. All the vSF instances
providing a same service are announced, by the NFV-Rs that
host them, with the same IP address but with their own vSF
cost. Thus in the service plane topology, a type of service is
represented by a vSF node while an instance is represented
by a link (see Fig. 1). This approach has multiple advantages.
First, it reduces the number of vSF routes announced on the
IGP. Second, a service chain can be explicitly and unambigu-
ously described as an ordered sequence of waypoints to reach
(the anycast addresses) and rely on the network routing layer to
choose the vSF instances and the path to use. Finally, NFV-Rs
only have to announce a vSF to make it immediately available
for new incoming flows without any further configuration.
Nonetheless, anycast routing is known to have shortcomings:
packet belonging to a same flow can be routed to different vSF
instances if the best path changes, which would break vSF flow
affinity. To prevent this behavior, we enhance vSF announces
with a forwarding address: a dedicated unicast address on
the NFV-R acting as a vSF proxy (e.g., a router loopback
interface). We also leverage on flow routing to consistently
steer all the packets belonging to a same flow in the same
sequence of vSF instances and thus provide statefullness at
the flow level. To do so, NFV-Rs cache the initial routing
decision they make when the first packet of a flow is sent to
the chosen vSF forwarding address.

Figure 1 illustrates with a toy example the approach we
propose. Figure 1a represents the network topology constituted
of NFV-Rs. Each vSF instance of a given type is announced
on the network with the same anycast address. In particular
the two Firewall (FW) instances announce the same address:
@IPfw. Flows have to be processed here by a unique chain:
IDS + FW . The first flow is thus routed through the IDS
instance and then through the top FW instance. Indeed, in this
example, this vSF instance is at one hop from the NFV-R that
hosts the IDS instance. The NFV-Rs that host the used vSFs
advertise their neighbors with the new experienced load or any
other relevant information. When the second flow arrives, the
Firewall instance at the bottom is preferred, resulting in load
balancing among the FW instances (Figure 1b). Since the route
of the first flow has been cached, it continues to be driven to
the top FW instance even if the best path has changed. Note

NFV-R A

NFV-R D

NFV-R C

NFV-R B

NFV-R E

FW FW

IDS

Classifier

10

10

10 1010

10

10

20 5

25

(a) Network topology.

NFV-R
A

NFV-R
C

NFV-R
B

NFV-R
D

FW

IDS

10

20

10

20

5

25

Network Metric vSF Metric
(b) Service plane topology seen at the NFV-R A.

Fig. 2: Each NFV-R builds its service plane topology (example
at Node A on Fig. (b)) with the Network costs and vSF costs
so as to compute the next hop(s).

that in Figure 1b, since the same address is announced but no
adjacency is made between the vSF (the two Firewall instances
in our example), the flows that use a link to reach a service
function (drawn as boxes) have to use the same link to go out
of it. However, note as well that this link is only virtual, since
it is the representation of the vSF instance in the IGP, but in
reality, is running directly on an NFV-R.

Augmenting the IGP modularly allows to fully benefit from
what is already done at the network layer routing. Anycast
addressing leverages IGP information sharing to build the
augmented topology. Based on this topology a routing decision
maps vSF type to the appropriate next(s) NFV-R(s) based
on network and instances metric. Finally, the IGP gives us
robust IP connectivity between NFV-Rs to steer flows through
the correct set of instances. Note that the IGP prevents from
flow remapping in case of link failure. Indeed, once the IGP
has converged, connectivity to NFV-Rs is restored without
any change in cached routing decisions. Moreover, NFV-Rs
can be incrementally deployed in domains where they coexist
with classical routers. Indeed, since services are announced
as IP addresses, classical routers will advertise them to their
neighbor. Based on this raw IP topology, an NFV-R is able to
reconstitute the service plane topology.

In our approach, a lightweight central management node

is responsible to configure high level policies on the NFV-R.
As for any IGP, these policies are common to all the nodes.
They allow controlling the decision-making at each NFV-R.
Such policies include flow classification rules, to map traffic to
the needed service chain. They also concern routing decisions
since all NFV-Rs must share the same routing objectives.
Based on the service plane topology, the NFV-Rs can use any
path computation algorithm (e.g., shortest path first), to choose
which instance of the next vSF of the chain the flow will go
through. Additionally, high level policies can define as well
how to compute vSFs’ IGP costs, stating which data to use
and the function to translate such data in a cost.

Our approach can rely on network encapsulation to convey
the necessary information so to drive flows through the as-
sociated service chain. This information can be used to take
routing decision at the source or at every NFV-R processing
the flow (hop-by-hop). This header should include (i) part or
all of the service chain identified at the classification step at
the ingress of the network, (ii) the next service step in this
chain, and iii) a consistent flow identifier to cache the routing
decision. For instance, in the example in Figure 1, the NFV-R
that hosts the IDS instance must have a mean to know that a
packet belonging to a specific flow has been assigned to the
service chain IDS + FW , that the next service to apply is
FW , and which of the FW instances it actually has to go
through.

In the rest of the paper, we focus on hop-by-hop routing,
although source routing is applicable too, and take OSPF
as an example for the IGP. Fig. 2 illustrates how a service
plane topology is constructed from a network topology. In
this approach, every NFV-R computes the shortest path to
every vSF type in terms of network and vSF cost and map
each vSF type to the associated NFV-R forwarding address.
This mapping can be easily computed by running Dijkstra
algorithm on the topology presented in Fig. 2b and by getting
the last hop before the destination in the shortest path to
a vSF type. The cost that each NFV-R associates to the
announced prefix, i.e. the IGP cost to reach such an address,
represents the vSF state and can be based on a plethora of
parameters [16], [17] (e.g., its available capacities, its load
etc.). Note however that the used metrics (link and service)
should be in the same order of magnitude. More importantly,
they have to be additive, so to guarantee loop-free convergence
even when considering multiple constraints [18], [19]. Using
OSPF, NFV-Rs, as classic routers, already compute routing
table to get aggregated network costs to NFV-Rs. Thus, the
algorithm to find the route to the next vSF instance has to
run only on a graph of depth 2 and add very low compute
overhead to the routing system. In Section VI, we discuss
the cost overhead induced by a hop-by-hop routing decision
compared to centrally computed end-to-end path.

IV. NFV-R ARCHITECTURE

In this section, we describe the architecture of a NFV-R
and the design its main modules. An NFV-R, as illustrated
in Figure 3, is composed of a normal IP router providing

NFV Router

Connector

Network

vSF vSFvSF

Resource
Monitor

Route
Injector

vSF
Routing

Algorithm

High Level
Policies

Router

D-MANO

Fig. 3: NFV-R architecture. Doted arrows illustrate vSF
routing control flow. Solid arrows show how vSFs state is
monitored, transformed in a cost, which is then injected in the
IGP.

network connectivity, a connector, which attaches the router
to the different vSF instances, the vSFs themselves, providing
the services, and a Distributed MANagement and Orchestra-
tion (D-MANO) component, which allows local autonomous
management of the node.

Router: The router connects our system to the network and
participates in this network IGP. It is directly connected to
the connector external interface and announces this interface’s
IP address on the IGP, making the connector forwarding
address reachable. The router only conveys packet based on
their destination IP and is unaware of the service chaining
encapsulation. It exposes a control interface used by the D-
MANO to inject or remove vSF anycast addresses, announcing
the services available on the node and the associated costs.
This control interface is also used to get the IGP topology to
build the service plane topology.

Connector: The connector acts as a proxy for the vSF
and allows dispatching traffic to them. It exposes an external
interface whose IP address is used as forwarding address in
anycast announce. It enforces chaining decisions as follows.
It forwards incoming packets to the intended vSF instance,
based on the encapsulation header. Once the packets have been
processed, the vSF forwards them back to the connector, which
enforces a forwarding decision toward the next vSF instance
location (i.e., its connector) according to the service topol-
ogy. These forwarding decisions are cached in the connector,
indexed by a hash computed using flow-related information.

The connector also exposes a control interface, used by the
D-MANO, to populate the service-aware routing table and the
mapping between service function and vSF instance unicast
address. This information is used by the connector to enforce
chaining decisions for outgoing traffic, and locally balance the
load among the vSF instances that provide the same service
(same prefix).

Names Nodes Edges Demands Type
RF1755 87 322 7527 Rocketfuel inferred
RF3967 79 294 6160 Rocketfuel inferred
SYNTH50 50 276 2449 Synthetic

TABLE I: Evaluation dataset.

vSF: vSF instances process service flow packets according
to the service they provide. Once a packet has been processed,
the vSF instance updates the chaining encapsulation header
to point to the next service. Each instance is monitored and
managed by the D-MANO.

Distributed MANO: The D-MANO controls and manages
the other NFV-R’s components. It is configured with high level
policies, which guide its autonomous orchestration decisions.
It has three essential control functions (illustrated in Figure 3).
The first one consists in monitoring vSF instances, deriving
from them vSF costs and the second one in injecting such
costs in the IGP, via the router. The third function consists in
getting IGP information from the router to build the service
plane topology, computing the service-aware routing table and
then pushing it in the connector.

V. EVALUATION METHODOLOGY

In this section, we describe the methodology we followed
to evaluate our proposal. We present the publicly available
ISP topologies. We introduce the mathematical formulation
of the SFC routing problem we use to compare the chaining
decision taken by a holistic centralized orchestrator and the
decision taken hop-by-hop (at each next vSF hosting waypoint)
by NFV-Rs. Then, we present our implementation of NFV-R
and the Grid’5000 testbed [20] we use to emulate and evaluate
NFV-R networks.

A. Dataset

We use three ISP topologies that were previously used in [9]
and made publicly available [21]. They are summarized on
Table I. The first one was synthetically generated, while the
two others were inferred in the Rocketfuel project [22]. They
include path delays. We use the weights provided with the
dataset to configure the IGP link costs. We consider all the
nodes as NFV-Rs able to host vSF instances. The dataset
also contains demand matrices that we use for service chain
demands.

For each experiment, we randomly select 5% of the overall
demands to build our service requests (ingress, egress, bitrate),
as in [9]. We run two types of scenarios. In scenario 1, all the
requests have to be steered through one vSF. Only one type of
vSF is present on the network. There are 10 instances of it. In
scenario 2, all the requests have to be steered through a vSF
of type 1 and then a vSF of type 2. There are 5 instances of
each type. In both scenarios, the vSF instances are placed on
the nodes that have the highest betweenness centrality, i.e., the
nodes traversed by the highest number of IGP shortest paths.
Such selection criteria has been shown to be efficient for vSF
chaining in centralized approaches [23].

Parameters
G Graph representing the network
N Set of routers and NFV-Rs
P Subset of N representing the NFV-Rs
E Set of links
R Set of SFC requests to serve
V Set of available vSF types
lv,p Boolean. An instance of vSF v is located on NFV-R p
cn1,n2 IGP link cost between node s1 and node s2
ur Number of vSFs in the service chain of the request r
ir Ingress node for the request r
er Egress node for the request r
br Bandwidth used by the request r
vir ith vSF type asked by the request r

Decision variables
xi,v
r Boolean representing where vir is placed

yl,n1,n2
r Float representing flow from vSF vl−1

r to vSF vlr

TABLE II: Notations.

B. Analytical comparison between centralized and distributed
chaining decisions

In this subsection, we describe the models for the central-
ized and the distributed chaining schemes.

1) SFC routing model parameters: We formulate as an
Integer Linear Program (ILP) model the SFC routing problem.
The notations for the variables and parameters are summarized
in Table II. The network is represented by a directed graph
G = (N , E), where N is the set of nodes (classic routers and
NFV-Rs) and E is the set of edges. P represents the subset of
nodes that are actually NFV-Rs. The set of different vSF types
is depicted by V . On our topology, vSF instances placement is
represented by the input lv,p. We describe a SFC request with
the following parameters: ir the ingress node, er the egress
node, br the bitrate, Vr = (v1r , v

2
r , ..., v

lr
r) the set of requested

vSF types.
2) Cost function: As explained in Section III, we consider

two types of costs in our system: the vSF cost and the network
link cost. We model these costs as follows.

vSF Cost: The vSF cost represents the cost to use vSF
instances. It is proportional to the requests’ bandwidth, which
may be expressed in packet or Bytes per second.

Cp =
∑
p∈P

∑
r∈R

ur∑
i=1

brx
i,p
r (1)

Link Cost: The link cost corresponds to the network cost
defined on the IGP. cn1,n2 is the IGP static link cost of the link
n1, n2. Note that in our model the link cost is proportional to
the used bandwidth to take into account shortest paths.

Cl =
∑

(n1,n2)∈E

∑
r∈R

ur+1∑
l=1

yl,n1,n2
r cn1,n2 (2)

3) Problem formulation: The goal of a centralized orches-
trator is to find a path for each request, which minimizes both
network and processing costs, while steering traffic through
the correct sequence of vSFs. The problem is formulated as
follows:

Objective:
min Cp + Cl (3)

Subject to:

∀p ∈ P, ∀r ∈ R, ∀i ∈ [1 : ur], xi,p
r ≤ lp,vi

r
(4)

∀r ∈ R, ∀i ∈ [1 : ur],
∑
p∈P

xi,p
r = 1 (5)

∀r ∈ R, ∀(n1, n2) ∈ E , ∀u ∈ [1 : ur + 1],

yu,n1,n2
r >= 0

(6)

∀r ∈ R, ∀n1 ∈ N ,∑
n2/(n1,n2)∈E

yi,n1,n2
r −

∑
n2/(n1,n2)∈E

yi,n2,n1
r =

(xi−1,n1
r − xi,n1

r) · br, 2 ≤ i ≤ ur

(1− xi,n1
r) · br, for n1 = ir, i = 1

(xi,n1
r) · br, for n1 6= ir, i = 1

(xi−1,n1
r − 1) · br, for n1 = er, i = ur + 1

(xi−1,n1
r) · br for n1 6= er, i = ur + 1

(7)
The objective function aims at minimizing both the vSF cost

and the link cost. Equation 4 ensures that requests are only
routed to instantiated vSF. Equation 5 ensures that each request
uses only 1 vSF instance to process their flow at each step of
the chain. Equation 6 ensures that the amount of resource unit
on a link is not negative. Equation 7 ensures network flow
conservation.

Note that in this model, we do not take into account the
capacity of the links or of the vSF instances. We directly
use the IGP cost and the vSF cost. We consider that traffic
engineering or vSF scaling decision should not be taken at
the routing layer.

This formulation models the decision of a central orches-
trator to find the overall best paths for each request. We adapt
it to also model the distributed hop-by-hop decision taken by
NFV-Rs. Indeed, we run the ILP segment by segment: from
the ingress nodes to the first vSF instances, then from these
vSFs instances to the next ones and so on until the egress
nodes. We implemented these ILP formulations with CPLEX
Optimization Studio. In Section VI, we compare these two
routing schemes.

C. Emulation on Grid5000 testbed

In this subsection, we describe our NFV-R prototype imple-
mentation and the testbed environment used to experimentally
evaluate our proposal on large emulated network topologies.

1) NFV-Router prototype: In the following paragraph, we
detail the we made technical choices to build our NFV-R and
describe the implementation of each components presented in
Section IV.

We build our implementation on top of the Open Shortest
Path First (OSPF) protocol. This IGP is widely used and
easily extensible thanks to opaque Link State Advertisements
(LSAs). We leverage these opaques to announce information

related to the vSF instances and call them vSF LSA. These
LSAs do not trigger SPF computation when received by
routers. Thus our solution does not affect the IGP stability. The
only overhead induced by flooding vSF LSAs is the additional
traffic control. We show in section VI that this overhead is
negligible. We convey 3 pieces of data with these LSAs:
i) the anycast address of a vSF instance (i.e. the provided
service), ii) the associated vSF cost, and iii) the associated
forwarding address (i.e., the location of this vSF instance). In
our implementation, we choose to use a simple vSF metric:
the number of packet per second processed by a vSF instance.

We use the Network Service Header (NSH) [13] encapsula-
tion format to steer traffic through service function chains. We
motivate our choice since this standard is explicitly designed
for SFC use cases and has been adopted by a plethora of
opensource framework [24]–[27]. In NSH, the Service Path
Identifier (SPI) field uniquely identifies a set of abstract service
functions (i.e., the Service Function Chain), while the Service
Index (SI) points to the next function the packet has to be
delivered to in the SPI set. NSH also provides extensible
metadata fields that we leverage to convey the hash value used
to consistently identify a flow along its chain even if a vSF
modify the original packet. Such hash value is computed at
the classification step with the 5-tuple of the original packet.

We build our NFV-R using Linux and package it as an LXC
container [28]. We isolate each of the architectural components
using Linux network namespace.

Router: In our implementation, we use FRRouting [29],
an open source IP routing protocol suite, to implement our
OSPF router. In particular, we use the OSPF API offered by
FRRouting to mirror the Link-State Database (LSDB) in the
D-MANO and to inject vSF opaque LSAs.

Connector: We implemented the connector logic in P4, a
language for programming the dataplane [30]. In our imple-
mentation, we add the classification function to the Connector
to ease NSH encapsulation. On each NFV-R, the connector is
connected to a traffic generator. Based on the traffic matrix,
UDP traffic is generated and forwarded to the Connector. The
connector then enforces a classification policy: based on the
UDP destination port, it encapsulates incoming packet with the
associated NSH header, choose the next vSF to reach based
on its vSF routing table and forward it to the router. Our P4
code is run on the simple switch target [31]. Its runtime CLI
is exposed to the D-MANO to configure the switch (e.g., with
classification policy) and populate the vSF routing table at
runtime.

vSF: vSFs are implemented as simple socket servers, which
parse incoming packets, decrement their NSH SI field, and
forward them back to the connector. The focus of our work
being on the routing system, we purposely choose simplistic
vSFs for the time being. The Python psutil library enables us
to monitor the resources used by the vSF processes.

D-MANO: The D-MANO has been implemented in Python.
Its main loop runs as follows. First, it polls the resource use
of the local vSF instances to build the related costs. The
costs are then announced on the network with vSF opaque

LSAs. Second, the D-MANO gets the vSF announces from its
mirrored LSDB. With these data, it builds a service view (see
Fig. 2b). Based on this topology, it computes the shortest path
to every vSF type present on the network, get the associated
forwarding address, and update the vSF routing table on the
connector.

2) Grid’5000 environment: We deployed emulated topolo-
gies of NFV-Rs on the Grid’5000 testbed [20]. Grid’5000 is
a large scale and versatile testbed, which provides access to
a large amount of resources (12000 CPU cores) distributed
on different sites and interconnected by a 10Gb/s WAN. This
testbed is highly reconfigurable, which makes it a great tool
for experiment-driven research. In our experiments, we use
Distem [32], a network emulation tool, to deploy NFV-R LXC
on bare-metal servers. For each NFV-R, Distem uses Linux
cgroups to allocate 4 vCPUs (i.e., 4 CPU cores) to each NFV-
R. Distem connects NFV-R with VXLAN tunnels to emulate
the topology links. We run our experiments on a cluster
of 48-nodes with the following host main characteristics:
Intel Xeon E5-2630L v4 (Broadwell, 1.80GHz, 2 CPUs/node,
10 cores/CPU), 10Gb Ethernet interface. We deployed the
topologies and scenarios with these tools.

Traffic is generated at the granularity of an UDP flow. We
fix flows arrival rate, duration and packet size. Packet rate of
each flow is then accommodated to correspond to the demand’s
bandwidth in bits per second. Thus, once the steady state is
reached (i.e., when a first flow duration period has elapsed),
each demand generates the dataset input bandwidth with k
UDP flows, k corresponding to the flow duration divided by
the arrival rate, which we set to 50s and 2 flow/s respectively.
Even if this uniform traffic distribution is simplistic, it gives
a first assessment on our system behavior. In future work, we
will use more realistic traffic patterns.

VI. EVALUATION

In this section we evaluate our proposal following the
methodology explained in Section V. First, we use our ILP
formulations to compare the additional cost and path stretch
induced by a distributed decision. Then, we outline the control
reactivity induced by a centralized orchestrator compared to
a distributed solution. Finally, we evaluate with emulation
the dynamics of the system and the additional control traffic
overhead.

A. Centralized vs. distributed chaining decisions
First, we compare the overall cost addition and path stretch

induced by our distributed hop-by-hop chaining decision. For
each combination of topology and scenario, we run 20 experi-
ments with different traffic matrices (computed as explained in
Section V). In each experiment, we compute with our ILP the
cost of each demand and the path length in both the centralized
and distributed cases. We then make the ratio of the distributed
cost and centralized cost for each demand. We apply the same
methodology to compute the path stretch distribution.

Fig. 4 presents the cost ratios. We can observe that with
chains of 1 vSF, the median costs are the same for cen-
tralized and distributed decisions. For 75% of the demands,

RF1755
1 vSF

RF3967
1 vSF

Synth50
1 vSF

RF1755
2 vSF

RF3967
2 vSF

Synth50
2 vSF

Topology
 Scenario

1.0

1.2

1.4

1.6

Co
st

 ra
tio

Fig. 4: Cost ratio between centralized and distributed chaining
decisions for chains with 1 and 2 vSFs.

RF1755
1 vSF

RF3967
1 vSF

Synth50
1 vSF

RF1755
2 vSF

RF3967
2 vSF

Synth50
2 vSF

Topology
 Scenario

1.0

1.5

2.0

Pa
th

 st
re

tc
h

Fig. 5: Path stretch between centralized and distributed chain-
ing decisions for chains with 1 and 2 vSFs.

the cost difference is below 4% on the two largest topolo-
gies (RF1755 and RF3957) and below 20% for the smallest
topology (Synth50 with 50 nodes). Logically, the cost ratio
increases when the number of vSFs per chain increases. The
distributed decision scheme still well performs on the two
largest topologies. The median goes up to 1.2 for the synthetic
topology.

This limited cost increase with the distributed chaining
scheme is counter-balanced by the control reactivity. Indeed,
while NFV-Rs take routing and chaining decisions almost
instantaneously, since they use the augmented IGP, that is the
service plane topology, a centralized system will rely on an
control node to monitor and take decision.

On each topology, we place the central network orchestrator
on the node with the highest betweenness centrality and
compute the Round Time Trip (RTT) to every node on the
network. This RTT corresponds to the control loop of a central
control node, it first gets the data from the network nodes and
then enforces a decision on it. Fig 6 shows the control loop
latency induced by a centralized orchestration. This overhead
can reach 14ms in worst case scenario for inferred topologies
and 16ms for the synthetic one. Even if these values can
seem small, they are significant for a controller, which applies
chaining decision on network appliances forwarding traffic at

rf1755 rf3967 synth50
Topology

2.5

5.0

7.5

10.0

12.5

15.0
RT

T
to

 c
on

tro
lle

r (
m

s)

Fig. 6: Centralized controller reactivity.

linerate. In addition, they have to be compared to the reactivity
of the NFV-Rs that is almost instantaneous.

B. Additional control overhead and traffic steering on emu-
lated networks

We now present the results of our large-scale experiments.
We compare different update period for vSF LSAs and discuss
the tradeoff between the network traffic control overhead
induced by these LSAs and the network dynamics.

Fig. 7 and Fig. 8 show the additional overhead generated by
NFV-Rs with one and two types of vSFs respectively. In both
cases, there are at all 10 instances in the network. Logically,
when the frequency is low, the overhead is low. We can also
observe that it is slightly higher with two vSFs types than with
one. Indeed, the routers have to propagate distinctive LSAs.

The control overhead has to be discussed with the dynamics
of traffic steering. Indeed, a low LSA period results in a
less accurate view of the network at routers. Fig. 9 shows
the traffic distribution when there is one vSF type on the
largest topology. We can see that the load is well distributed
on the instances, considering also OSPF weights. When the
LSA period increases, the traffic distribution tends to be less
stable but remains quite fair. Fig. 10 presents the results when
there is two vSF types. The load doubles on the instances as
there are five of each type. We can also observe that the spread
slightly increases with increase of the LSA period. Finally, we
summarize in Table III and Table IV the experiment results
for the two other topologies with one and two vSF types
respectively. They are conform to the above observations.

Topology RF3967 SYNTH50
LSA Period 1s 5s 10s 1s 5s 10s

Worst NFV-R Mean 12.20 12.25 11.25 10.33 10.36 11.05
Std 0.27 0.78 1.68 1.80 3.57 6.01

Best NFV-R Mean 7.70 8.38 8.60 9.80 9.62 7.46
Std 0.59 1.55 2.21 1.74 3.15 4.56

TABLE III: Traffic distribution (%) for 1 vSF chains.

VII. CONCLUSION

In this paper, we have proposed to augment the network
routing layer, thus relying on the robustness and scalability of
IGPs, to steer traffic into service chains. We have presented

1 5 10
LSA update period (s)

0

500

1000

1500

2000

OS
PF

 a
dd

iti
on

al
 c

on
tro

l t
ra

ffi
c

 (b
yt

es
/s

/li
nk

)

rf1755
rf3967
synth50

Fig. 7: OSPF overhead induced by NFV-Rs with various LSA
update periods for 1 vSF chains.

1 5 10
LSA update period (s)

0

500

1000

1500

2000

OS
PF

 a
dd

iti
on

al
 c

on
tro

l t
ra

ffi
c

 (b
yt

es
/s

/li
nk

)

rf1755
rf3967
synth50

Fig. 8: OSPF overhead induced by NFV-Rs with various LSA
update periods for 2 vSF chains.

NFV
R8

NFV
R3

NFV
R42

NFV
R40

NFV
R52

NFV
R39

NFV
R12

NFV
R28

NFV
R19

NFV
R35

0

5

10

15

20

Tr
af

fic
 d

ist
rib

. o
n

vS
Fs

 (%
)

LSA 1s LSA 5s LSA 10s

Fig. 9: Traffic distribution over vSF instances with various
LSA update periods for 1 vSF chains on the RF1755 topology.

NFV
R3

NFV
R12

NFV
R28

NFV
R35

NFV
R40

NFV
R19

NFV
R8

NFV
R39

NFV
R42

NFV
R52

0

10

20

30

40
Tr

af
fic

 d
ist

rib
. o

n
vS

Fs
 (%

)
LSA 1s LSA 5s LSA 10s

Fig. 10: Traffic distribution over vSF instances with various
LSA update periods for 2 vSF chains on the RF1755 topology,
type 1 vSFs on the left, type 2 vSFs on the right.

Topology RF3967 SYNTH50
LSA Period 1s 5s 10s 1s 5s 10s

Worst NFV-R
(Type 1 vSF)

Mean 22.34 20.99 21.09 23.92 27.08 31.38
Std 2.04 2.75 4.61 2.84 6.30 10.50

Worst NFV-R
(Type 2 vSF)

Mean 25.71 25.44 25.21 20.10 21.42 20.72
Std 0.27 0.58 0.78 2.38 5.84 9.90

Best NFV-R
(Type 1 vSF)

Mean 18.82 18.91 18.10 18.84 17.52 14.50
Std 1.48 2.37 2.97 2.67 3.41 5.13

Best NFV-R
(Type 2 vSF)

Mean 16.46 16.91 17.30 19.92 19.31 19.21
Std 0.70 2.08 2.06 2.32 4.77 8.92

TABLE IV: Traffic distribution (%) for 2 vSF chains.

our solution, described the architecture of our augmented node
(called NFV-Router) and built a proof of concept, which can be
incrementally deployed on current networks. We have evalu-
ated our proposal on ISP topologies and demand matrices. The
evaluation shows that NFV Routers’ chaining decisions are
close to optimal centralized decisions, while ensuring a quasi
instantaneous reactivity. Moreover, our large-scale emulation
results show that, with a small control traffic overhead, NFV-
Routers smoothly steer traffic through chains.

In future works, we plan to study: (i) if this solution could
be applied to external gateway protocol so to provide inter-
domain service chaining, (ii) which meaningful metrics could
be used for vSF and (iii) to which extent our distributed service
plane topology could be leveraged to take distributed vSF
provisioning decisions.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,” in Proc. of the ACM SIGCOMM Conference,
2012, pp. 13–24.

[2] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba,
“Distributed service function chaining,” IEEE Journal on Selected Areas
in Communications, vol. 35, no. 11, pp. 2479–2489, 2017.

[3] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[4] S. Palkar, C. Lan, S. Han et al., “E2: A framework for NFV appli-
cations,” in Proc. of the Symposium on Operating Systems Principles
(SOSP), 2015, pp. 121–136.

[5] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network func-
tion control,” in ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, 2014, pp. 163–174.

[6] Y. Zhang, N. Beheshti, L. Beliveau et al., “Steering: A software-defined
networking for inline service chaining,” in Proc. of IEEE Network
Protocols (ICNP), 2013, pp. 1–10.

[7] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proc. of the ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, 2013, pp. 19–24.

[8] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209

[9] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A declarative and expressive approach to
control forwarding paths in carrier-grade networks,” in ACM SIGCOMM
computer communication review, vol. 45, no. 4. ACM, 2015, pp. 15–28.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang et al., “SIMPLE-fying middlebox policy
enforcement using SDN,” in Proc. of the ACM SIGCOMM, 2013, pp.
27–38.

[11] A. Abdelsalam, F. Clad, C. Filsfils et al., “Implementation of virtual
network function chaining through segment routing in a linux-based
NFV infrastructure,” in Proc. of the IEEE Conference on Network
Softwarization (NetSoft), 2017, pp. 1–5.

[12] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford,
“Dynamic service chaining with dysco,” in Proc. of the Conference of
the ACM Special Interest Group on Data Communication, 2017, pp.
57–70.

[13] P. Quinn, U. Elzur, and C. Pignataro, “Network service header (NSH),”
Internet Requests for Comments, RFC 8300, 2018.

[14] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. of the USENIX Conference on Networked Systems
Design and Implementation (NSDI), 2013, pp. 227–240.

[15] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in
Proc. of the USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2017, pp. 97–112.

[16] “nfv-vital.”
[17] P. Naik, D. K. Shaw, and M. Vutukuru, “NFVPerf: Online performance

monitoring and bottleneck detection for NFV,” in Proc. of the IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2016, pp. 154–160.

[18] Z. Wang and J. Crowcroft, “Bandwidth-delay based routing algorithms,”
in Proc. of the IEEE Global Telecommunications Conference (GLOBE-
COM), vol. 3, 1995, pp. 2129–2133.

[19] J. J. M., “Algorithms for finding paths with multiple constraints,”
Networks, vol. 14, no. 1, pp. 95–116.

[20] D. Balouek, C. Amarie et al., “Adding virtualization capabilities to
the Grid’5000 testbed,” in Cloud Computing and Services Science,
ser. Communications in Computer and Information Science. Springer
International Publishing, 2013, vol. 367, pp. 3–20.

[21] “Defo website,” https://sites.uclouvain.be/defo/.
[22] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies

with rocketfuel,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 133–145, 2002.

[23] N. Tastevin, M. Obadia, and M. Bouet, “A graph approach to placement
of service functions chains,” in IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), 2017, pp. 134–141.

[24] “fd.io,” https://fd.io/.
[25] “Opnfv,” https://opnfv.org.
[26] “Opendaylight,” https://www.opendaylight.org/.
[27] “Onos,” https://onosproject.org/.
[28] “Linux container (lxc),” https://linuxcontainers.org/.
[29] “Frrouting,” https://frrouting.org/.
[30] P. Bosshart, D. Daly, G. Gibb et al., “P4: Programming protocol-

independent packet processors,” ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 3, pp. 87–95, 2014.

[31] “P4 software switch,” https://github.com/p4lang/behavioral-model.
[32] “Distributed systems emulator (distem),” https://distem.gforge.inria.fr/.

