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Abstract

In this paper, we study in the Markovian case the rate of convergence in the Wasserstein
distance of an approximation of the solution to a BSDE given by a BSDE which is driven by
a scaled random walk as introduced in Briand, Delyon and Mémin (Electron. Comm. Pro-
bab. 6 (2001), 1–14).

1. Introduction.

In this paper, we are concerned with the discretization of solutions to BSDEs of the form

Yt = G(B) +
∫ T

t
f(Bs, Ys, Zs) ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T,

where B is a standard Brownian motion. These equations have been introduced by Jean-
Michel Bismut for linear generators in [2] and by Étienne Pardoux and Shige Peng for Lipschitz
generators in [14].

In one of the first studies on this topic, in the case where the generator f may depend on
z as well, Philippe Briand, Bernard Delyon and Jean Mémin [5] proposed an approximation
based on Donsker’s theorem. They showed that the solution (Y,Z) to the previous BSDE can
be approximated by the solution (Y n, Zn) to the BSDE

Y n
t = G(Bn) +

∫
]t,T ]

f(Bn
s−, Y

n
s−, Z

n
s ) d〈Bn〉s +

∫
]t,T ]

Zns dB
n
s , 0 ≤ t ≤ T,

where Bn is the scaled random walk

Bn
t =

√
T/n

[nt/T ]∑
k=1

ξk, 0 ≤ t ≤ T,

and (ξk)k≥1 is an i.i.d. sequence of symmetric Bernoulli random variables. They proved, in
full generality, meaning that G(B) is only required to be a square integrable random variable,
that (Y n, Zn) converges to (Y,Z). However, the question of the rate of convergence was left
open. Right now it seems to be hopeless to get a result in this direction for such a general path-
dependent terminal condition G(B). But in the Markovian case, meaning that G(B) = g(BT ),
∗In memory of Jean Mémin from whom I learned lots of mathematics.
†Many thanks to Pierre Baras for very fruitful discussions about the heat equation.
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this problem seems to be tractable, in particular due to the PDE structure behind. Indeed,
(Y, Z) is related to the semilinear heat equation

∂tu(t, x) + 1
2∆u(t, x) + f(t, x, u(t, x),∇u(t, x)) = 0, (t, x) ∈ [0, T [×R, u(T, ·) = g, (1)

where, under certain regularity conditions, we can choose

Ys = u(s,Bs) and Zs = ∇u(s,Bs).

In the case where Bn is the discretized Brownian motion, the link to PDEs was exploited in
[18, 3] to get the rate of convergence, in the Markovian case, of the classical scheme for BSDEs.
The convergence of this scheme was already proved in [6, Proposition 13] for a general terminal
condition and a generator that is Lipschitz in its spatial coordinates but without any rate of
convergence.

Even though the link with PDEs was pointed out in [5], the rate of convergence of the
approximation of BSDEs given by scaled random walks was completely open. In two recent
papers, Christel Geiss, Céline Labart and Antti Luoto [10, 9] give a first answer to this question.
They showed that the error between (Y n, Zn) and (Y, Z) is of order n−ε/4 when g is assumed
to be ε-Hölder continuous and f(t, ·) Lipschitz continuous. One of the main arguments in
these papers consists in constructing the random walk from the Brownian motion B using the
Skorohod embedding (see [17]) together with generalizations of the pioneering work of Jin Ma
and Jianfeng Zhang [13] on representation theorems for BSDEs. This approach allows to work
with convergence in the L2-sense even if the problem naturally arises in the weak sense. The
drawback is that the rate of convergence n−ε/4 obtained in these papers is not optimal as one
can expect n−ε/2.

The objective of our study is to improve the previous rate of convergence by using a weak
limit approach, the error being measured in the Wasserstein distance. Our starting point is a
result of Emmanuel Rio [15] who proved that, when T = 1, for all r ≥ 1, there exists a constant
Cr such that, for all n ≥ 1, Wr(Bn

1 , G) ≤ Cr n−1/2, where Wr is the Lr-Wasserstein distance and
G a standard normal random variable (see Section 3). Firstly, we generalize this result to cover
the case where f ≡ 0 which corresponds to the heat equation. Then, using the associated PDE,
in particular representation formulas in the spirit of [13], we are able to prove that

Wr(Y n
t , Yt) ≤ Cr n−ε/2, and Wr(Znt , Zt) ≤

Cr√
T − t

n−ε/2 for all t ∈ [0, T [,

when g and f(t, ·, y, z) are ε-Hölder continuous, which gives the correct rate of convergence when
the error is measured in the Wasserstein-distance. We refer to Theorem 10 in Section 5 for the
precise statement.

2. Notation.

In all the sequel, T > 0 is a fixed positive real number. We work on a complete probability
space (Ω,F ,P) carrying a standard real Brownian motion {Bt}0≤t≤T , and {Ft}0≤t≤T stands for
the augmented filtration of B which is right continuous and complete.

We consider the following BSDE

Yt = g(BT ) +
∫ T

t
f(s,Bs, Ys, Zs) ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T. (2)

Throughout this article, we will assume for the function g defining the terminal condition and
the generator f the following:
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Assumption (A1). There exist 0 < ε ≤ 1 and 0 < α ≤ 1 such that it holds:

(i) The function g : R −→ R is ε-Hölder continuous: for all (x, x′) ∈ R2 one has∣∣g(x)− g
(
x′
)∣∣ ≤ ‖g‖ε ∣∣x− x′∣∣ε .

(ii) The function f : [0, T ] × R × R × R −→ R is α-Hölder continuous in time, ε-Hölder
continuous in space and Lipschitz continuous with respect to (y, z): for all (t, x, y, z) and
(t′, x′, y′, z′) in [0, T ]× R× R× R one has∣∣f(t, x, y, z)− f

(
t′, x′, y′, z′

)∣∣
≤ ‖ft‖α

∣∣t− t′∣∣α + ‖fx‖ε
∣∣x− x′∣∣ε + ‖fy‖Lip

∣∣y − y′∣∣+ ‖fz‖Lip
∣∣z − z′∣∣ . (3)

Most of the time, we do not need to distinguish between ‖fy‖Lip and ‖fz‖Lip and we let
‖f‖Lip := max (‖fy‖Lip, ‖fz‖Lip).

Convention: Later the phrase that a constant C > 0 depends on (T, ε, f, g) stands for the
fact that C can be expressed in terms of (T, ε, ‖fx‖ε, ‖fy‖Lip, ‖fz‖Lip,Kf , ‖g‖ε, g(0)) where

Kf := sup
t∈[0,T ]

|f(t, 0, 0, 0)|.

Similarly, a dependence on (T, α, ε, f, g) means an additional dependence on (α, ‖ft‖α).

From [4, Theorem 4.2] it is known that under (A1), the BSDE (2) has a unique Lp-solution
(Y,Z) for any p ∈]1,∞[. So for (t, x) ∈ [0, T [×R we let

(
Y t,x
s , Zt,xs

)
s∈[t,T ] be the square integrable

solution to the BSDE

Y t,x
s = g

(
Bt,x
T

)
+
∫ T

s
f
(
r,Bt,x

r , Y t,x
r , Zt,xr

)
dr −

∫ T

s
Zt,xr dBr, t ≤ s ≤ T, (4)

where Bt,x
r := x+Br−Bt, and set, as usual, for x ∈ R, u(T, x) := g(x), and, for (t, x) ∈ [0, T [×R,

u(t, x) := Y t,x
t = E

[
g(Bt,x

T ) +
∫ T

t
f
(
r,Bt,x

r , Y t,x
r , Zt,xr

)
dr

]
.

It is well known that the function u is continuous on [0, T ] × R (see also Lemma 6 below)
and under Lipschitz assumptions in (x, y, z) and for α ≥ 1

2 it is the viscosity solution to (1),
see [20, Theorem 5.5.8]. Moreover, in this Markovian setting, for (t, x) ∈ [0, T ] × R, we have
Y t,x
s = u(s,Bt,x

s ) a.s. for all s ∈ [t, T ]. In [19, Theorem 3.2], for a generator which is Lipschitz
continuous in all space variables and a measurable g with polynomial growth, J. Zhang proved
that u belongs to C0,1 ([0, T [×R) and that Zt,xs = ∇u(s,Bt,x

s ) a.e. on [t, T [×Ω. Moreover, the
following representation holds

∇u(t, x) = E
[
g(Bt,x

T )BT −Bt
T − t

+
∫ T

t
f
(
r,Bt,x

r , Y t,x
r , Zt,xr

) Br −Bt
r − t

dr

]
, (t, x) ∈ [0, T [×R.

If F is the function given by

F (s, x) := f(s, x, u(s, x),∇u(s, x)) for (s, x) ∈ [0, T [×R, (5)

we thus have

u(t, x) = E
[
g(Bt,x

T ) +
∫ T

t
F (r,Bt,x

r ) dr
]
, (t, x) ∈ [0, T [×R, (6)
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together with

∇u(t, x) = E
[
g(Bt,x

T )BT −Bt
T − t

+
∫ T

t
F (r,Bt,x

r )Br −Bt
r − t

dr

]
, (t, x) ∈ [0, T [×R. (7)

These formulas play an important role in the sequel.
In Section 4 and in the appendix, we extend these results to the case where f(t, ·, y, z) is

ε-Hölder continuous and make the regularity of u and ∇u precise.

As mentioned before, we are concerned with the approximation of the solution
(
Y t,x, Zt,x

)
to (4) by a solution to the BSDE driven by a scaled random walk. To do this, let us consider,
on some probability space, not necessarily (Ω,F ,P), an i.i.d. sequence (ξk)k≥1 of symmetric
Bernoulli random variables. For n ∈ N∗ := {1, 2, 3, ...} we set h := T/n and we consider the
scaled random walk

Bn
t :=

√
h

[t/h]∑
k=1

ξk, 0 ≤ t ≤ T,

where [x] := max{r ∈ Z : r ≤ x} for any real number x. As we did for the Brownian motion, for
x ∈ R and 0 ≤ t ≤ s ≤ T we put

Bn,t,x
s := x+Bn

s −Bn
t .

Let us introduce some further notation. We denote the ceiling function by dxe := min{r ∈
Z : r ≥ x} for x ∈ R. Moreover, we set

nt := [t/h], t := h[t/h] = hnt and t := hdt/he, t ∈ [0, T ].

For n ∈ N∗ let us consider the following BSDE driven by Bn:

Y n
t = g(Bn

T ) +
∫

]t,T ]
f(s,Bn

s− , Y
n
s− , Z

n
s ) d〈Bn〉s −

∫
]t,T ]

Zns dB
n
s , t ∈ [0, T ].

It was shown in [5] that, as soon as h ‖f‖Lip < 1, this BSDE has a unique square integrable
solution (Y n, Zn), Y n being adapted and Zn being predictable with respect to the filtration
generated by Bn. By construction, Y n is a piecewise constant càdlàg process with Y n

t = Y n
t .

The process Zn is defined as an element of L2(Ω × [0, T ], dP ⊗ d〈Bn〉), where we start with a
Zn defined only on the points {kh : k = 1, . . . , n} and extend it to ]0, T ] as a càglàd process
(Znt )t∈]0,T ] by setting Znt = Zn

t
. The previous BSDE is actually a discrete BSDE that can be

solved by hand since, for k = 0, · · · , n− 1, we have

Y n
kh = Y n

(k+1)h + h f
(
(k + 1)h,Bn

kh, Y
n
kh, Z

n
(k+1)h

)
−
√
hZn(k+1)hξk+1, Y n

nh = g(Bn
T ).

Thus, if Y n
(k+1)h is given,

Zn(k+1)h = h−1/2 E
(
Y n

(k+1)hξk+1 | Fnkh
)
, (8)

Y n
kh = Y n

(k+1)h + h f
(
(k + 1)h,Bn

kh, Y
n
kh, Z

n
(k+1)h

)
−
√
hZn(k+1)hξk+1

= E
(
Y n

(k+1)h | F
n
kh

)
+ h f

(
(k + 1)h,Bn

kh, Y
n
kh, Z

n
(k+1)h

)
, (9)

where the last equality follows by taking the conditional equation w.r.t. Fnkh of the second line.
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Since we are in a Markovian setting, there is also an analog of the Feynman-Kac formula. If
u is a given function we set

Dn
+u(x) := 1

2
(
u(x+

√
h) + u(x−

√
h)
)
, Dn

−u(x) := 1
2
(
u(x+

√
h)− u(x−

√
h)
)
,

and
∇nu(x) := h−1/2Dn

−u(x). (10)

Remark 1. From the definition of Dn
+ and Dn

−, we get that if u is ε-Hölder, Dn
+u and Dn

−u are
also ε-Hölder with constant ‖u‖ε.

Let Un be the solution to the finite difference equation, where for x ∈ R and k = 0, . . . , n−1
we require{

Un(kh, x) = Dn
+U

n((k + 1)h, x) + hf((k + 1)h, x, Un(kh, x), h−1/2Dn
−U

n((k + 1)h, x)),
Un(nh, x) = g(x).

(11)

Then, we obtain from (8) and (9) (cf [5, Proposition 5.1]) that

Y n
kh = Un

(
kh,
√
h

k∑
i=1

ξi

)
, k = 0, . . . , n,

Znkh = ∇nUn
(
kh,
√
h
k−1∑
i=1

ξi

)
, k = 1, . . . , n.

These formulas rewrite in continuous time to

Y n
t = Y n

t = Un(t, Bn
t ), t ∈ [0, T ], and Znt = Znt = ∇nUn

(
t, Bn

t−
)
, t ∈]0, T ].

If we set, for 0 ≤ t ≤ T and x ∈ R, Un(t, x) := Un(t, x), we have Y n
t = Un(t, Bn

t ).
More generally, for 0 ≤ t < T , we define (Y n,t,x, Zn,t,x) as the solution Y n,t,x = (Y n,t,x

s )s∈[t,T ]
and Zn,t,x = (Zn,t,xs )s∈]t,T ] to the BSDE

Y n,t,x
s = g(Bn,t,x

T ) +
∫

]s,T ]
f(r,Bn,t,x

r− , Y
n,t,x
r− , Zn,t,xr )d〈Bn〉r −

∫
]s,T ]

Zn,t,xr dBn
r , s ∈ [t, T ]. (12)

We set Y n,T,x
T = g(x). Then,

Y n,t,x
s = Y n,t,x

s = Un(s,Bn,t,x
s ), 0 ≤ t ≤ s ≤ T. (13)

Let us observe that Zn,t,x is first defined at the points t = kh, k = nt + 1, . . . , n. As before we
let Zn,t,xs := Z

n,t,x
s for s ∈ ]t, T ]. We have

Zn,t,xs = Z
n,t,x
s = ∇nUn(s,Bn,t,x

s− ) for s ∈ ]t, T ].

In particular,

Zn,t,xs = ∇nUn(s+ h,Bn,t,x
s ) whenever s ∈ ]t, T ]\{kh : k = nt + 1, . . . , n}. (14)
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Of course, we have
Un(t, x) = Y n,t,x

t = Y
n,t,x
t for t ∈ [0, T ].

Similarly, we define, for (t, x) ∈ [0, T [×R,

∆n(t, x) := ∇nUn(t+ h, x) = Z
n,t,x
t+h . (15)

With this notation, (14) rewrites as

Zn,t,xs = ∆n(s,Bn,t,x
s ) whenever s ∈ ]t, T ]\{kh : k = nt + 1, . . . , n}. (16)

It follows that

Un(t, x) = E

g (Bn,t,x
T

)
+ h

n∑
k=nt+1

f
(
kh,Bn,t,x

(k−1)h, Y
n,t,x

(k−1)h, Z
n,t,x
kh

)
= E

[
g
(
Bn,t,x
T

)
+
∫ T

t
f
(
s,Bn,t,x

s , Y n,t,x
s , Zn,t,xs

)
ds

]
,

which rewrites, taking into account (13) and (16), to

Un(t, x) = E
[
g
(
Bn,t,x
T

)
+
∫ T

t
f
(
s,Bn,t,x

s , Un(s,Bn,t,x
s ),∆n(s,Bn,t,x

s )
)
ds

]

= E
[
g
(
Bn,t,x
T

)
+
∫ T

t
f
(
s,Θn,t,x

s

)
ds

]
, (17)

where

Θn,t,x
s :=

(
Bn,t,x
s , Un(s,Bn,t,x

s ),∆n(s,Bn,t,x
s )

)
. (18)

We will prove in Section 5 that (Un,∆n) converges to (u,∇u).
From now on we assume that n ≥ n0(T, ‖f‖Lip) where n0(T, ‖f‖Lip) ∈ N∗ is the integer given

in Lemma 12 in the appendix and which automatically implies also existence and uniqueness of
solutions because n0 > T‖f‖Lip.

3. Scaled random walk and Wasserstein distance.

One starting point of our paper is the following result of Emmanuel Rio [15] (Theorem 2.1); see
also [16]. This result covers, up to a generalization, the case where the generator vanishes, i.e.
f ≡ 0.

Let ψ be the convex function defined by ψ(x) = e|x|− 1. The Orlicz norm associated to this
function ψ of any real random variable X is given by

‖X‖ψ := inf{a > 0 : E [ψ(X/a)] ≤ 1}, inf ∅ := +∞.

Let us recall that, for any r ≥ 1,

sup
x>0

{
xr

ψ(x)

}
< +∞, ‖X‖Lr ≤

(
sup
x>0

{
xr

ψ(x)

})1/r
‖X‖ψ. (19)

Let X and Y be two random variables end let us denote by µ the law of X and by ν the law of
Y . With the usual abuse of notation, the Wasserstein distance associated to ψ is defined by

Wψ(µ, ν) = Wψ(X,Y ) := inf {‖X − Y ‖ψ : law(X) = µ, law(Y ) = ν} .
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Let (Xk)k≥1 be an i.i.d. sequence of random variables with E [X] = 0, E
[
X2] = 1, and such

that, for some σ > 0, E
[
eσ|X|

]
< +∞. Let G be a standard normal random variable. In [15,

Theorem 2.1], Emmanuel Rio proved that there exists a constant C > 0 such that, for n ≥ 1,

Wψ

(
n−1/2Sn, G

)
≤ C n−1/2, where Sn = X1 + . . .+Xn.

As a byproduct, for any r ≥ 1, there exists a constant cr > 0 such that

Wr

(
n−1/2Sn, G

)
≤ cr n−1/2,

where Wr stands for the Lr-Wasserstein distance

Wr(µ, ν) = Wr(X,Y ) := inf
{
E [|X − Y |r]1/r : law(X) = µ, law(Y ) = ν

}
. (20)

We have also the result of Kantorovich-Rubinstein, i.e.

W1(µ, ν) = W1(X,Y ) = sup{E [f(X)]− E [f(Y )] : ‖f‖Lip ≤ 1}. (21)

Remark 2. We could also consider the case where 0 < r < 1 by using the fact that, in this
case, E(|X − Y |r) is a distance (see the arguments in [1, Section 7.1]). In general, we have
Wp(µ, ν) = Wq(µ, ν) for 0 < p < q <∞.

Let us start with a straightforward generalization of Rio’s result.

Proposition 3. There exists a C > 0 such that, for all x ∈ R and all 0 ≤ t ≤ s ≤ T ,

Wψ

(
Bn,t,x
s , Bt,x

s

)
≤ C

(
T

n

)1/2
.

As a byproduct, taking into account (19), for any r ≥ 1, there exists a cr > 0 such that, for
all x ∈ R and all 0 ≤ t ≤ s ≤ T ,

Wr

(
Bn,t,x
s , Bt,x

s

)
≤ cr

(
T

n

)1/2
. (22)

Proof of Proposition 3. We have, for any x ∈ R and all 0 ≤ t ≤ s ≤ T ,

Wψ (x+Bn
s −Bn

t , x+Bs −Bt) = Wψ (Bn
s −Bn

t , Bs −Bt) .

If s = t, then Bn
t −Bn

s = 0, and we have

Wψ (Bn
s −Bn

t , Bs −Bt) = ‖Bs −Bt‖ψ =
√
s− t ‖G‖ψ ≤

√
h ‖G‖ψ.

Let us assume that t < s and let us write

Wψ (Bn
s −Bn

t , Bs −Bt) = Wψ

(
Bn
s −Bn

t , Bs −Bt
)

≤Wψ

(
Bn
s −Bn

t , Bs −Bt
)

+Wψ

(
Bs −Bt, Bs −Bt

)
. (23)

Let us treat each term separately. For the first one, Rio’s result gives

Wψ

 1√
ns − nt

ns∑
k=nt+1

ξk, G

 ≤ C (ns − nt)−1/2 ,
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and multiplying by
√
ns − nt

√
h, we get, since

√
h(ns − nt)G is equal to Bs−Bt in distribution,

Wψ

(
Bn
s −Bn

t , Bs −Bt
)
≤ C

√
h.

Let us deal with the second term of (23). Let β(s, t) := min(s− t, s− t). Then

Wψ

(
Bs −Bt, Bs −Bt

)
= Wψ (N (0, s− t),N (0, s− t))
= Wψ (N (0, β(s, t)),N (0, β(s, t)) ∗ N (0, |s− t− (s− t)|))
≤Wψ (0,N (0, |s− t− (s− t)|))

=
√
|s− t− (s− t)| ‖G‖ψ.

But |s− t− (s− t)| ≤ h, and this concludes the proof.

Let us finish with a simple consequence of this result that we will use in the sequel.

Corollary 4. Let 0 < ε ≤ 1 and let g : R −→ R be an ε-Hölder continuous function. Then
there exists a C > 0 depending on T such that, for all x ∈ R and all 0 ≤ t ≤ s ≤ T ,∣∣∣E [g (Bn,t,x

s

)]
− E

[
g
(
Bt,x
s

)]∣∣∣ ≤ C ‖g‖ε n−ε/2,
and, setting δ(t, s) := max (s− t, s− t),∣∣∣E [g (Bn,t,x

s

) (
Bn,t,x
s − x

)]
− E

[
g
(
Bt,x
s

) (
Bt,x
s − x

)]∣∣∣ ≤ C ‖g‖ε δ(t, s)1/2 n−ε/2.

Proof. Let x ∈ R and 0 ≤ t ≤ s ≤ T . For any coupling (X,Y ) of Bn,t,x
s and Bt,x

s , using Hölder’s
inequality when 0 < ε < 1,

W1
(
g
(
Bn,t,x
s

)
, g
(
Bt,x
s

))
≤ E [|g (X)− g (Y )|] ≤ ‖g‖ε E [|X − Y |ε] ≤ ‖g‖ε E [|X − Y |]ε .

Thus, we have, by (22) for r = 1,

W1
(
g
(
Bn,t,x
s

)
, g
(
Bt,x
s

))
≤ ‖g‖εW1

(
Bn,t,x
s , Bt,x

s

)ε
≤ ‖g‖ε cε1

(
T
n

)ε/2
.

Choosing f(x) = x in (21), this implies the first result.
Let us prove the second assertion. We start by observing that, since Bs − Bt and Bn

s − Bn
t

are centered random variables, we have, setting h(y) := (g(x+ y)− g(x))y,

E
[
g
(
Bt,x
s

) (
Bt,x
s − x

)]
= E [(g (x+Bs −Bt)− g(x)) (Bs −Bt)] = E [h(Bs −Bt)] ,

E
[
g
(
Bn,t,x
s

) (
Bn,t,x
s − x

)]
= E [(g (x+Bn

s −Bn
t )− g(x)) (Bn

s −Bn
t )] = E [h(Bn

s −Bn
t )] .

Let us remark that, for any real numbers y and z, |h(y)| ≤ ‖g‖ε |y|1+ε, and using the fact that
|y − z|1−ε ≤ |y|1−ε + |z|1−ε,

|h(y)− h(z)| ≤ |g(x+ y)− g(x)| |y − z|+ |(g(x+ y)− g(x))− (g(x+ z)− g(x))| |z|
≤ ‖g‖ε (|y − z| |y|ε + |y − z|ε |z|)

≤ ‖g‖ε
(
|y − z|ε|y − z|1−ε |y|ε + |y − z|ε |z|

)
≤ ‖g‖ε|y − z|ε

(
|y|+ |y|ε |z|1−ε + |z|

)
.
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Young’s inequality, |y|ε |z|1−ε ≤ ε |y|+ (1− ε) |z| ≤ |y|+ |z|, leads to

|h(y)− h(z)| ≤ 2 ‖g‖ε |y − z|ε (|y|+ |z|) . (24)

In the case where s = t we have

W1 (h(Bn
s −Bn

t ), h(Bs −Bt)) ≤ E [|h(Bs −Bt)|] ≤ ‖g‖ε E
[
|Bt −Bs|(1+ε)

]
≤ ‖g‖ε (s− t)(1+ε)/2 E

[
|G|(1+ε)

]
,

where law(G) = N (0, 1). Since s = t implies (s− t)1/2 = δ(t, s)1/2 and (s− t)ε/2 ≤ hε/2, we have

W1 (h(Bn
s −Bn

t ), h(Bs −Bt)) ≤ ‖g‖ε δ(t, s)1/2 (Tn )ε/2

using the fact that E
[
|G|(1+ε)

]
≤ 1.

Let us turn to the case t < s. For any coupling (X,Y ) of Bn
s −Bn

t and Bs −Bt, using (20)
and (24),

W1 (h(Bn
s −Bn

t ), h(Bs −Bt)) ≤ E [|h(X)− h(Y )|]
≤ 2 ‖g‖ε E [|X − Y |ε (|X|+ |Y |)] ,

and, by Hölder’s inequality with p = 2/ε and q = 2/(2− ε),

W1 (h(Bn
s −Bn

t ), h(Bs −Bt)) ≤ 2 ‖g‖ε E
[
|X − Y |2

]ε/2 (
E[|X|2/(2−ε)]1−ε/2 + E[|Y |2/(2−ε)]1−ε/2

)
≤ 2 ‖g‖ε E

[
|X − Y |2

]ε/2 (
(s− t)1/2 + (s− t)1/2

)
.

From (20) it follows that

W1 (h(Bn
s −Bn

t ), h(Bs −Bt)) ≤ 2 ‖g‖εW2 (Bn
s −Bn

t , Bs −Bt)
ε
(
(s− t)1/2 + (s− t)1/2

)
≤ 4 cε2 ‖g‖ε

(
T

n

)ε/2
δ(t, s)1/2,

where we have used (22) for r = 2.
Thus, for 0 ≤ t ≤ s ≤ T ,

W1 (h(Bn
s −Bn

t ), h(Bs −Bt)) ≤ C ‖g‖ε n−ε/2 δ(t, s)1/2,

and the result follows as before by choosing f(x) = x in (21).

4. Regularity results on u, Un, ∇u and ∆n.

Let us start by known regularity properties of the function u that follow from classical a priori
estimates for BSDEs.

Lemma 5. Under Assumption (A1) there exists a constant C > 0 depending on (T, ε, f, g) such
that, for all (t, x) ∈ [0, T ]× R,

|u(t, x)| ≤ C (1 + |x|)ε, ‖u(t, ·)‖ε ≤ C, ‖u(·, x)‖ε/2 ≤ C (1 + |x|)ε.
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Proof. The first two results follow directly from classical a priori estimates for BSDEs, see e.g.
[8, Proposition 2.1]. The last one ensues from the following upper bound: for any real x and for
0 ≤ r ≤ t ≤ T ,

|u(r, x)− u(t, x)| = |E[Y r,x
r ]− E[Y t,x

t ]|
≤ |E[Y r,x

r − Y r,x
t ]|+ |E[Y r,x

t − Y t,x
t ]|

≤
∫ t

r
E[|f(s,Br,x

s , Y r,x
s , Zr,xs )|] ds+ E[|Y r,x

t − Y t,x
t |]

≤ C
∫ t

r
E[1 + |Br,x

s |ε + |Y r,x
s |+ |Zr,xs |] ds+ E[|Y r,x

t − Y t,x
t |].

Since the norm in S2×H2 of (Y r,x, Zr,x) is of order (1+ |x|)ε, we use Cauchy-Schwarz inequality
to bound the first term and a priori estimates enable (similarly as in the proof of [8, Proposition
4.1]) to bound the second term.

Next we extend [19, Theorem 3.2] to the case where f(t, ·, y, z) is Hölder continuous.

Lemma 6. Recall the notation (5) and let Assumption (A1) hold.

(a) The function u belongs to C0,1([0, T [×R) and, for all (t, x) ∈ [0, T [×R, we have,

Zt,xs = ∇u(s,Bt,x
s ) for a.e. (s, ω) ∈ [t, T [×Ω, (25)

as well as (7) i.e.

∇u(t, x) = E
(
g(Bt,x

T )BT −Bt
T − t

)
+ E

(∫ T

t
F (s,Bt,x

s )Bs −Bt
s− t

ds

)
.

(b) Moreover, there exists a constant C > 0 depending on (T, ε, f, g) such that,

(i) ‖∇u(t, ·)‖ε ≤ C√
T−t for all t ∈ [0, T [,

(ii) |∇u(t, x)| ≤ C
(T−t)(1−ε)/2 for all (t, x) ∈ [0, T [×R.

Consequently, for Er := E[ · |Fr],

∇u(r,Bt,x
r ) = Er

(
g(Bt,x

T )BT −Br
T − r

)
+ Er

(∫ T

r
F (s,Bt,x

s )Bs −Br
s− r

ds

)
a.s. for r ∈ [t, T [.

(26)

Proof of Lemma 6. The proof is divided into two steps.
Step 1. We assume in addition that f is Lipschitz continuous w.r.t. x. Then according to [19],
we have only the second point to prove and we know that, for some constant C,

|∇u(t, x)| ≤ C(1 + |x|)√
T − t

on [0, T [×R. (27)

(bi) The representation (26) yields to

‖∇u(r,Bt,x
r )−∇u(r,Bt,y

r )‖L2 ≤
∥∥∥∥Er ((g(Bt,x

T )− g(Bt,y
T )
) BT −Br

T − r

)∥∥∥∥
L2

+
∫ T

r

∥∥∥∥Er ((F (s,Bt,x
s )− F (s,Bt,y

s )
) Bs −Br

s− r

)∥∥∥∥
L2
ds. (28)

10



Since g is ε-Hölder continuous we get∣∣∣∣Er ((g(Bt,x
T )− g(Bt,y

T ))BT −Br
T − r

)∣∣∣∣ ≤ ‖g‖ε|x− y|ε 1√
T − r

.

Similarly, we obtain by the conditional Cauchy-Schwarz inequality the estimate∥∥∥∥Er ((F (s,Bt,x
s )− F (s,Bt,y

s ))Bs −Br
s− r

)∥∥∥∥
L2
≤
∥∥∥F (s,Bt,x

s )− F (s,Bt,y
s )
∥∥∥
L2

1√
s− r

.

Using (3) for f , we have

|F (s,Bt,x
s )− F (s,Bt,y

s )|
≤ ‖fx‖ε|x− y|ε + ‖fy‖Lip|u(s,Bt,x

s )− u(s,Bt,y
s )|+ ‖fz‖Lip|∇u(s,Bt,x

s )−∇u(s,Bt,y
s )|,

and the Hölder continuity of u stated in Lemma 5 yields

|F (s,Bt,x
s )− F (s,Bt,y

s )|
≤ (‖fx‖ε + C‖fy‖Lip)|x− y|ε + ‖fz‖Lip|∇u(s,Bt,x

s )−∇u(s,Bt,y
s )|. (29)

By combining the above estimates we conclude from (28) that

‖∇u(r,Bt,x
r )−∇u(r,Bt,y

r )‖L2 ≤ ‖g‖ε
|x− y|ε√
T − r

+ 2 (‖fx‖ε + C ‖fy‖Lip) |x− y|ε
√
T − r

+
∫ T

r

∥∥∥∇u(s,Bt,x
s )−∇u(s,Bt,y

s )
∥∥∥
L2

‖fz‖Lip√
s− r

ds

≤ C1
|x− y|ε√
T − r

+
∫ T

r

∥∥∥∇u(s,Bt,x
s )−∇u(s,Bt,y

s )
∥∥∥
L2

‖fz‖Lip√
s− r

ds

for C1 := ‖g‖ε + 2T (‖fx‖ε + C ‖fy‖Lip). Because of (27) we have∥∥∥∇u(s,Bt,x
s )−∇u(s,Bt,y

s )
∥∥∥
L2
≤ C2

1 + |x|+ |y|
(T − s)1/2

with C2 = C2(C, T ) > 0. Hence we may apply Gronwall’s lemma (Lemma 14) and get

‖∇u(r,Bt,x
r )−∇u(r,Bt,y

r )‖L2 ≤ C1c0
|x− y|ε√
T − r

,

for some c0 = c0(T, ‖fz‖Lip) > 0. Especially, for r = t this implies

|∇u(t, x)−∇u(t, y)| ≤ C |x− y|
ε

√
T − t

for some C = C(T, ε, f, g) > 0.
(bii) We first notice that for any ε-Hölder continuous function k and for all 0 ≤ t < s ≤ T

we have ∣∣∣∣E [k(Bt,x
s )Bs −Bt

s− t

]∣∣∣∣ =
∣∣∣∣E [(k(Bt,x

s )− k(x))Bs −Bt
s− t

]∣∣∣∣ ≤ ‖k‖ε
(s− t)(1−ε)/2 . (30)

Therefore, we obtain from (7) that

|∇u(t, x)| ≤
∣∣∣∣E(g(Bt,x

T )BT −Bt
T − t

)∣∣∣∣+
∣∣∣∣∣E
(∫ T

t
F (s,Bt,x

s )Bs −Bt
s− t

ds

)∣∣∣∣∣
≤ ‖g‖ε

(T − t)(1−ε)/2 +
∫ T

t

‖F (s, ·)‖ε
(s− t)(1−ε)/2ds.
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Using (29) for s = t and taking into account that ∇u satisfies (bi) we get

‖F (s, ·)‖ε ≤
C√
T − s

(31)

for some C = C(T, ε, f, g) > 0. This finishes the proof of the first step.
Step 2. General case. The proof relies on a regularization procedure and is postponed to

appendix A.3.

Remark 7. From now on we will always use the continuous version of Zt,xs given by ∇u(s,Bt,x
s ).

Lemma 8. For all (t, x) ∈ [0, T [×R and for n ≥ n0 ∈ N∗, with n0 defined as in Lemma 12, we
have

(i) |Un(t, x)| ≤ C(1 + |x|)ε,

(ii) |∆n(t, x)| ≤ Cn
(T−t)(1−ε)/2 ,

where C > 0 depends on (T, ε, f, g) and Cn > 0 depends on (T, ε, f, g, n).

Proof. The result on Un ensues from Lemma 12, by choosing f = 0 and g = 0. Let us prove the
result on ∆n. By (15) and (10) we have that

∆n(t, x) = [∇nUn](t+ h, x)
= 1

2
√
h

(Un(t+ h, x+
√
h)− Un(t+ h, x−

√
h))

= E
[
Un(t+ h,B

n,t,x
t+h )

B
n,t,x

t+h −x
h

]
.

We want to use (17), where we realize that

E
[
g

(
B
n,t+h,Bn,t,x

t+h
T

)
B
n,t,x

t+h −x
h

]
= E

[
g
(
Bn,t,x
T

) B
n,t,x

t+h −x
h

]
= E

[
g(Bn,t,x

T )B
n,t,x
T − x
T − t

]
.

A similar argument can be used for the integral expression so that we get

∆n(t, x) = E
[
g(Bn,t,x

T )B
n,t,x
T − x
T − t

]
+ E

[∫ T

t+h
f
(
s,Θn,t,x

s

) Bn,t,x
s − x
s− t

ds

]
. (32)

Then

∆n(t, x) =E
(

(g(Bn,t,x
T )− g(x))B

n
T −Bn

t

T − t

)
+ E

(∫ T

t+h
(f(s,Θn,t,x

s )− f(s, x, Un(s, x),∆n(s, x)))B
n
s −Bn

t

s− t
ds

)
=:G+ F.

Since g is ε-Hölder, |G| is bounded by ‖g‖ε
(T−t)(1−ε)/2 . Concerning the second term, we get, since

f satisfies (3),

f(s,Θn,t,x
s )− f(s, x, Un(s, x),∆n(s, x))

≤ ‖fx‖ε|Bn
s −Bn

t |ε + ‖fy‖Lip|Un(s,Bn,t,x
s )− Un(x, s)|+ ‖fz‖Lip|∆n(s,Bn,t,x

s )−∆n(s, x)|.
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We will use that Un(t, x) and ∆n(t, x) are ε-Hölder continuous in x, i.e.

|Un(t, x)− Un(t, y)|+ |∆n(t, x)−∆n(t, y)| ≤ c(h)|x− y|ε,

where c(h) tends to infinity when h tends to 0. For Un, Lemma 12 with (x̄, ḡ, f̄) = (y, g, f) gives

|Un(t, x)− Un(t, y)| ≤ c0|x− y|ε (33)

while for ∆n this is an immediate consequence of Remark 1 and (33) with c(h) = c0 + c0√
h
. Then

|F | ≤ (‖fx‖ε + c(h)‖fy‖Lip + c(h)‖fz‖Lip)
∫ T

t+h
E
(
|Bn

s −Bn
t |1+ε

s− t

)
ds

≤ (‖fx‖ε + c(h)‖fy‖Lip + c(h)‖fz‖Lip)
∫ T

t+h

1
(s− t)(1−ε)/2ds.

Since 1
(s−t)(1−ε)/2 ≤ 1

(s−(t+h))(1−ε)/2 for s ∈ ]t+ h, T ] we get that |F | ≤ Cn.

Proposition 9. Under (A1), there exists a constant C > 0 depending on (T, ε, f, g) such that,
for all x ∈ R,

|∇u(t, x)−∇u(r, x)| ≤ C (t− r)ε/2√
T − t

for all 0 ≤ r < t < T. (34)

Proof. From Lemma 6, we know that, for (t, x) ∈ [0, T [×R,

∇u(t, x) = E
[
g
(
Bt,x
T

)
H(t, T ) +

∫ T

t
F
(
s,Bt,x

s

)
H(t, s) ds

]
, (35)

where we have set
H(t, s) := Bs −Bt

s− t
, for 0 ≤ t < s ≤ T.

It holds E[H(t, s)] = 0 and ‖H(t, s)‖L2 = 1√
s−t . We also have, for 0 ≤ r ≤ t < s,

E|H(r, s)−H(t, s)|2 = 1
s− r

− 2
(s− t)(s− r)E[(Bs −Br)(Bs −Bt)] + 1

s− t

= 1
s− t

− 1
s− r

= t− r
(s− r)(s− t) .

Let us observe that, for 0 ≤ r < t < s ≤ T and any ε-Hölder continuous function h, it holds

∣∣∣E [h(Bt,x
s )H(t, s)

]
− E [h(Br,x

s )H(r, s)]
∣∣∣ ≤ 2 ‖h‖ε

(t− r)ε/2

(s− t)1/2 .

Indeed, we have∣∣∣E [h(Bt,x
s )H(t, s)

]
− E [h(Br,x

s )H(r, s)]
∣∣∣

≤ E
∣∣∣[h(Bt,x

s )− h(Br,x
s )

]
H(t, s)

∣∣∣+ E |[h(Br,x
s )− h(x)] [H(t, s)−H(r, s)]|

≤ ‖h‖ε (E [|Bt −Br|ε|H(t, s)|] + E [|Bs −Br|ε|H(t, s)−H(r, s)|]) ,
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and, from Cauchy-Schwarz inequality, we deduce that

∣∣∣E [h(Bt,x
s )H(t, s)

]
− E [h(Br,x

s )H(r, s)]
∣∣∣ ≤ ‖h‖ε

[
(t− r)ε/2

(s− t)1/2 + (s− r)ε/2 (t− r)1/2

(s− r)1/2(s− t)1/2

]

= ‖h‖ε
(t− r)ε/2

(s− t)1/2

[
1 + (t− r)

1
2−

ε
2 (s− r)

ε
2−

1
2
]

≤ 2 ‖h‖ε
(t− r)ε/2

(s− t)1/2 .

Coming back to (35), we write, for 0 ≤ r ≤ t < T ,

∇u(r, x) = E
[
g (Br,x

T )H(r, T ) +
∫ T

t
F (s,Br,x

s )H(r, s) ds
]

+ E
[∫ t

r
(F (s,Br,x

s )− F (s, x))H(r, s) ds
]
,

to have, taking into account the fact that ‖F (s, ·)‖ε ≤ C(T − s)−1/2 by (31),

|∇u(t, x)−∇u(r, x)| ≤ C
[
(t− r)ε/2

(
‖g‖ε

(T − t)1/2 +
∫ T

t

‖F (s, ·)‖ε
(s− t)1/2 ds

)
+
∫ t

r

‖F (s, ·)‖ε
(s− r)(1−ε)/2ds

]
,

≤ C
[
(t− r)ε/2

(
‖g‖ε

(T − t)1/2 +
∫ T

t

ds

(T − s)1/2(s− t)1/2

)

+
∫ t

r

ds

(T − s)1/2(s− r)(1−ε)/2

]

≤ C
[
(t− r)ε/2

( ‖g‖ε
(T − t)1/2 +B(1

2 ,
1
2)
)

+ (t− r)(ε+1)/2

(T − t)1/2

]
.

5. Main results.

In this section, we state the main result of this paper which gives the rate of convergence in the
Wasserstein distance between the solution to the BSDE (4) and the solution to the BSDE driven
by the scaled random walk (12). For the following we want to remind the reader of Remark 7.

Theorem 10. Under (A1), for any r ∈ [1,∞[, there exists a constant Cr > 0 depending at most
on (T, α, ε, f, g, r) such that for all x ∈ R,

(i) Wr
(
Y n,t,x
s , Y t,x

s

)
≤ Cr (1 + |x|)ε n−(α∧ ε2 ) for all 0 ≤ t ≤ s ≤ T,

(ii) Wr
(
Zn,t,xs , Zt,xs

)
≤ Cr (1+|x|)ε√

T−s n−(α∧ ε2 ) for all s ∈ [t, T [.

This result is a consequence of the following proposition which gives the rate of the point-wise
convergence of Un, solution to (11), towards the solution u of the semilinear heat equation (1).

Proposition 11. Under (A1) there exists a constant C > 0 depending at most on (T, α, ε, f, g)
such that
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(i) |u(t, x)− Un(t, x)| ≤ C (1 + |x|)ε n−(α∧ ε2 ) for all (t, x) ∈ R× [0, T ],

(ii) |∇u(t, x)−∆n(t, x)| ≤ C (1+|x|)ε√
T−t n

−(α∧ ε2 ) for all (t, x) ∈ R× [0, T [.

Proof. We split the proof into three parts. We begin by studying |u − Un|, we proceed by
obtaining an estimate for ∇u−∆n, and then we conclude with a Gronwall argument.

Estimate for |u− Un|. From (6) and (17) we conclude that

|u(t, x)− Un(t, x)| ≤
∣∣∣E [g (Bt,x

T

)]
− E

[
g
(
Bn,t,x
T

)]∣∣∣
+
∣∣∣∣∣E
[∫ T

t
F
(
s,Bt,x

s

)
ds

]
− E

[∫ T

t
f
(
s,Θn,t,x

s

)
ds

]∣∣∣∣∣ . (36)

Let Fn be the function given by

Fn(s, x) := f(s, x, Un(s, x),∆n(s, x)) for (s, x) ∈ [0, T [×R. (37)

Using the notation (18) we also have that Fn(s,Bn,t,x
s ) = f(s,Θn,t,x

s ). With this notation in
hand, we have, taking into account (13) and (16),

E
[∫ T

t
f
(
s,Θn,t,x

s

)
ds

]
= E

[∫ T

t

(
f
(
s,Θn,t,x

s

)
− f

(
s,Θn,t,x

s

))]
+ E

[∫ T

t
Fn
(
s,Bn,t,x

s

)
ds

]

+ E
[∫ t

t
f
(
s,Bn,t,x

s , Y n,t,x
s , Zn,t,xs

)
ds

]
.

In view of the regularity of f in time, we have∣∣∣∣∣E
[∫ T

t

(
f
(
s,Θn,t,x

s

)
− f

(
s,Θn,t,x

s

))
ds

]∣∣∣∣∣ ≤ C n−α.
Moreover, the Cauchy-Schwarz inequality leads to∣∣∣∣∣E

[∫ t

t
f
(
s,Bn,t,x

s , Y n,t,x
s , Zn,t,xs

)
ds

]∣∣∣∣∣ ≤ (t− t)1/2 E
[∫ t

t

∣∣∣f (s,Bn,t,x
s , Y n,t,x

s , Zn,t,xs

)∣∣∣2 ds]1/2

,

and, taking into account the growth of f , we have∣∣∣∣∣E
[∫ t

t
f
(
s,Bn,t,x

s , Y n,t,x
s , Zn,t,xs

)
ds

]∣∣∣∣∣
≤ C h1/2 E

[∫ T

t

(
1 + |Bn,t,x

s |2ε + |Y n,t,x
s |2 + |Zn,t,xs |2

)
ds

]1/2

≤ C n−1/2 (1 + |x|)ε,

where we have used Lemma 12 to get

E
(

sup
t≤s≤T

|Y n,t,x
s |2 +

∫ T

t
|Zn,t,xs |2ds

)
≤CE

(
|g(Bn,t,x

T )|2 +
∫ T

t
|f(s,Bn,t,x

s− , 0, 0)|2ds
)

≤ C(1 + |x|)2ε.
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Coming back to (36), we derive the following inequality

|u(t, x)− Un(t, x)| ≤
∣∣∣E [g (Bt,x

T

)]
− E

[
g
(
Bn,t,x
T

)]∣∣∣
+
∣∣∣∣∣
∫ T

t
E
[
F
(
s,Bt,x

s

)]
ds−

∫ T

t
E
[
Fn
(
s,Bn,t,x

s

)]
ds

∣∣∣∣∣
+ C (1 + |x|)ε n−(α∧ 1

2 ). (38)

From Corollary 4 we get ∣∣∣E [g (Bt,x
T

)]
− E

[
g
(
Bn,t,x
T

)]∣∣∣ ≤ C ‖g‖ε n− ε2 .
We split the second term on the RHS of (38) into two parts∣∣∣∣∣
∫ T

t
E
[
F
(
s,Bt,x

s

)]
ds−

∫ T

t
E
[
Fn
(
s,Bn,t,x

s

)]
ds

∣∣∣∣∣
≤
∫ T

t

∣∣∣E [F (s,Bt,x
s

)]
− E

[
F
(
s,Bn,t,x

s

)]∣∣∣ ds+
∫ T

t
E
[
|F − Fn|

(
s,Bn,t,x

s

)]
ds.

Since F has the regularity (31), Corollary 4 gives∫ T

t

∣∣∣E [F (s,Bt,x
s

)]
− E

[
F
(
s,Bn,t,x

s

)]∣∣∣ ds ≤ C ∫ T

t

ds√
T − s

ds n−
ε
2 ≤ C n−

ε
2 .

By the above estimates we derive from (38) the inequality

|u(t, x)− Un(t, x)| ≤ C (1 + |x|)ε n−(α∧ ε2 ) +
∫ T

t
E
[
|F − Fn|

(
s,Bn,t,x

s

)]
ds. (39)

Coming back to the definition of F and Fn (see (5) and (37)) and using the Lipschitz continuity
of f with respect to (y, z), we have

|F − Fn|
(
s,Bn,t,x

s

)
≤ ‖f‖Lip

[
|u− Un|(s,Bn,t,x

s ) + |∇u−∆n|(s,Bn,t,x
s )

]
.

Setting for simplicity, for s ∈ [0, T ],

βn(s) := sup
x∈R

{ |u− Un|(s, x)
(1 + |x|)ε

}
and γn(s) := sup

x∈R

{ |∇u−∆n|(s, x)
(1 + |x|)ε

}
for s ∈ [0, T [, Lemma 5, Lemma 6 and Lemma 8 imply that, for some C > 0 and Cn > 0,

βn(s) ≤ C for s ∈ [0, T ] and γn(s) ≤ Cn
(T − s)(1−ε)/2 for s ∈ [0, T [,

respectively. We deduce the following estimate

|F − Fn|
(
s,Bn,t,x

s

)
≤ ‖f‖Lip(1 + |Bn,t,x

s |)ε (βn(s) + γn(s)) (40)

and get, coming back to (39), for 0 ≤ t ≤ T and for any x ∈ R,

|u(t, x)− Un(t, x)| ≤ C (1 + |x|)ε
(
n−(α∧ ε2 ) +

∫ T

t
(βn(s) + γn(s)) ds

)
.

We end up with the inequality

βn(t) ≤ C
(
n−(α∧ ε2 ) +

∫ T

t
(βn(s) + γn(s)) ds

)
, t ∈ [0, T ],

and since γn belongs to L1[0, T ], Gronwall’s inequality (Lemma 13) gives

βn(t) ≤ C
(
n−(α∧ ε2 ) +

∫ T

t
γn(s)ds

)
, t ∈ [0, T ]. (41)
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Estimate for |∇u − ∆n|. In order to take advantage of the previous inequality, we need to
estimate γn(s). To do this, we use the representations (7) and (32). We will divide the study
into two parts

|∇u(t, x)−∆n(t, x)| ≤ | g difference |+ | f difference |.

Study of the g difference. We have

E
[
g
(
Bt,x
T

) Bt,x
T − x
T − t

]
− E

[
g
(
Bn,t,x
T

) Bn,t,x
T − x
T − t

]

= E [g(x+BT −Bt)(BT −Bt)]
( 1
T − t

− 1
T − t

)
+ 1
T − t

(E [g(x+BT −Bt)(BT −Bt)]− E [g(x+Bn
T −Bn

t )(Bn
T −Bn

t )]) . (42)

For the first term, since

E [g(x+BT −Bt)(BT −Bt)] = E [(g(x+BT −Bt)− g(x)) (BT −Bt)] ,

we have, using the fact that g is ε-Hölder continuous,∣∣∣∣E [g(x+BT −Bt)(BT −Bt)]
( 1
T − t

− 1
T − t

)∣∣∣∣ ≤ ‖g‖ε E [|BT −Bt|1+ε
] t− t

(T − t)(T − t)

≤ ‖g‖ε
t− t

(T − t)
1−ε

2 (T − t)
.

But, exploiting that (t− t)1− ε2 ≤ (T − t)1− ε2 and 1
(T−t)

ε
2
≤ 1

(T−t)
ε
2
, we obtain

t− t
(T − t)

1−ε
2 (T − t)

= (t− t)
ε
2 (t− t)1− ε2

(T − t)
1−ε

2 (T − t)1− ε2 (T − t)
ε
2
≤ (t− t)

ε
2

√
T − t

≤ h
ε
2

√
T − t

,

from which we deduce that∣∣∣∣E [g(x+BT −Bt)(BT −Bt)]
( 1
T − t

− 1
T − t

)∣∣∣∣ ≤ T ε
2 ‖g‖ε

n−
ε
2

√
T − t

.

Since δ(t, T ) = T − t, from Corollary 4, the absolute value of the second term on the RHS of
(42) is bounded by

C ‖g‖ε n−
ε
2

(T − t)1/2

T − t
= C ‖g‖ε n−

ε
2

1√
T − t

≤ C ‖g‖ε n−
ε
2

1√
T − t

.

Then we get∣∣∣∣∣E
[
g
(
Bt,x
T

) Bt,x
T − x
T − t

]
− E

[
g
(
Bn,t,x
T

) Bn,t,x
T − x
T − t

]∣∣∣∣∣ ≤ C ‖g‖ε n−
ε
2

√
T − t

. (43)
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Study of the f difference. Here we have to estimate for t ∈ [0, T [,

H(t) =
∣∣∣∣∣
∫ T

t
E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
ds−

∫ T

t+h
E
[
f
(
s,Θn,t,x

s

) Bn,t,x
s − x
s− t

]
ds

∣∣∣∣∣ .
When T − h ≤ t < s < T, we observe that Bn,t,x

s − x = 0, and combining the regularity (31)
of F with the estimate (30) we obtain

H(t) ≤
∫ T

t
E
∣∣∣∣∣F (s,Bt,x

s

) Bt,x
s − x
s− t

∣∣∣∣∣ ds ≤ C
∫ T

t

ds

(s− t)(1−ε)/2
√
T − s

ds = C(T − t)
ε
2 B

(1+ε
2 , 1

2
)
.

Thus, for T − h ≤ t ≤ T , H(t) ≤ C n−
ε
2 .

Let us now consider the case where 0 ≤ t < T − h i.e. t+ h ≤ T − h. We first write∫ T

t
E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
ds =

∫ T

t+h
E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
ds

+
∫ t+h

t
E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
ds.

For the second term of the RHS of this equality, we proceed as above and get∣∣∣∣∣
∫ t+h

t
E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
ds

∣∣∣∣∣ ≤ C
∫ t+h

t

ds

(s− t)(1−ε)/2
√
T − s

ds.

But, since t+ h ≤ T − h, for t < s < t+ h, 1√
T − s

≤ 1√
h

and, since 0 < t+ h− t ≤ h,

∫ t+h

t

ds

(s− t)(1−ε)/2
√
T − s

ds ≤ 1√
h

∫ t+h

t

ds

(s− t)(1−ε)/2 = 2
1 + ε

(t+ h− t)(1+ε)/2
√
h

≤ 2h
ε
2

1 + ε
.

Secondly, we split the term∫ T

t+h
E
[
f
(
s,Θn,t,x

s

) Bn,t,x
s − x
s− t

]
ds

into two parts:∫ T

t+h
E
[
f
(
s,Θn,t,x

s

) Bn,t,x
s − x
s− t

]
ds =

∫ T

t+h
E
[
Fn
(
s,Bn,t,x

s

) Bn,t,x
s − x
s− t

]
ds

and, the remaining term

R =
∫ T

t+h
E
[(
f
(
s,Θn,t,x

s

)
− f

(
s,Θn,t,x

s

)) Bn,t,x
s − x
s− t

]
ds.

But, due to the uniform regularity of f in time, we have, since s−t = (s+h)−(t+h) ≥ s−(t+h),

|R| ≤ ‖ft‖α
∫ T

t+h
(s− s)αE

[
|Bn,t,x

s − x|
]

s− t
ds ≤ ‖ft‖α hα

∫ T

t+h

ds√
s− t

ds

≤ ‖ft‖α hα
∫ T

t+h

ds√
s− (t+ h)

ds ≤ C hα.
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Thus, for 0 ≤ t < T − h,

H(t) ≤
∫ T

t+h

∣∣∣∣∣E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
− E

[
Fn
(
s,Bn,t,x

s

) Bn,t,x
s − x
s− t

]∣∣∣∣∣ ds+ C n−(α∧ ε2 ).

We split the integrand of the first term on the RHS of the inequality into three parts,∣∣∣∣∣E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
− E

[
Fn
(
s,Bn,t,x

s

) Bn,t,x
s − x
s− t

]∣∣∣∣∣
≤
∣∣∣∣∣E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
− E

[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]∣∣∣∣∣
+
∣∣∣∣∣E
[
F
(
s,Bt,x

s

) Bt,x
s − x
s− t

]
− E

[
F
(
s,Bn,t,x

s

) Bn,t,x
s − x
s− t

]∣∣∣∣∣
+
∣∣∣∣∣E
[
F
(
s,Bn,t,x

s

) Bn,t,x
s − x
s− t

]
− E

[
Fn
(
s,Bn,t,x

s

) Bn,t,x
s − x
s− t

]∣∣∣∣∣
=: H1(s) +H2(s) +H3(s),

so that
H(t) ≤

∫ T

t+h
(H1(s) +H2(s) +H3(s)) ds+ C n−(α∧ ε2 ).

The term H1. Since Bt,x
s − x has mean zero,

H1(s) ≤ ‖F (s, ·)‖εE(|Bt,x
s − x|1+ε)

∣∣∣∣ 1
s− t

− 1
s− t

∣∣∣∣
and the regularity (31) of F gives

H1(s) ≤ C (s− t)(1+ε)/2
√
T − s

(t− t) + (s− s)
(s− t)(s− t) = C√

T − s
(t− t) + (s− s)

(s− t)(1−ε)/2(s− t)
.

Since (t− t) = (t− t)
ε
2 (t− t)1− ε2 ≤ h

ε
2 (s− t)1− ε2 and the same upper bound holds for s−s (since

s− s ≤ h ≤ s− t), we get

H1(s) ≤ C√
T − s

h
ε
2

(s− t)(1−ε)/2(s− t)
ε
2
.

Finally, we remark that s− t = (s+ h)− (t+ h) ≥ s− (t+ h) and s− t ≥ s− (t+ h), to obtain

H1(s) ≤ C√
T − s

h
ε
2

(s− (t+ h))(1−ε)/2(s− (t+ h))
ε
2
≤ C h

ε
2

√
T − s

√
s− (t+ h)

,

and, as a consequence, ∫ T

t+h
H1(s) ds ≤ C h

ε
2 B

(1
2 ,

1
2
)
.
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The term H2. We use once again the regularity (31) of F together with Corollary 4 to obtain,
for t+ h < s < T ,

H2(s) ≤ C n−
ε
2 δ(t, s)1/2 1√

T − s
1

s− t
.

We first use the fact that δ(s, t) = max(s− t, s− t) ≤ s− t ≤ s− s+ s− t ≤ 2(s− t) to get

H2(s) ≤ C n−
ε
2

√
T − s

√
s− t

,

and, since s− t ≥ s− (t+ h), we have

H2(s) ≤ C n−
ε
2

√
T − s

√
s− (t+ h)

,

from which we deduce the estimate∫ T

t+h
H2(s) ds ≤ C n−

ε
2 B(1

2 ,
1
2).

The term H3. For this last term, we come back to the definitions (5) and (37) of F and Fn,
respectively. By (40) we have, for t+ h < s < T ,

H3(s) ≤ E
[
|F − Fn|(s,Bn,t,x

s )
∣∣∣∣∣Bn,t,x

s − x
s− t

∣∣∣∣∣
]

≤ ‖f‖Lip (βn(s) + γn(s))E
[(

1 + |Bn,t,x
s |

)ε ∣∣∣∣∣Bn,t,x
s − x
s− t

∣∣∣∣∣
]
,

and, by the Cauchy-Schwarz inequality, we derive the estimate

H3(s) ≤ C (βn(s) + γn(s)) (1 + |x|)ε 1√
s− t

.

Summary for H. Let us summarize the estimates we got for H. For T − h ≤ t ≤ T , we have
H(t) ≤ C n−

ε
2 . For 0 ≤ t < T − h we obtained the upper bound

H(t) ≤ C n−(α∧ ε2 ) + C (1 + |x|)ε
∫ T

t+h
(βn(s) + γn(s)) ds√

s− t
.

Hence we have, for t ∈ [0, T ],

H(t) ≤ C (1 + |x|)ε
(
n−(α∧ ε2 ) +

∫ T

(t+h)∧T
(βn(s) + γn(s)) ds√

s− t

)
.

Coming back to (43), we have, for any x ∈ R and t ∈ [0, T [,

|∇u(t, x)−∆n(t, x)| ≤ C (1 + |x|)ε
(
n−(α∧ ε2 )
√
T − t

+
∫ T

(t+h)∧T
(βn(s) + γn(s)) ds√

s− t

)
,

and, as a byproduct,

γn(t) ≤ C
(
n−(α∧ ε2 )
√
T − t

+
∫ T

(t+h)∧T
(βn(s) + γn(s)) ds√

s− t

)
, t ∈ [0, T [. (44)
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Global estimate. Plugging (41) into (44), we get, for t ∈ [0, T [,

γn(t) ≤ C
(
n−(α∧ ε2 )
√
T − t

+
∫ T

(t+h)∧T

(
n−(α∧ ε2 ) +

∫ T

s
γn(r) dr + γn(s)

)
ds√
s− t

)
.

For t < T − h, since s− t = (s+ h)− (t+ h) ≥ s− (t+ h), we have

n−(α∧ ε2 )
∫ T

t+h

ds√
s− t

≤ n−(α∧ ε2 )
∫ T

t+h

ds√
s− (t+ h)

≤ 2n−(α∧ ε2 )
√
T − (t+ h) ≤ 2

√
T n−(α∧ ε2 ).

Again, we have, ∫ T

t+h

∫ T

s
γn(r) dr ds√

s− t
≤
∫ T

t+h

∫ T

s
γn(r) dr ds√

s− (t+ h)
,

from which we deduce∫ T

t+h

∫ T

s
γn(r) dr ds√

s− (t+ h)
=
∫ T

t+h
γn(r)

∫ T

t+h
1r>s

ds√
s− (t+ h)

dr

= 2
∫ T

t+h
γn(r)

√
r − (t+ h) dr

≤ 2T
∫ T

t+h
γn(s) ds√

s− t
.

It follows that, for t ∈ [0, T [,

γn(t) ≤ C
(
n−(α∧ ε2 )
√
T − t

+
∫ T

(t+h)∧T
γn(s) ds√

s− t

)
.

Thus,

γn(t) ≤ Cn
−(α∧ ε2 )
√
T − t

+ C2
(∫ T

(t+h)∧T

(
n−(α∧ ε2 )
√
T − s

+
∫ T

(s+h)∧T
γn(r) dr√

r − s

)
ds√
s− t

)
.

But we have∫ T

(t+h)∧T

n−(α∧ ε2 )
√
T − s

ds√
s− t

≤
∫ T

(t+h)∧T

n−(α∧ ε2 )
√
T − s

ds√
s− (t+ h)

= n−(α∧ ε2 )B
(1

2 ,
1
2
)
,

and, for t < T − h, since s+ h ≤ r if and only if s < r,∫ T

(t+h)∧T

∫ T

(s+h)∧T
γn(r) dr√

r − s
ds√
s− t

=
∫ T

(t+2h)∧T
γn(r)

∫ T

(t+h)∧T
1s<r

ds√
r − s

√
s− t

dr

=
∫ T

(t+2h)∧T
γn(r)

∫ r

(t+h)∧T

ds√
r − s

√
s− t

dr.

But r − s ≥ r − s and s− t ≥ s− (t+ h), so we get∫ T

(t+h)∧T

∫ T

(s+h)∧T
γn(r) dr√

r − s
ds√
s− t

≤
∫ T

(t+2h)∧T
γn(r)

∫ r

(t+h)∧T

ds
√
r − s

√
s− (t+ h)

dr

= B
(1

2 ,
1
2
) ∫ T

(t+2h)∧T
γn(r) dr.
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Finally, we have

γn(t) ≤ C
(
n−(α∧ ε2 )
√
T − t

+
∫ T

t
γn(s) ds

)
for t ∈ [0, T [,

and from Gronwall’s inequality (Lemma 13)

γn(t) ≤ C n−(α∧ ε2 )
√
T − t

for t ∈ [0, T [.

Coming back to (41), we have also,

βn(t) ≤ C n−(α∧ ε2 ) for t ∈ [0, T ].

The proof of Proposition 11 is complete.

Proof of Theorem 10. Theorem 10 is mainly a corollary of Proposition 11.
Let us begin with the convergence of the (Y n)n processes. Let us fix r ≥ 1, x ∈ R and

0 ≤ t ≤ s ≤ T . We have

Wr

(
Y t,x
s , Y n,t,x

s

)
= Wr

(
u(s,Bt,x

s ), Un(s,Bn,t,x
s )

)
≤Wr

(
u(s,Bt,x

s ), u(s,Bn,t,x
s )

)
+Wr

(
u(s,Bn,t,x

s ), Un(s,Bn,t,x
s )

)
.

Since, by Lemma 5, u is ε-Hölder continuous in space, uniformly in time, we have, by Hölder’s
inequality,

Wr

(
u(s,Bt,x

s ), u(s,Bn,t,x
s )

)
≤ CWr

(
Bt,x
s , Bn,t,x

s

)ε
≤ CcεrT

ε
2 n−

ε
2 ,

where we have used Proposition 3 (see (22)) for the last inequality. Moreover, by Proposition
11,

Wr

(
u(s,Bn,t,x

s ), Un(s,Bn,t,x
s )

)
≤
∥∥∥u(s,Bn,t,x

s )− Un(s,Bn,t,x
s )

∥∥∥
Lr
≤ C (1 + |x|)ε n−(α∧ ε2 ).

This gives the first part of the result.
Let us continue with the convergence of the (Zn)n processes. The proof is almost the same

except for the grid points. Let 0 ≤ t < s ≤ T with s 6= s i.e. s 6∈ {kh, k = nt + 1, . . . , n}. We
have as before

Wr

(
∇u(s,Bt,x

s ),∆n(s,Bn,t,x
s )

)
≤Wr

(
∇u(s,Bt,x

s ),∇u(s,Bn,t,x
s )

)
+Wr

(
∇u(s,Bn,t,x

s ),∆n(s,Bn,t,x
s )

)
.

Since, by Lemma 6, ∇u(s, ·) is ε-Hölder continuous, we have, by Hölder’s inequality,

Wr

(
∇u(s,Bt,x

s ),∇u(s,Bn,t,x
s )

)
≤ C√

T − s
Wr

(
Bt,x
s , Bn,t,x

s

)ε
≤ CcεrT

ε
2

√
T − s

n−
ε
2 ,

where the last inequality follows from (22). Moreover, by Proposition 11,

Wr

(
∇u(s,Bn,t,x

s ),∆n(s,Bn,t,x
s )

)
≤
∥∥∥∇u(s,Bn,t,x

s )−∆n(s,Bn,t,x
s )

∥∥∥
Lr
≤ C (1 + |x|)ε√

T − s
n−(α∧ ε2 ),

and the result follows, in this case, from equalities (25) and (16) together with Remark 7.

22



Let us now consider the case where s ∈ {kh, k = nt + 1, . . . , n− 1}. In this case we have

Zn,t,xs = ∇nUn
(
s,Bn,t,x

s−

)
= ∆n

(
s− h/2, Bn,t,x

s−h/2

)
which is not equal to ∆n

(
s,Bn,t,x

s

)
in general. We first write

Wr

(
Zt,xs , Zn,t,xs

)
= Wr

(
Zt,xs , Zn,t,xs−h/2

)
≤Wr

(
Zt,xs , Zt,xs−h/2

)
+Wr

(
Zt,xs−h/2, Z

n,t,x
s−h/2

)
.

The second term on the RHS can be bounded by using our previous result, namely

Wr

(
Zt,xs−h/2, Z

n,t,x
s−h/2

)
≤ Cn

−(α∧ ε2 ) (1 + |x|)ε√
T − (s− h/2)

≤ Cn
−(α∧ ε2 ) (1 + |x|)ε√

T − s
.

For the first term, one can write

Wr

(
Zt,xs , Zt,xs−h/2

)
= Wr

(
∇u(s,Bt,x

s ),∇u(s− h/2, Bt,x
s−h/2)

)
≤Wr

(
∇u(s− h/2, Bt,x

s−h/2),∇u(s− h/2, Bt,x
s )
)

+Wr

(
∇u(s− h/2, Bt,x

s ),∇u(s,Bt,x
s )
)
.

From Lemma 6, ∇u(s− h/2, ·) is ε-Hölder continuous and we have

Wr

(
∇u(s− h/2, Bt,x

s−h/2),∇u(s− h/2, Bt,x
s )
)
≤ C√

T − (s− h/2)
Wr

(
Bt,x
s−h/2, B

t,x
s

)ε
≤ C‖G‖εLr√

T − s

(
h

2

) ε
2
,

where G is a standard normal random variable. Finally, for the last term, we use Proposition 9
for the time regularity of ∇u. We have

Wr

(
∇u(s− h/2, Bt,x

s ),∇u(s,Bt,x
s )
)
≤
∥∥∥∇u(s− h/2, Bt,x

s )−∇u(s,Bt,x
s )
∥∥∥

Lr
≤ C h

ε
2

√
T − s

,

and the estimate for Wr
(
Zn,t,xs , Zt,xs

)
follows.

This ends the proof.

A. Appendix.

A.1. A priori estimate for discrete BSDEs. For the convenience of the reader, we prove a
generalization of an a priori estimate for BSDEs driven by random walks given in [6, Proposition
7] (see also the appendix in [5]). This generalization allows to consider two different generators.

Lemma 12. There exists an integer n0 ∈ N∗ and a constant C > 0 both depending only on T
and ‖f‖Lip such that for any couple of functions (ḡ, f̄) satisfying (A1) and for all n ≥ n0 with
n > T‖f̄‖Lip and all (t, x, x̄) ∈ [0, T ]× R2,

E
[

sup
t≤s≤T

∣∣∣Y n,t,x
s − Ȳ n,t,x̄

s

∣∣∣2 +
∫

]t,T ]

∣∣∣Zn,t,xr − Z̄n,t,x̄r

∣∣∣2 d〈Bn〉r

]

≤ C E
[∣∣∣g (Bn,t,x

T

)
− ḡ

(
Bn,t,x̄
T

)∣∣∣2 +
∫

]t,T ]

∣∣∣δf (r, x, x̄, Ȳ n,t,x̄
r− , Z̄n,t,x̄r

)∣∣∣2 d〈Bn〉r

]
,

where δf(r, x, x̄, y, z) = f
(
r,Bn,t,x

r− , y, z
)
− f̄

(
r,Bn,t,x̄

r− , y, z
)
and, for all (t, x),

(
Ȳ n,t,x, Z̄n,t,x

)
denotes the solution to (12) where (g, f) is replaced by (ḡ, f̄).
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Proof. Let n be such that T‖f‖Lip/n < 1 and T‖f̄‖Lip/n < 1. Since, 〈Bn〉t − 〈Bn〉s ≤ (t− s) +
T/n, doing exactly the same computation as in the proof of Proposition 7 in [6], we get, for a
universal constant c ≥ 1,

E
[

sup
σ≤s≤τ

|δY n
s |2 +

∫
]σ,τ ]
|δZnr |2d〈Bn〉r

]

≤ cE
[
|δY n

τ |2
]

+ C(τ − σ, n)E
[∫

]σ,τ ]

∣∣∣δf (r, x, x̄, Ȳ n,t,x̄
r− , Z̄n,t,x̄r

)∣∣∣2 d〈Bn〉r

]

+ C(τ − σ, n)E
[

sup
σ≤s≤τ

|δY n
s |2 +

∫
]σ,τ ]
|δZnr |2 d〈Bn〉r

]

for all deterministic 0 ≤ σ < τ ≤ T, where

C(α, n) = c max
(
‖f‖2Lip, 1

)
max

(
(α+ T/n)2 , (α+ T/n)

)
for α ≥ 0.

We choose an integer m ∈ N∗ such that, with α = T/m, C(α,+∞) ≤ 1/3. Then, there exists an
n0 ∈ N∗ such that, for n ≥ n0 it holds C(α, n) ≤ 1/2 and T‖f‖Lip/n < 1. As soon as τ − σ ≤ α
and n ≥ n0, we have

E
[

sup
σ≤s≤τ

|δY n
s |2 +

∫
]σ,τ ]
|δZnr |2d〈Bn〉r

]

≤ 2cE
[
|δY n

τ |2 +
∫

]σ,τ ]

∣∣∣δf (r, x, x̄, Ȳ n,t,x̄
r− , Z̄n,t,x̄r

)∣∣∣2 d〈Bn〉r

]
. (45)

We set, for 0 ≤ k ≤ m−1, Ik = t+]k(T − t)/m, (k+1)(T − t)/m] and we introduce the following
norm on S2 ×M2:

‖(Y n, Zn)‖2s =
m−1∑
k=0

(2× 2c)k E
[
supt∈Ik |Y

n
t |2 +

∫
Ik

|Znr |2d〈Bn〉r
]
.

Considering Ik =]σ, τ ] and summing up (45) over k yields

‖(δY n, δZn)‖2s ≤
1
2 ‖(δY

n, δZn)‖2s + (4c)m−1(2c)E
[∣∣∣g (Bn,t,x

T

)
− ḡ

(
Bn,t,x̄
T

)∣∣∣2]
+ (4c)m−1 (2c)E

[∫
]t,T ]

∣∣∣δf (r, x, x̄, Ȳ n,t,x
r− , Z̄n,t,xr

)∣∣∣2 d〈Bn〉r

]
,

from which we get

‖(δY n, δZn)‖2s ≤ (4c)m E
[∣∣∣g (Bn,t,x

T

)
− ḡ

(
Bn,t,x̄
T

)∣∣∣2 +
∫

]t,T ]

∣∣∣δf (r, x, x̄, Ȳ n,t,x̄
r− , Z̄n,t,x̄r

)∣∣∣2 d〈Bn〉r

]
.

This finishes the proof since ‖(δY n, δZn)‖2s upper bounds the LHS of the inequality stated in
the Lemma.
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A.2. Gronwall lemmas. We recall the Gronwall lemmas used in this article.

Lemma 13. Suppose that g(t), α(t) : [0, T [→ [0,∞[ are integrable functions, and β > 0. For
0 ≤ t < T, if

g(t) ≤ α(t) + β

∫ T

t
g(s)ds,

then
g(t) ≤ α(t) + β

∫ T

t
α(s)eβ(s−t)ds.

The second lemma is of Volterra type. It can be either proved directly by a convolution
argument or one can use [12, Exercise 4, page 190].

Lemma 14. Assume a measurable g : [0, T [→ [0,∞[∈ L1([0, T [) and α, β > 0 such that

g(t) ≤ α√
T − t

+ β

∫ T

t

g(s)√
s− t

ds

for all t ∈ [0, T [. Then g(t) ≤ C α√
T−t for t ∈ [0, T [ for a constant C = C(T, β) > 0.

A.3. Proof of Lemma 6: Step 2. We assume that 0 < ε < 1; the case ε = 1 was treated in
Step 1. For η > 0, let us consider the function

fη(t, x, y, z) = inf{f(t, p, y, z) + η|x− p| : p ∈ R} = inf{f(t, x− q, y, z) + η|q| : q ∈ R}.

When f satisfies (3), then fη does as well and it is η-Lipschitz continuous w.r.t. x. Moreover

|fη(t, x, y, z)− f(t, x, y, z)| ≤ c(‖fx‖ε) η−ε/(1−ε), (46)

with c(t) = (εt)ε/(1−ε)t(1− ε). Indeed,

f(t, x, y, z) ≥ fη(t, x, y, z) = f(t, x, y, z) + inf{f(t, x− q, y, z)− f(t, x, y, z) + η|q| : q ∈ R}
≥ f(t, x, y, z) + inf{−‖fx‖ε|q|ε + η|q| : q ∈ R}
= f(t, x, y, z)− c(‖fx‖ε) η−ε/(1−ε).

In particular, |Kf−Kfη | ≤ c(‖fx‖ε) η−ε/(1−ε). Let (Y t,x,η, Zt,x,η) be the solution to the BSDE (4)
with data (g, fη) and uη be the function uη(t, x) := Y t,x,η

t . By the usual classical estimate for
BSDEs (see, for instance, [8, Proposition 2.1 and remarks] or [11, Lemma 5.26]), there exists a
C > 0 such that, for all (t, x) ∈ [0, T ]× R,

E
[

sup
s∈[t,T ]

|Y t,x,η
s − Y t,x

s |2 +
∫ T

t
|Zt,x,ηs − Zt,xs |2ds

]
≤ CE

∫ T

t
|(fη − f)(s,Bt,x

s , Y t,x
s , Zt,xs )|2ds

≤ C T c(‖fx‖ε)2 η−2ε/(1−ε). (47)

In particular, (uη)η converges to u, as η → +∞, uniformly on [0, T ]× R.
Proof of (a), (bi), and (bii). Since fη is Lipschitz continuous w.r.t. (x, y, z) and satisfies

(3) (uniformly in η), by Step 1, we know that uη ∈ C0,1([0, T [×R) and Zt,x,ηs = ∇uη(s,Bt,x
s ) for

a.e. (s, ω) ∈ [t, T [×Ω with

|∇uη(s, x)| ≤ C

(T − s)(1−ε)/2 for (s, x) ∈ [0, T [×R. (48)

25



Taking into account the convergence of (Zt,x,η)η to Zt,x in L2([t, T [×Ω), we have

|Zt,xs | ≤
C

(T − s)(1−ε)/2 , for a.e. (s, ω) ∈ [t, T [×Ω. (49)

We define the function

v(t, x) := E
(
g(Bt,x

T )BT −Bt
T − t

+
∫ T

t
f(s,Bt,x

s , Y t,x
s , Zt,xs )Bs −Bt

s− t
ds

)
for (t, x) ∈ [0, T [×R.

First we show that
∇uη(t, x)→ v(t, x) for (t, x) ∈ [0, T [×R

which also implies that v : [0, T [×R→ R is measurable. For this we denote

Ẑt,xr := Er

(
g(Bt,x

T )BT −Br
T − r

+
∫ T

r
f(s,Bt,x

s , Y t,x
s , Zt,xs )Bs −Br

s− r
ds

)
for r ∈ [t, T [.

We also use (26) for (g, fη) so that

∇uη(r,Bt,x
r ) = Er

(
g(Bt,x

T )BT −Br
T − r

+
∫ T

r
fη(s,Bt,x

s , Y t,x,η
s , Zt,x,ηs )Bs −Br

s− r
ds

)
.

Then we apply the conditional Cauchy-Schwarz inequality to (fη−f)
(s−r)ε/4

Bs−Br
(s−r)1−ε/4 and use (46) to

get
E|∇uη(r,Bt,x

r )− Ẑt,xr |2

≤ E
∣∣∣∣∣Er

(∫ T

r
(fη(s,Bt,x

s , Y t,x,η
s , Zt,x,ηs )− f(s,Bt,x

s , Y t,x
s , Zt,xs ))Bs −Br

s− r
ds

)∣∣∣∣∣
2

≤ 2
ε
T
ε
2 E

∫ T

r

(
c(‖fx‖ε) η−ε/(1−ε) + ‖fy‖Lip|Y t,x,η

s − Y t,x
s |+ ‖fz‖Lip|Zt,x,ηs − Zt,xs |

)2 1
(s− r)ε/2

ds.

Taking into account the bound for Y given in (47), we have

E|∇uη(r,Bt,x
r )− Ẑt,xr |2 ≤ C

(
η−2ε/(1−ε) + E

∫ T

r
|Zt,x,ηs − Zt,xs |2

1
(s− r)ε/2

ds

)
, (50)

where C depends on T , ε, ‖fx‖ε and ‖f‖Lip.
Now we find a sequence ηk ↑ +∞ such that the RHS tends to 0. Indeed, this follows by

dominated convergence as (47) guarantees a sequence ηk ↑ +∞ such that
Zt,x,ηks → Zt,xs a.e. on [t, T [×Ω,

and because of the equations (48) and (49). For r ≥ t, ∇uη(r,Bt,x
r ) converges to Ẑt,xr in L2

and, in particular, for r = t we obtain the desired convergence ∇uη(t, x) → v(t, x). Because of
Zt,x,ηs = ∇uη(s,Bt,x

s ) for a.e. (s, ω) ∈ [t, T [×Ω this also gives that
Zt,xs = v(s,Bt,x

s ) = Ẑt,xs a.e. on [t, T [×Ω. (51)
Coming back to (50), Gronwall’s lemma (Lemma 14) gives,

E|Zt,x,ηr − Zt,xr |2 ≤ Cη−2ε/(1−ε).

Especially, |∇uη(t, x)− v(t, x)| ≤ Cη−ε/(1−ε), so that limη→∞∇uη(t, x) = v(t, x).
Moreover, we conclude from this estimate and from the continuity of ∇uη on [0, T [×R that

also v is continuous. Finally, v(t, x) = ∇u(t, x) follows from taking the limit η ↑ +∞ in

uη(t, x) = uη(t, 0) +
∫ x

0
∇uη(t, y)dy,

where we use dominated convergence based on the inequality (48).
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