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Abstract

We revisit the optimal control problem of maximizing biogas production in continuous
bio-processes in two directions: 1. over an infinite horizon, 2. with sub-optimal controllers
independent of the time horizon. For the first point, we identify a set of optimal controls
for the problems with an averaged reward and with a discounted reward when the discount
factor goes to 0 and we show that the value functions of both problems are equal. For the
finite horizon problem, our approach relies on a framing of the value function by considering a
different reward for which the optimal solution has an explicit optimal feedback that is time-
independent. In particular, we show that this technique allows us to provide explicit bounds
on the sub-optimality of the proposed controllers. The various strategies are finally illustrated
on Haldane and Contois growth functions.

Keywords : Optimal control, Chemostat model, Singular arc, Sub-optimality, Infinite horizon.

1 Introduction

Anaerobic digestion is a biological process in which organic matter is transformed by microbial
species into biogas (such as methane and carbon dioxide). Such transformations have been used for
a long time in waste water-treatment plants to purify water [1]. Valorizing biogas production while
treating wastewater has received recently great attention, as a way for producing valuable energy
and limiting the carbon footprint of the process [2]. As a final product of the biological reaction, the
total production of biogas measures the performances of the biological transformation. Therefore,
there is a strong interest in determining control strategies maximizing biogas production.

With continuous-stirred bioreactors, two kinds of anaerobic models are usually considered for
control purposes in the literature: the one-step model, which corresponds to the classical chemostat
model [3], and the two-step model that has been proposed by Bernard et al. [4].

Although these models only have few dynamic variables, it has been shown that they are capable
of reproducing the qualitative behavior of the anaerobic digestion process [5]. Furthermore, in the
two-step model, the second reaction is the most limiting due to inhibition by the substrate and we
can then consider that a one-step model can be used to focus on the second reaction. In particular,
a common assumption is to consider that the first step is fast and then the two reactions can
be reduced to a single one with a slow-fast approximation and in this case, the one-step model
provides a good representation of the biogas production.

The control variable is typically the input flow rate (or equivalently the dilution rate, since
the volume of the reactor is constant in continuous operating mode). Several works have already
considered the static optimization problem of maximizing the output flow rate of biogas at steady
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state, and various control strategies have been proposed to stabilize the processes at these nominal
states (see for instance [6, 7, 8, 9, 10, 11, 12]).

There has been comparatively much less work considering the dynamic optimization problem
over the transients, while bio-processes are often not initialized at their optimal nominal state.
Although the optimal control problem, which consists in maximizing biogas production over a given
time interval, has been posed a long time ago [13], it is still unsolved today (even for the one-step
model). Let us mention two attempts to solve approximately or partially this problem. Sbarciog
et al. [14] have considered the two-step anaerobic model and proposed a strategy for maximizing
biogas production as an optimal control to drive the system in finite time in a neighborhood
of the optimal steady state, with additive penalty terms in the criterion. In [15], Ghouali et
al. give a complete solution of the original optimal control problem for the one-step model, but
for a particular subset of initial conditions which belong to an invariant manifold of the system
(see also [16]). The dynamics can be then reduced to a scalar one and the authors show that
the optimal solution exhibits a singular arc with a “most rapid approach path” optimal strategy.
Let us underline that optimal control problems over a fixed time horizon possess generally a
time-dependent optimal synthesis, while the duration of process operation is often poorly known.
However, the scalar reduced problem exhibits the remarkable feature of having an optimal synthesis
independent of the terminal time, which makes it quite attractive from an application view point.

The purpose of the present article is to propose new control strategies for the one-step model,
as time-independent feedbacks for general initial conditions

- either considering an infinite horizon,

- either considering sub-optimal controllers for the finite horizon.

For the infinite horizon (see for instance the book [17]), we consider the limit of the discounted
criterion (when the discount factor tends to zero) and the average cost. We study optimal strategies
and compare their related optimal costs. This study extends the preliminary results presented in
the conference paper [18] and considers a large class of growth functions, that can be in particular
density-dependent (such as the Contois law) or not (such as the Monod or Haldane law). Our
work for the finite horizon exploits and extends an approximation technique presented in [19]. This
consists, for a given initial condition, in framing the optimal solution by considering a different
reward for which the optimal solution can be determined exactly and that possess the property of
having a time-independent optimal synthesis (i.e. whatever is the time horizon, finite or infinite).
This technique has moreover the advantage of providing bounds on the sub-optimality of the
controllers. The results are again obtained for a large class of growth functions and we show that
density dependent growth functions lead to more sophisticated feedback laws.

The paper is organized as follows. Section 2 specifies dynamics, control, criterion and hypothe-
ses, and gives some preliminary results about controllability and asymptotic behavior of solutions.
Sections 3 and 4 study the optimal solutions, respectively for the infinite and finite time horizons.
Finally, Section 5 illustrates our results on various growth functions.

2 Preliminaries

In this work, we consider the classical chemostat model [3]. This represents a well-mixed continu-
ously fed bioreactor in which a substrate of concentration s is treated (and then transformed into
biogas) by a population of microorganisms of concentration x

ṡ = u(sin − s)−
1

Y
µ(s, x)x, (1)

ẋ = µ(s, x)x− ux. (2)

We denote sin > 0 the inflow concentration of substrate, Y the yield coefficient, µ(·, ·) the specific
growth rate and u the dilution rate, which is the control.
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The biogas flowrate is assumed proportional to the growth rate so that the biogas produced
during a time interval [t0, T ] is proportional to∫ T

t0

µ(s(t), x(t))x(t) dt

and, without loss of generality, we will suppose that the proportionality coefficient as well as the
yield coefficient are equal to 1.

We will consider the following class of growth functions :

Assumption 1. We suppose that µ : R+ × R+ → R+ is a Lipschitz continuous function that
satisfies, for all x > 0

µ(0, x) = 0 and µ(s, x) > 0 for s > 0.

We suppose as well that x 7→ µ(s, x) is non increasing, which models crowding effects, and x 7→
µ(s, x)x is non decreasing, which models the fact that having more biomass provides at least the
same growth.

A typical instance of this class is the Contois growth function, defined later in (34), but note
that this class of functions also contains growth functions that depend only on the substrate
concentration, such as the Monod (32) and the Haldane (33) functions.

We will study the problem of maximizing the accumulated biogas for controls in the following
set of admissible controls

U(t0, T ) =
{
u(·) ∈ L∞(t0, T ;R) : u(t) ∈ [0, umax] for t ∈ [t0, T ]

}
with t0 ∈ R and T ∈ R ∪ {+∞}, and where umax > 0 is a given parameter that represents the
maximal dilution rate. We will consider initial conditions taken in the invariant set

D := [0, sin)× (0,∞)

which corresponds to the most common operating conditions. Notice that for initial conditions in
D, any solution of (1)-(2) cannot reach s = sin in finite time and stays non negative. Therefore
the set D is (forward) invariant.

2.1 Properties of the Dynamics

On the invariant domain D, we introduce the change of variables

ζ = (s, z) with z =
x

sin − s
,

under which the dynamics become

ζ̇ =

[
ṡ
ż

]
= f(ζ, u) :=

[ (
u− µ

(
s, (sin − s)z

)
z
)

(sin − s)
µ
(
s, (sin − s)z

)
(1− z)z

]
. (3)

We will denote st0,ξ,u(·) and zt0,ξ,u(·) the solution of (3), with initial condition ξ = (s0, z0) =
(s(t0), z(t0)) ∈ D and control u(·) ∈ U(t0, T ). The cumulated biogas production becomes∫ T

t0

φ
(
st0,ξ,u(t), zt0,ξ,u(t)

)
zt0,ξ,u(t) dt (4)

with
φ(s, z) = µ

(
s, (sin − s)z

)
(sin − s) (5)

and we will denote
φ(z) = max

s∈(0,sin)
φ(s, z). (6)

We can now establish an important property of the controlled dynamics.
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Lemma 1. The trajectories of the system (3) for a given initial condition ξ = (s0, z0) ∈ D, for all
admissible controls, remain in the set

L(ξ) = [0, sin]× [min(z0, 1),max(z0, 1)]. (7)

Proof. From Assumption 1 we have that µ(·, ·) > 0 and since the solutions z(·) satisfy (3), we then
have the following

min(z0, 1) 6 zt0,ξ,u(t) 6 max(z0, 1)

for all t > 0, for any admissible control u(·).

In the following, we consider initial conditions that guarantee the controllability of the s vari-
able.

Assumption 2. We suppose that the initial condition ξ ∈ D is such that

max
(s,z)∈L(ξ)

µ
(
s, (sin − s)z

)
z < umax.

In practice, for a given initial condition it possible to choose umax such that the previous
inequality is satisfied.

We now define a class of feedbacks, that will play an important role, and that are based on the
notion of most rapid approach path, a well known concept in the theory of optimal control, see for
example [20, 21].

Definition 1. For (s, z) ∈ L(ξ), we define the most rapid approach feedback to a given substrate
level s∗ ∈ [0, sin), as

ψs∗(s, z) =

∣∣∣∣∣∣
0 if s > s∗,
µ(s∗, (sin − s∗)z) z if s = s∗,
umax if s < s∗.

(8)

Clearly, with Assumption 2 this feedback is well defined, so that, associated with this control,
for every initial condition ξ ∈ D, there exists a unique absolutely continuous solution for the
dynamics (3).

Lemma 2. For any ξ ∈ D satisfying Assumption 2, a given substrate level s∗ ∈ (0, sin) is reachable
in finite time with the feedback ψs∗ .

Proof. First, using the monotonicity properties of µ(·, ·) of Assumption 1, it is clear that ψs∗ is
admissible provided Assumption 2 is satisfied.

To show that s∗ is reachable in finite time, it is enough to note that when st0,ξ,ψs∗ (t) > s∗, for
t in a given open interval I, we have

ṡt0,ξ,ψs∗ (t) = −µ
(
s, (sin − s)z

)
z(sin − s) 6 k− < 0, ∀ t ∈ I

with k− = −mins∈(s∗,sin) µ
(
s, (sin − s) min(z0, 1)

)
min(z0, 1)(sin − s∗). This insures that s∗ is

always reachable in finite time from s0 > s∗.
Analogously, if st0,ξ,ψs∗ (t) < s∗, for t ∈ I, we have from Assumption 2

ṡt0,ξ,ψs∗ (t) =
[
umax − µ

(
s, (sin − s)z

)
z
]

(sin − s) > k+ > 0, ∀ t ∈ I

with k+ =
[
umax −maxs∈(0,s∗) µ

(
s, (sin − s) max(z0, 1)

)
max(z0, 1)

]
(sin−s∗). Then s∗ is reachable

from s0 < s∗, again in finite time.

Remark 1. It should be pointed out that there is a similarity with the turnpike property [22, 23]
when using the controller (8). The turnpike property has received great attention in the literature
(see for instance [24, 20, 21, 25]), and recent results give sufficient optimality conditions [26, 27].
However, we shall show in the next sections that the value s∗, which determines the turnpike, has
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to depend on the initial condition (excepted for the very particular case when the initial condition
belongs to the invariant set {z = 1} that has been solved in [15]). So, we are not in the usual
framework of a single turnpike [26, 27] or isolated turnpikes [28], and the results of the literature
do not apply.

For the problem on an infinite horizon, we will consider persistently exciting controls, which
are defined as satisfying ∫ T

t0

u(t) dt −→
T→∞

∞.

As the next Lemma shows, the trajectories associated with these controls are such that zt0,ξ,u(t)
converges to 1, which is essential in our approach. Furthermore, for non persistently exciting con-
trols, st0,ξ,u(t) converges to 0 and thus the biogas production also converges to 0. As a consequence,
the controls that maximize biogas production are necessarily persistently exciting controls.

Lemma 3. For all initial conditions ξ ∈ D and for all persistently exciting controls u(·) ∈ U(0,∞),
we have

lim
t→∞

z0,ξ,u(t) = 1

and

lim
δ→0

∫ ∞
0

δe−δtz0,ξ,u(t) dt = lim
T→∞

1

T

∫ T

0

z0,ξ,u(t) dt = 1.

Moreover, for non persistently exciting controls, we have

lim
t→+∞

s0,ξ,u(t) = 0.

Proof. From equation (3), the solution z(·) = z0,ξ,u(·) can be written as follows

z(t) =
z0 + e

∫ t
t0
µ(s(τ),x(τ)) dτ

1 + z0

(
e
∫ t
t0
µ(s(τ),x(τ)) dτ − 1

) (9)

where s(·) = s0,ξ,u(·), x(·) = x0,ξ,u(·). From equation (2), the solution x(·) is such that

x(t) = x(t0)e
∫ t
t0

(
µ(s(τ),x(τ))−u(τ)

)
dτ
.

Therefore, if the integral function

t 7→
∫ t

t0

µ(s(τ), x(τ)) dτ, t ≥ t0 (10)

is bounded, then x(t) must converge asymptotically to 0 when t goes to +∞ and u(·) is a persis-
tently exciting control. Moreover, from equations (1), (2) we have

d

dt

(
s(t) + x(t)

)
= u(t)

(
sin − s(t) + x(t)

)
so that

s(t) + x(t) = sin + (s(t0) + x(t0)− sin
)
e
−

∫ t
t0
u(τ) dτ

and then s(t) must converge to sin when t goes to +∞. Consequently, by continuity of the function
µ, there exists T > t0 such that

µ(s(t), x(t))) > µ(sin, 0)/2 > 0

for any t > T , which implies that the integral defined in (10) goes to +∞ when t goes to +∞,
which is a contradiction. We deduce that this integral cannot be bounded and from equation (9)
that z(t) converges to 1 when t goes to +∞.
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A proof of the equality of limits of the integrals

lim
δ→0

∫ ∞
0

δe−δtz0,ξ,u(t) dt = lim
T→∞

1

T

∫ T

0

z0,ξ,u(t) dt

can be found in [29, Lemma 3.5]. For the value of the limits we use the fact that z0,ξ,u(t) converges
to 1 : for all ε̃ > 0, there exits a time tε̃ such that, for all t > tε̃,

|z0,ξ,u(t)− 1| < ε̃.

Then, for all T > max(tε̃, tε̃/ε̃)∣∣∣∣∣ 1

T

∫ T

0

z0,ξ,u(t) dt− 1

∣∣∣∣∣ 6 1

T

∫ tε̃

0

|z0,ξ,u(t)− 1| dt+
1

T

∫ T

tε̃

|z0,ξ,u(t)− 1| dt

<
tε̃
T
|z0 − 1|+

(
1− tε̃

T

)
ε̃

< ε̃ (|z0 − 1|+ 1) .

With this, for all ε > 0, we can take ε̃ = ε/(|z0 − 1|+ 1) and then we have, for T > max(tε̃, tε̃/ε̃)∣∣∣∣∣ 1

T

∫ T

0

z0,ξ,u(t) dt− 1

∣∣∣∣∣ < ε.

Finally, we prove that for non persistently exciting controls, s0,ξ,u(t) converges to 0. Therefore,
suppose that u(·) is an admissible control with a finite integral and we define, for all t > 0,

I(t) :=

∫ t

0

u(τ) dτ <∞

and
ϕ(t) := (sin − s0,ξ,u(t))eI(t).

Then
ϕ′(t) = φ

(
s0,ξ,u(t), z0,ξ,u(t)

)
z0,ξ,u(t)eI(t) > 0

and since ϕ(t) is bounded, we can deduce that ϕ(t) converges as t goes to infinity. Note as well that
ϕ′ is absolutely continuous and thus uniformly continuous. We can therefore use Barbalat’s Lemma
[30, Lemma 4.2] to get that ϕ′(t) converges to 0. Then, as z0,ξ,u(t) cannot reach 0 (Lemma 1),
we have that φ

(
s0,ξ,u(t), z0,ξ,u(t)

)
must converge to 0 and by continuity we conclude that s0,ξ,u(t)

converges to 0.

3 Infinite Horizon and Average Reward

In this section, we study the problem of maximizing biogas production over an infinite horizon.
Since the dynamics (3) are autonomous, without loss of generality, we can assume here that t0 = 0
and we will then denote sξ,u(·) and zξ,u(·) solutions of (3).

We start by defining the average biogas production during a time interval [0, T ] as

JT (ξ, u(·)) =
1

T

∫ T

0

φ
(
sξ,u(t), zξ,u(t)

)
zξ,u(t) dt (11)

and we consider the inferior and superior limits as T goes to infinity

J∞(ξ, u(·)) = lim inf
T→∞

JT (ξ, u(·)), (12)

J
∞

(ξ, u(·)) = lim sup
T→∞

JT (ξ, u(·)). (13)
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The optimal control problems in consideration here consist in maximizing these functionals with
respect to the dilution rate u(·) ∈ U(0,∞), for any initial condition ξ ∈ D. More precisely, the
value functions of these optimal control problems are

V∞(ξ) = sup
{
J∞(ξ, u(·)) : u(·) ∈ U(0,∞)

}
, (14)

V
∞

(ξ) = sup
{
J
∞

(ξ, u(·)) : u(·) ∈ U(0,∞)
}
. (15)

We need to consider the inferior and superior limits here as there exists controls for which the
rewards (12) and (13) may differ. Indeed, this is the case for certain oscillating controls as can be
seen in the example in the Appendix. Nevertheless, we will show that the value functions (14) and
(15) are in fact equal. Moreover, we will connect these problems to the problem with a discounted
reward when the discount factor goes to 0, as in [31], and we will identify a set of controls that are
optimal for all three problems.

To this end, we now define the following discounted reward, for a discount rate δ > 0

Jδ(ξ, u(·)) = δ

∫ ∞
0

e−δtφ
(
sξ,u(t), zξ,u(t)

)
zξ,u(t) dt. (16)

This type of cost function is often used in problems related to economics for which the term e−δt

represents a discount rate or a preference for the present [17]. In our setting, the use of this
discounted reward can be seen as a preference for earlier rather than later production. Here, the
integral is rescaled with the discount factor δ in order to guarantee that, when we take the limit
as δ goes to 0, the reward remains finite.

The value function of the optimal control problem for a given δ is then

Vδ(ξ) = sup
{
Jδ(ξ, u(·)) : u(·) ∈ U(0,∞)

}
. (17)

Note that both average rewards (12) and (13), as well as the discounted reward (16), are well
defined as the following Lemma shows.

Lemma 4. For all ξ ∈ D, for all admissible controls u(·) ∈ U(0,∞) and for all δ > 0, the rewards
J∞(ξ, u(·)), J∞(ξ, u(·)) and Jδ(ξ, u(·)) are uniformly bounded.

Proof. From the monotonicity properties of Assumption 1, we have that the function z 7→ φ(s, z)
is non increasing. for all s > 0. Thus, for all t > 0

φ(sξ,u(t), zξ,u(t)) 6 φ(0).

The uniform boundedness of the rewards then follows from Lemma 1.

3.1 Relation Between Average and Discounted Biogas Production Prob-
lems

We now show how the average and discounted biogas production problems are related when the
discount factor δ goes to 0.

In the following, we will consider the discounted reward (16) as a function of the trajectory
ζ(·) =

(
sξ,u(·), zξ,u(·)

)
instead of the control and with a slight abuse of notation, we will denote it

as Jδ(ζ(·)). Define the set valued map

F (ζ) :=
⋃

u∈[0,umax]

f(ζ, u)

and consider the set of all forward trajectories of (3) with initial condition ξ

S(ξ) :=
{
ζ(·) ∈ AC([0,∞),L(ξ)) : ζ(0) = ξ, ξ̇(t) ∈ F (ξ(t)) a.e. t ∈ [0,∞)

}
7



where AC([0,∞),L(ξ)) denotes the set of absolutely continuous functions from [0,∞) to L(ξ). We
recall from the Filippov Selection Theorem (see for instance [32]) that the optimal control problem
(17) is equivalent to the optimization problem on S(ξ),

Vδ(ξ) = sup
{
Jδ(ζ(·)) : ζ(·) ∈ S(ξ)

}
.

We now specify the topology that we will use to study the limit of the discounted biogas
production problem when the discount factor δ goes to 0.

Definition 2. For b > 0, we denote by L1
(
0,∞;R2, e−btdt

)
the weighted Lebesgue space of mea-

surable functions y(·) from [0,∞) to R2 such that∫ ∞
0

||y(t)||e−btdt <∞

and we denote W 1,1
(
0,∞;R2, e−btdt

)
the weighted Sobolev space of measurable functions y(·) sat-

isfying
y(·) ∈ L1

(
0,∞;R2, e−btdt

)
and ẏ(·) ∈ L1

(
0,∞;R2, e−btdt

)
.

We consider the topology on W 1,1
(
0,∞;R2, e−btdt

)
for which a sequence yn(·) converges to y(·) if

and only if

- yn(·) converges uniformly to y(·) on compact intervals,

- ẏn(·) converges weakly to ẏ(·) in L1
(
0,∞;R2, e−btdt

)
.

Now, we define the notion of Γ−limit in our context (see [33] for further details).

Definition 3. For a given initial condition ξ ∈ D and trajectory ζ(·) ∈ S(ξ), the Γ−lower limit
and Γ−upper limit of Jδ(·) are

Γ− lim inf
δ→0

Jδ(ζ(·)) = sup
V∈N (ζ(·))

lim inf
δ→0

inf
η(·)∈V

Jδ(η(·))

Γ− lim sup
δ→0

Jδ(ζ(·)) = sup
V∈N (ζ(·))

lim sup
δ→0

inf
η(·)∈V

Jδ(η(·)).

Here, we denote N (ζ(·)) the set of all open neighborhoods of ζ(·) of the topology on W 1,1
(
0,∞;R2, e−btdt

)
given in Definition 2. If both of these limits coincide, then the Γ−limit of Jδ(·) is

Γ− lim
δ→0

Jδ(ζ(·)) = Γ− lim inf
δ→0

Jδ(ζ(·)) = Γ− lim sup
δ→0

Jδ(ζ(·)).

We now show that this Γ−limit is well defined, as well as the associated optimal control problem.

Proposition 1. For all ξ ∈ D and for all trajectories ζ(·) ∈ S(ξ), the Γ−limit of Jδ(·) exists and
we denote it as

J0(ζ(·)) := Γ− lim
δ→0

Jδ(ζ(·)).

In addition, for all δ > 0, the suprema are attained

Vδ(ξ) = max
u(·)

Jδ(ζ(·))

and these maxima converge as δ goes to 0, pointwise in ξ,

V0(ξ) := max
ζ(·)

J0(ζ(·)) = lim
δ→0

Vδ(ξ). (18)

Finally, if ζδ(·) is an optimal trajectory for (17), i.e. if Vδ(ξ) = Jδ(ζδ(·)), and if ζδ(·) converges to
ζ0(·) in S(ξ), then ζ0(·) is an optimal control for (18) and

V0(ξ) = J0(ζ0(·)) = lim
δ→0

Jδ(ζδ(·)).
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Proof. First, we show that for all trajectories ζ(·) =
(
s(t), z(t)

)
∈ S(ξ) and for δ small enough,

δ 7→ Jδ(ζ(·)) is increasing. We can write this function as

Jδ(ζ(·)) = δ

∫ +∞

0

e−δtg(t)dt,

with g(t) := φ
(
s(t), z(t)

)
z(t), which is bounded and positive (Lemma 1),

0 < m < g(t) < M <∞, ∀t > 0.

Then, we have
∂

∂δ
Jδ(ζ(·)) =

∫ +∞

0

e−δtg(t)dt− δ
∫ +∞

0

te−δtg(t)dt

so that for T > 0,
∂

∂δ
Jδ(ζ(·)) > m

δ

(
1− e−δT

)
− M

δ
.

Now, since e−δT = 1− δT + o(δ), there exists δ̄ > 0 such that, for all δ < δ̄, m
δ

(
1− e−δT ) > mT

2 .

Then, taking T > 2M
mδ , we conclude that δ 7→ Jδ(ζ(·)) is increasing for δ < δ̄.

Next, recall that for all initial conditions and all trajectories, δ 7→ Jδ(ζ(·)) is uniformly bounded
(Lemma 4). Finally, since Jδ(·) is continuous with respect to ζ(·), we can use [33, Proposition 5.7]
to get the Γ−convergence as δ goes to 0.

To show that the suprema are attained and that they converge, it is sufficient to show that there
exists a countably compact set on which the suprema are attained for all δ [33, Theorem 7.4]. The
set S(ξ) is clearly independent of δ so that we now need to show that S(ξ) is countably compact for
the topology on W 1,1

(
0,∞;R2, e−btdt

)
given in Definition 2. However, since W 1,1

(
0,∞;R2, e−btdt

)
is a metric space, any compact set is countably compact, so we only need to prove the compactness
of S(ξ).

For each ξ ∈ D we set
Fξ(ζ) := F

(
PL(ξ)(ζ)

)
where PL(ξ) is the projection on the convex set L(ξ). Then Fξ has linear growth, so that we can
define

c = sup
ζ∈Dom(Fξ)

||Fξ(ζ)||
||ζ||+ 1

where ||Fξ(ζ)|| := supη∈Fξ(ζ) ||η||. Note that F is upper semi-continuous and has compact non-
empty convex images (such a map is known as a Marchaud map [34]). With this, the set S(ξ) is
the set of absolutely continuous solutions of the differential inclusion

ζ̇(t) ∈ Fξ(ζ(t)), ζ(0) = ξ.

We can therefore use [34, Theorem 3.5.2] to establish that S(ξ) is compact in W 1,1
(
0,∞;R2, e−btdt

)
for b > c.

We now relate the average and discounted biogas production problems.

Proposition 2. For all ξ ∈ D we have

V∞(ξ) 6 V0(ξ) 6 V
∞

(ξ).

Proof. We adapt here results of [31] given for minimization problems to maximization problems
by changing the sign of the reward. We give here the main steps for the first inequality, the second
is obtained similarly. First, [31, Lemma 3.3] gives

sup
u(·)

lim inf
T→∞

JT (ξ, u(·)) = lim
T→∞

sup
u(·)

inf
τ>T

Jτ (ξ, u(·))

9



and then [31, Corollary 3.5] states that for all T > 0, all ε > 0 we have

sup
u(·)

inf
τ>T

Jτ (ξ, u(·))− ε 6 Vδ(ξ)

for all small δ. Taking the limit as T →∞ and δ → 0 gives the result.

3.2 Solution of Optimal Control Problems

We now solve the optimal control problems (14) and (15) and show that their value functions are
equal to the limit (18) of the discounted problem. We start by determining an upper bound for
the value functions and then we will exhibit controls that attain this bound.

Proposition 3. For all initial conditions ξ ∈ D

V
∞

(ξ) 6 max
s∈(0,sin)

φ(s, 1).

Proof. With the monotonicity properties of µ(·, ·) of Assumption 1, we have that z 7→ φ(s, z) is
non increasing and z 7→ φ(s, z)z is non decreasing. This implies that

φ(s,max(z0, 1)) 6 φ(s, z) 6 φ(s,min(z0, 1)) (19)

and

φ(s,min(z0, 1)) min(z0, 1) 6 φ(s, z)z 6 φ(s,max(z0, 1)) max(z0, 1). (20)

First, we consider the case when z0 6 1. For any control u(·), we have

JT (ξ, u(·)) 6 1

T

∫ T

0

φ
(
s(t),max(z0, 1)

)
max(z0, 1) dt

6 max
s∈(0,sin)

φ(s, 1) = φ(1).

Taking the upper limit as T goes to infinity and the supremum with respect to u(·) we get the
result.

Next, for z0 > 1, we have

JT (ξ, u(·)) 6 1

T

∫ T

0

φ
(
s(t),min(z0, 1)

)
z(t) dt

6 max
s∈(0,sin)

φ(s, 1)
1

T

∫ T

0

z(t) dt.

Using Lemma 3 we get that J
∞

(ξ, u(·)) 6 φ(1) and we conclude taking the supremum with respect
to u(·).

Note that the existence of a maximum of s 7→ φ(s, 1) = µ(s, sin− s)(sin− s) on (0, sin) follows
from Assumption 1. We will denote a substrate level at which such a maximum is attained as

s̄ = arg max
s∈(0,sin)

φ(s, 1)

Proposition 4. For any initial condition ξ ∈ D, any control u(·) ∈ U(0,∞) that drives the system
asymptotically to the state (s̄, 1) is optimal for problems (14), (15) and (18). We then have

V∞(ξ) = V0(ξ) = V
∞

(ξ) = φ(s̄, 1) = φ(1). (21)
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Proof. The continuity of φ implies that for all ε > 0, there exists a time tε > 0 such that, for all
t > tε, ∣∣φ(sξ,ū(t), zξ,ū(t)

)
zξ,ū(t)− φ

(
s̄, 1
)∣∣ < ε. (22)

Since sξ,ū(·) and zξ,ū(·) take values in the compact set L(ξ) (7), there is a constant Mξ > 0 such
that, for all t > 0, ∣∣φ(sξ,ū(t), zξ,ū(t)

)
zξ,ū(t)

∣∣ < Mξ. (23)

Then, for all T > tε, from (22) and (23)∣∣∣JT (ξ, u(·))− φ
(
s̄, 1
)∣∣∣ 6 1

T

∫ tε

0

∣∣φ(sξ,ū(t), zξ,ū(t)
)
zξ,ū(t)− φ

(
s̄, 1
)∣∣ dt

+
1

T

∫ T

tε

∣∣φ(sξ,ū(t), zξ,ū(t)
)
zξ,ū(t)− φ

(
s̄, 1
)∣∣ dt

<
2Mξtε
T

+

(
1− tε

T

)
ε

and we have
J∞(ξ, u(·)) = J

∞
(ξ, u(·)) = φ(s̄, 1).

Using Propositions 2 and 3, we get the equality of value functions (21) and deduce the optimality
of u(·) for both average biogas production problems (14) and (15). We proceed similarly to get∣∣∣Jδ(ξ, u(·))− φ

(
s̄, 1
)∣∣∣ < 2Mξ

∫ tε

0

δe−δt dt+ ε

∫ ∞
tε

δe−δt dt

< 2Mξ

(
1− e−δtε

)
− εe−δtε

and we have
J0(ξ, u(·)) = φ(s̄, 1).

Then, Proposition 2 implies that u(·) is also optimal for problem (18).

With Lemma 3, we know that all persistently exciting admissible controls make z(·) converge
to 1, and from Lemma 2, we know that the feedback ψs∗ defined in (8) with s∗ = s̄ guarantees
that s(·) reaches s̄. Then, from the previous Proposition we have the following result.

Proposition 5. For any initial condition ξ ∈ D satisfying Assumption 2, the most rapid approach
feedback to s̄, defined in (8) and denoted ψs̄, is optimal for both average production problems (14)
and (15) and for the limit (18) of the discounted production problem.

Clearly, there is not a unique optimal control for the infinite horizon problems that we have
considered. For example, in the case of a growth function that depends only on the substrate and
that is monotone (such as the Monod growth function), the constant control u = µ(s̄) can also
drive the system to the state (s̄, 1). Nonetheless, for the control ψs̄, we are able to state in the
next section an estimation of the sub-optimality for the finite horizon problem.

4 Finite Horizon and Sub-optimal Controls

We now examine the problem of maximizing biogas production over a finite horizon for a time
interval [t0, T ] where T is fixed. For this we consider the following reward

J(t0, ξ, u(·)) =

∫ T

t0

φ
(
st0,ξ,u(t), zt0,ξ,u(t)

)
zt0,ξ,u(t) dt (24)

11



where we recall that
(
st0,ξ,u(·), zt0,ξ,u(·)

)
is the solution of (3) with control u(·) ∈ U(t0, T ) and

initial condition ξ ∈ D. The optimal control problem consists in maximizing this functional with
respect to the dilution rate, so that the associated value function is

V (t0, ξ) = sup
{
J(t0, ξ, u(·)) : u(·) ∈ U(t0, T )

}
. (25)

We also consider auxiliary optimal control problems, which consist in maximizing the cost, for
a given z1 ∈ [min(z0, 1),max(z0, 1)],

Jz1(t0, ξ, u(·)) =

∫ T

t0

φ(st0,ξ,u(t), z1) dt (26)

for the same dynamics (3). The value functions of these auxiliary problems are then defined as

Wz1(t0, ξ) = sup
{
Jz1(t0, ξ, u(·)) : u(·) ∈ U(t0, T )

}
. (27)

The resolution of these auxiliary problems will be presented in Section 4.1.
We now show that the value functions of the original problem (25) and the auxiliary problems

(27) are related.

Proposition 6. For all ξ ∈ D, t0 < T and any z1 ∈ [min(z0, 1),max(z0, 1)], we have the following
frame for the value function V of the original problem

min(z0, 1)Wz1(t0, ξ) 6 V (t0, ξ) 6 max(z0, 1)Wz1(t0, ξ). (28)

Proof. We start with the case z0 6 1. For a given control u(·) ∈ U(t0, T ), we define the following
time

t1 = inf {t > t0 : zt0,ξ,u(t) = z1} ∧ T

which it is well defined since zt0,ξ,u(·) is monotonous. Then, for t0 6 t 6 t1 we have z0 6 zt0,ξ,u(t) 6
z1 6 1 and with the monotonicity properties of µ(·, ·) of Assumption 1 we have

φ(st0,ξ,u(t), z1)z0 6 φ(st0,ξ,u(t), zt0,ξ,u(t))zt0,ξ,u(t) 6 φ(st0,ξ,u(t), z1)z1.

Next, for t1 6 t 6 T we have z0 6 z1 6 zt0,ξ,u(t) 6 1 and

φ(st0,ξ,u(t), z1)z1 6 φ(st0,ξ,u(t), zt0,ξ,u(t))zt0,ξ,u(t) 6 φ(st0,ξ,u(t), z1).

Combining these inequalities we get∫ t1

t0

φ(st0,ξ,u(t), z1)z0 dt+

∫ T

t1

φ(st0,ξ,u(t), z1)z1 dt 6 J(t0, ξ, u(·))

6
∫ t1

t0

φ(st0,ξ,u(t), z1)z1 dt+

∫ T

t1

φ(st0,ξ,u(t), z1) dt.

Now, since z0 6 z1 6 1 we have

z0Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 Jz1(t0, ξ, u(·)).

For the case z0 > 1, we proceed in a similar way to get

Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 z0Jz1(t0, ξ, u(·)).

We conclude by taking the supremum over all admissible controls.

The interest of the previous frames on the value functions is that it allows to find controls for
which we have an estimation of sub-optimality for the original problem.
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Proposition 7. For all ξ ∈ D and all t0 < T , any optimal control u?z1(·) for the reward Jz1(t0, ξ, ·)
guarantees a (sub-optimal) value for the original criterion J(t0, ξ, ·) that satisfies

min(z0, 1)Wz1(t0, ξ) 6 J(t0, ξ, u
?
z1(·)) 6 max(z0, 1)Wz1(t0, ξ) (29)

and we have the following estimation of the value function V

V (t0, ξ)− J(t0, ξ, u
?
z1(·)) 6 |1− z0|Wz1(t0, ξ). (30)

Proof. From the proof of Proposition 6, for any control u(·) ∈ U(t0, T ), we have

min(z0, 1)Jz1(t0, ξ, u(·)) 6 J(t0, ξ, u(·)) 6 max(z0, 1)Jz1(t0, ξ, u(·)).

Evaluating this for any optimal control u?z1(·) for the reward Jz1(t0, ξ, ·) gives the sub-optimality
frame (29). The sub-optimality estimation (30) then follows from (28) and (29).

4.1 Resolution of Auxiliary Problems

In order to obtain sub-optimal controls for problem (25) we now need to solve the auxiliary problem
(27) for a given z1 ∈ [min(z0, 1),max(z0, 1)]. The optimal control of this auxiliary problem is an
autonomous feedback, even though the horizon is fixed and finite. It is similar to the optimal
feedback for the infinite horizon problem ψs̄, defined in (8), and it drives the system towards a
maximizer of s 7→ φ(s, z1) but now, this maximizing substrate level depends on z1.

We first need an assumption on the uniqueness of a maximum of φ(·, z1).

Assumption 3. For each z1 > 0, the function s 7→ φ(s, z1) admits a unique maximum on (0, sin),
and we denote the substrate level at which this maximum is attained as

s̄(z1) = arg max
s∈(0,sin)

φ(s, z1). (31)

Note that implies that s 7→ φ(s, z1) is increasing on (0, s̄(z1)] and decreasing on [s̄(z1), sin).

Proposition 8. For all ξ ∈ D satisfying Assumption 2 and all t0 < T , the most rapid approach
feedback to s̄(z1), defined in (8) and denoted ψs̄(z1), is optimal for the auxiliary problem (27).

Proof. We start with the case s0 > s̄(z1). With the control u = 0, the solution of (3) is such
that st0,ξ,0(·) is monotonic and non increasing. Therefore there exists a time tmin, possibly larger
than T , such that st0,ξ,0(tmin) = s̄(z1) and then the solution with the feedback (8) is, with
t∗ = min(tmin, T )

st0,ξ,ψs̄(z1)
(t) =

{
st0,ξ,0(t) if t0 6 t < t∗,

s̄(z1) if t∗ 6 t 6 T.

Next, for all u ∈ [0, umax] and for all (s, z) ∈ L(ξ),

−µ(s, (sin − s)z)(sin − s)z 6 (sin − s)u− µ(s, (sin − s)z)(sin − s)z.

By the theorem of comparison of solutions of scalar differential equations, this implies that st0,ξ,0(t) 6
st0,ξ,u(t), up to time t∗, for all controls u(·) ∈ U(t0, T ). Since s 7→ φ(s, z1) is decreasing on
[s̄(z1), sin), we have

φ(st0,ξ,0(t), z1) > φ(st0,ξ,u(t), z1).

Finally, as s 7→ φ(s, z1) reaches its maximum at s̄(z1) we get

Jz1(t0, ξ, ψs̄(z1)) =

∫ t∗

t0

φ(st0,ξ,0(t), z1)dt+

∫ T

t∗

φ(s̄(z1), z1)dt

>
∫ T

t0

φ(st0,ξ,u(t), z1)dt

= Jz1(t0, ξ, u).
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We now consider s0 < s̄. From Assumption 2, the feedback is admissible and we have

umax > µ(s, (sin − s)z)z for all (s, z) ∈ L(ξ)

Thus, with the control u = umax, the solution of (3) is such that st0,ξ,umax
(·) is monotone and non

decreasing. Therefore, there exists a time tmax, possibly larger than T , such that st0,ξ,umax(tmax) =
s̄(z1) and then the solution with the feedback (8) is, with t∗ = min(tmax, T )

st0,ξ,ψs̄(z1)
(t) =

{
st0,ξ,umax(t) if t0 6 t < t∗,

s̄(z1) if t∗ 6 t 6 T.

Next, for all u ∈ [0, umax] and for all (s, z) ∈ L(ξ)

(sin − s)(umax − µ(s, (sin − s)z)z) > (sin − s)(u− µ(s, (sin − s)z)z)

and this implies that st0,ξ,umax
(t) > st0,ξ,u(t), up to time t∗, for all controls u(·) ∈ U(t0, T ). Since

s 7→ φ(s, z1) is increasing on (0, s̄(z1)], we have

φ(st0,ξ,umax(t), z1) > φ(st0,ξ,u(t), z1).

Finally, since s 7→ φ(s, z1) reaches its maximum at s̄(z1), we get

Jz1(t0, ξ, ψs̄(z1)) =

∫ t∗

t0

φ(st0,ξ,umax(t), z1)dt+

∫ T

t∗

φ(s̄(z1), z1)dt

>
∫ T

t0

φ(st0,ξ,u(t), z1)dt

= Jz1(t0, ξ, u).

5 Application to Particular Growth Functions

The controls that we have considered up to now are all most rapid approach feedbacks to s̄(z1),
with z1 ∈ [min(z0, 1),max(z0, 1)], and this leads to the question of which is best in terms of biogas
production. It turns out that it depends on the initial conditions and the horizon considered.

Indeed, we know that for an infinite horizon, the feedback ψs̄(z1) with z1 = 1 is optimal and we
can then expect that when the horizon is large, the best of the considered feedbacks would be for
z1 close to 1. On the other hand, when the horizon is small, the feedback ψs̄(z0) would seem to be
the best option since this strategy consists in remaining close to the maximum of the biogas flow
rate corresponding to the initial condition, whereas another feedback could drive the system away,
towards another maximizing state but that can not be reached in time.

In this section, we apply our main results to the most common growth functions and explore
with numerical simulations the question of determining the best feedback ψs̄(z1) for a given initial
condition and final time. In particular, we will work with the Monod function

µM (s) =
µmaxs

Ks + s
(32)

the Haldane function

µH(s) =
µ̄s

Ks + s+ s2

Ki

(33)

and the Contois function
µC(s, x) =

µmaxs

Ksx+ s
(34)
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Figure 1: State space trajectories with feedback ψs̄. The black line represents the invariant set
{(x, s) : x + s = sin}. Haldane growth function (µ̄ = 0.74,Ks = 9.28,Ki = 256) with sin = 100,
umax = 3.

where µmax, µ̄, Ks and Ki are positive numbers. We shall see later that these functions satisfy
our assumptions (Lemma 5).

First, note that the Monod and Haldane functions only depend on the substrate, so that
in this case, the maximizers s̄(z1), defined in (31), are all equal to s̄(1) = s̄, for all z1 ∈
[min(z0, 1),max(z0, 1)]. We illustrate the associated feedback ψs̄ for a Haldane function with a
graph of the state space trajectories in Figure 1. The case of a Monod function leads to a similar
dynamical behavior and the only major difference is the value of s̄.

From now on we will only consider the Contois growth function, for which we plot the trajec-
tories in state space obtained with the feedback ψs̄(z0) in Figure 2.

To determine which of the feedbacks ψs̄(z1) is the best, we now compute the associated reward
for a range of values of z1 ∈ [min(z0, 1),max(z0, 1)] and of final times for a given initial condition.
In order to easily identify the maximum of J(ξ, ψs̄(z1)(·)) with respect to z1, we normalize the
average reward (11) by computing

JN (T, z1) =
JT (ξ, ψs̄(z1)(·))−miny J

T (ξ, ψs̄(y)(·))
maxy JT (ξ, ψs̄(y)(·))−miny JT (ξ, ψs̄(y)(·))

where the minimum and maximum are taken for y ∈ [min(z0, 1),max(z0, 1)]. Hence, for each final
time T , the maximum reward is achieved for z1 such that JN (T, z1) = 1 and the minimum when
JN (T, z1) = 0.

Figure 3 shows a case when z0 < 1 and Figure 4 is an example of z0 > 1. We can see clearly that
for small final times, the maximum is attained for a value of z1 close to z0 and that for z1 = 1 the
reward is the smallest. However, as the final time increases, the value of z1 for which the reward
is maximum approaches 1, and with the feedback ψs̄(z0) the reward is the smallest. In particular,
we can see that the best of the feedbacks ψs̄(z1) depends on the final time.
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Figure 2: State space trajectories with feedback ψs̄(z0) for z0 ∈ {0.2, 0.7, 1.5, 3} and s0 ∈
{10, 60, 75}. The color and type of line indicates the value of z0. Contois growth function
(µmax = 0.74,Ks = 1) with sin = 100, umax = 1.5.
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Figure 3: Normalized average reward JN (T, z1) as a function of z1 ∈ [z0, 1] and T ∈ [0.5, 6] for
the initial condition (x0, s0) = (20, 20). Contois growth function (µmax = 0.74,Ks = 1) with
sin = 100, umax = 1.5.
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Figure 4: Normalized average reward JN (T, z1) as a function of z1 ∈ [1, z0] and T ∈ [0.5, 6] for
the initial condition (x0, s0) = (70, 60). Contois growth function (µmax = 0.74,Ks = 1) with
sin = 100, umax = 1.5.

This leads us to consider a new feedback that keeps the system in the set of maximizers

S =
{

(s, z) ∈ D : s = s̄(z)
}
. (35)

We therefore introduce the following most rapid approach feedback to S

ψS(s, z) =

∣∣∣∣∣∣
0 if s > s̄(z),
ū(s, z) if s = s̄(z),
umax if s < s̄(z),

(36)

where ū(s, z) is the feedback that keeps the system in the set S, that we compute by differentiating
with respect to time the equation s(t) = s̄(z(t)).

We first illustrate this feedback in Figure 5 where we show the states as functions of time and
the open loop realizations of the feedbacks ψs̄(z0), ψs̄(1) and ψS . Next, in Figure 6 we compare the
reward of the feedback ψS to the others and we can notice that the reward associated with the
feedback ψS is always one of the best, although for any given final time it is possible to do better
with a feedback ψs̄(z1) for the right z1.

Note also that the feedback ψS will drive the system asymptotically towards the state (s, z) =
(s̄, 1) so that it is also optimal for the infinite horizon problems (14), (15) and (18).

In Figure 8, we show the difference between the rewards of the feedbacks ψs̄(1) and ψs̄(z0) as a
function of the initial condition for various final times.

From this, we see that the feedback that is best changes, depending on the initial condition
and the horizon considered.

The sub-optimality estimation (29) is affected similarly, as this bound depends on the initial
condition and in particular, the distance to the set {z = 1} has a major impact on the sub-
optimality of the considered feedbacks. In addition, the growth function has an influence on our
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Figure 5: On the left, t 7→ x(t) (solid lines) and t 7→ s(t) (dashed lines) with feedbacks ψ ∈
{ψs̄(z0), ψs̄(1), ψS} and on the right, the corresponding open loop controls. Contois growth function
(µmax = 0.74,Ks = 1) with sin = 100, umax = 1.5 and initial condition (x0, s0) = (30, 2).
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ψ ∈ {ψs̄(z0), ψs̄(z1), ψs̄(1), ψS} with z0 = 0.25 and z1 = 0.625. On the right, the corresponding state
space trajectories. Contois growth function (µmax = 0.74,Ks = 1) with sin = 100, umax = 1.5 and
initial condition (x0, s0) = (20, 20).
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Figure 7: On the left, average reward as function of final time T 7→ JT (ξ, ψ(·)) with feedback
ψ ∈ {ψs̄(z0), ψs̄(z1), ψs̄(1), ψS} with z0 = 1/3 and z1 = 2/3. On the right, the corresponding state
space trajectories. Contois growth function (µmax = 0.74,Ks = 1) with sin = 100, umax = 1.5 and
initial condition (x0, s0) = (10, 70).

estimation, through Wz1(·), and we illustrate this in Figure 9 by plotting this value function for the
Haldane and the Contois growth function. Observe that, for the Contois growth function, Wz1(·)
varies significantly with the initial biomass and thus the sub-optimality bound as well. This can
be attributed to the dependence of the Contois growth function on biomass concentration and this
effect is not seen with the Haldane growth function, which depends only on the substrate.

We finish this section with a Lemma that shows that the considered growth functions satisfy
our assumptions.

Lemma 5. For all positive µmax, µ̄, Ks and Ki the Monod, Haldane and Contois growth functions
satisfy Assumptions 1 and 3.

Proof. Notice that the function φ with the Monod or Haldane function does not depend on z. Let
us show that the function µM is increasing and strictly concave

µ′M (s) =
µmaxKs

(Ks + s)2
> 0, µ′′M (s) = −2

µmaxKs

(Ks + s)3
< 0.

Now, since the function φ(·, 1) is non-negative on [0, sin] and vanishes at 0 and sin it admits a
maximum on (0, sin). One has

d

ds
φ(s, 1) = µ′M (s)(sin − s)− µM (s), (37)

d2

ds2
φ(s, 1) = µ′′M (s)(sin − s)− 2µ′M (s). (38)

The function φ(·, 1) is thus strictly concave on (0, sin), which provides the uniqueness of its maxi-
mum.

For the Haldane function, we have

d

ds
φ(s, 1) = µ̄

sinKs − 2Kss− s2(1 + sin
Ki

)

(Ks + s+ s2

Ki
)2

such that d
dsφ(0, 1) > 0 and d

dsφ(sin, 1) < 0 and since d
dsφ(·, 1) is continuous it must have an odd

number of zeroes in the interval (0, sin). But notice that the equation d
dsφ(s, 1) = 0 admits at

most 2 solutions and φ(0, 1) = φ(sin, 1) = 0 and therefore φ(·, 1) has a unique maximum.
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Figure 8: Difference between rewards associated to the feedbacks ψs̄(1) and ψs̄(z0) as functions of the
initial condition and for various final times : (x0, s0) 7→ J(0, x0, s0, ψs̄(1)(·))−J(0, x0, s0, ψs̄(z0)(·)).
Contois growth function (µmax = 0.74,Ks = 1) with sin = 100, umax = 1.5.
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Figure 9: Auxiliary value function (x0, s0) 7→ Wz1(0, x0, s0) with z1 = 1. On the left, Contois
growth function (µmax = 0.74,Ks = 1, umax = 1.5) and on the right, Haldane growth function
(µ̄ = 0.74,Ks = 9.28,Ki = 256, umax = 3). In both cases, sin = 100 and T = 2.
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For the Contois function, notice that µC(s, x) = µM (s/x) so that, for z1 ∈ [min(z0, 1),max(z0, 1)]

φ(s, z1) = µM

(
s

(sin − s)z1

)
(sin − s)

and since s 7→ s
(sin−s)z1 is an increasing function, φ(·, z1) is also strictly concave.

6 Conclusions

In this work, we have proposed a novel approach to obtain autonomous sub-optimal feedbacks for
the open problem of maximizing biogas production in the chemostat model out of equilibrium.
These controllers generalize the “most-rapid approach path” feedback control that is known to be
optimal when the initial condition belongs to a certain manifold. Indeed, we obtain a family of
feedback controls of similar structure, for which we are able to give bounds on the sub-optimality.
This last point merits to be underlined as it usually difficult to evaluate a priori the performances
of sub-optimality without having to determine or compute the optimal solution. This choice gives
also flexibility for the practitioners to choose a controller depending on the time horizon or simply
to pick one when the finite horizon is poorly known (as each controller guarantees a sub-optimality
bound), or to adjust it when the horizon is changed. For infinite horizon we show that each
controller guarantees the same optimal averaged cost.

This methodology, based on a framing of the dynamics, could be investigated for a larger class
of dynamics, such as the two-step model, and be the matter of future work.

Acknowledgments

The first and second authors were supported by FONDECYT grant 1160567, and by Basal Program
CMM-AFB 170001 from CONICYT-Chile. The first author was supported by a doctoral fellowship
CONICYT-PFCHA/Doctorado Nacional/2017-21170249. The third author was supported by the
LabEx NUMEV incorporated into the I-Site MUSE.

Appendix: A Particular Example

We construct here a control u(·) for which the average rewards (12) and (13) do not coincide.
For this, let us consider an initial condition ξ = (s0, z0) = (ε, 1), with ε ∈ (0, sin) fixed. The set
{(s, 1) ∈ R2

+ : s ∈ [0, sin]} is clearly invariant for the dynamics (3) and therefore the chosen initial
condition ensures that trajectories (sξ,u(·), zξ,u(·)) remains in this set.

Now consider the 2 following paths :

(A) Starting at ξ := (ε, 1), use the control u = umax to reach a prescribed level of substrate
s∗ ∈ (ε, sin) in finite time. Then, apply the control u = 0 to return to ξ in finite time,
which is possible by Assumption 2. Denote this control by u∗, and let t∗ be the (finite) time
necessary to follow this path and I∗ be the biogas produced by this path.

(B) Starting at ξ := (ε, 1), use u = µ(ε, sin − ε) to stay at (s = ε, z = 1) for any time interval.

Then, define control u(·) as follows:

• For t ∈ [0, t∗], set u(t) = µ(ε, sin − ε) so that the biogas production for this period is
Iε := t∗φ(ε, 1).

• For t ∈ (22kt∗, 2
2k+1t∗], with k ∈ N, set u = u∗ in order to follow the path (A) repeatedly

22k times. For each of these intervals the biogas production is 22kI∗.
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• For t ∈ (22k+1t∗, 2
2k+2t∗], with k ∈ N, set u = µ(ε, sin − ε). For each of these intervals the

biogas production is 22k+1Iε.

Thus, when we apply control u(·) up to a time 22N t∗, for a given N > 1, the average biogas
production is computed as follows

KN =
1

22N t∗

∫ 22N t∗

0

φ(sξ,u(t), 1) dt

=
1

22N t∗

(
Iε +

N−1∑
k=0

22kI∗ +

N−1∑
k=0

22k+1Iε

)

=
I∗ + 2Iε

t∗

N∑
j=1

2−2j +
Iε

22N t∗

which yields

KN −→ K∞ :=
I∗ + 2Iε

3t∗
as N → +∞.

We have used here the fact that the sum sN =
∑N
j=1 2−2j converges to 1/3. Indeed, this follows

from the identity

4sN =

N∑
j=1

22(−j+1) =

N−1∑
i=0

2−2i = 1 + sN − 2−2N .

However, for the same control u(·), the average biogas production is, up to time 22N+1t∗,
computed as follows

LN =
1

22N+1t∗

∫ 22N+1t∗

0

φ(sξ,u(t), 1) dt

=
1

22N+1t∗

(
22N t∗KN + 22NI∗

)
=

1

2

(
KN +

I∗
t∗

)
which yields

LN −→ L∞ :=
2I∗ + Iε

3t∗
as N → +∞.

Since s∗ > ε, it follows that I∗ > Iε, and consequently, L∞ > K∞. We thus obtain that

J
∞

(ξ, u(·)) > L∞ > K∞ > J∞(ξ, u(·)).
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