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Abstract 

In this study a fractionation procedure was developed and applied to evaluate the potential of some organic 

wastes (2 cattle manures and 2 catch crops, fresh and after ensiling) for anaerobic digestion. This procedure 

was based on water extraction of the raw sample, which enabled to evaluate the contributions of water-

soluble and particulate phases to the investigated properties. Biomethane potential (BMP) and chemical 

oxygen demand (COD) were determined and used to assess the anaerobic biodegradability of raw materials. 

Analysis of structural carbohydrates, total Kjeldahl nitrogen, water-soluble carbohydrates, volatile fatty 

acids and pH were also included to explain the main phenomena involved in methane production from the 

tested biomasses. Results show that the origin and the preparation mode had a significant impact on BMP 

distribution. Based on a COD balance, the biodegradability of the various feedstocks ranged from 45% to 

75%. Biodegradability of fresh materials was negatively correlated with the sum of structural carbohydrates 

and lignin content. Among the feedstock used, the water-soluble phase represented 8-69% of the total COD 

and 7-46% to the total BMP.  Solubilization of organic matter during ensiling was due to the production 

and accumulation of organic acids from particulate carbohydrates and organic nitrogen. This procedure 

detects kinetic and biodegradability differences among biomasses and thus it can be useful for the design 

of anaerobic digestion plants. Furthermore, it can be applied to evaluate the efficiency of biomass 

pretreatments. 
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Introduction 

Over the last decades, anaerobic digestion (AD) has become an outstanding alternative to produce green 

energy. This process is a seductive solution not only for the treatment of agricultural and agro-industrial 

organic waste, but also for the management of municipal wastewater sludge, residual or source-sorted 

municipal solid waste. In this context, AD answers to two complementary issues: the treatment of organic 

waste, as well as the production of renewable energy. Biogas and biomethane are produced by biological 

pathway of methanogenesis. Without oxygen, biomass is hydrolyzed and monomers converted to water, 

carbon dioxide and methane. Thereafter, biogas can be used in combined heat and power (CHP) to produce 

energy and electricity, or purified and upgraded as biomethane for injection in urban natural gas grid, or 

used as biofuel for vehicles. For farm-scale digesters, the solid residues are generally post-treated for drying 

and composting, and used as organic amendment. Due to the diversity of feedstocks that can be used for 

biogas production, there is a growing interest in developing characterization procedures to assess their 

potential and suitability (Carlsson et al., 2012; Kianmehr et al., 2010; Montgomery and Bochmann, 2014). 

Moreover, these feedstocks undergo different stages, or unit operation, before entering the AD reactor, such 

as storage and pretreatments. Optimizing these steps requires an adequate characterization of their effect, 

including detailed data on specific properties such as methane yield, biochemical composition and 

biodegradability. 

A large variety of substrates and organic residues may, therefore, be treated by anaerobic digestion (AD), 

including agricultural waste and green waste, sludge from wastewater treatment, source-sorted biowaste or 

residual municipal solid waste, food and food-processing waste (Bayard et al., 2016). The most common 

parameter for characterization is the biomethane potential (BMP), which corresponds to the amount of 



methane produced per mass unit of total solids (TS) or volatile solids (VS). Nevertheless, BMP is not 

enough to predict the degradation rate in AD process (Bayard et al., 2018; Schievano et al., 2008; Xu et 

al., 2014). Many experimental studies have been conducted to correlate BMP and biochemical 

characteristics of organic substrates. Among these, lignin content is known to be negatively correlated with 

anaerobic biodegradability (BMP) (Buffiere et al., 2008, 2006; Liu et al., 2015; Triolo et al., 2012). Under 

process conditions, biomass conversion to methane strongly depends on the accessibility of organic 

compounds to external enzymes (Jeffries, 1994, 1990; Jimenez et al., 2015). Indeed, hydrolysis of 

particulate matter is considered as the rate-limiting step during anaerobic digestion of solid organic 

substrates, and its intensification leads to a better digestion performance (Shin et al., 2001; Tanaka et al., 

1997; Vavilin et al., 1996). Organic compounds such as cellulose, lignin, cutin or keratin are slowly or non-

biodegradable compounds under anaerobic conditions while polymers such as starch and hemicellulose are 

assumed to be more readily biodegradable. Moreover, some biodegradable compounds may be less 

available since they are incorporated into complex, hardly biodegradable structures, such as lignocellulose 

or microbial cells (Gonzalez-Estrella et al., 2017; Jeffries, 1994, 1990; Patinvoh et al., 2017). 

Biomass storage before anaerobic digestion is also an issue: the wide diversification of AD inputs and the 

need for continuous feeding of AD plants throughout the year make necessary to store collected 

agricultural/industrial waste or catch/energy crops for prolonged period (Teixeira Franco et al., 2016a). The 

nature of the feedstock, the presence of air and the duration are the main parameters for the success of the 

long term storage (McDonald et al., 1991). Regarding BMP conservation, ensiling (or confined storage) is 

a good solution to store wet biomass (Teixeira Franco et al., 2017a, 2017b).  

Pre-treatment processes have been developed over the last three decades to improve methane production in 

AD plants. Several reviews have recently been published with full description of pre-treatment technologies 

(Ariunbaatar et al., 2014; Carlsson et al., 2012; Carrere et al., 2016; Elliott and Mahmood, 2012; Hendriks 

and Zeeman, 2009; Montgomery and Bochmann, 2014; Paudel et al., 2017). It is well established that the 



expected effects are i) the improvement of the methane yield and ii) the improvement of the methane 

production rate. As reviewed by Carlsson et al. (2012), the main targeted effects of pre-treatment are 

particle size reduction, solubilisation, and biodegradability enhancement. For instance, mechanical pre-

treatments are commonly used for the reduction of particle size, and increase substrate surface (Hartmann 

et al., 2000; Tsapekos et al., 2015; Vavilin et al., 1996). Combination of grinding, milling and chipping can 

significantly increase the methane yield because organic compounds become more available to enzymatic 

hydrolysis (Vavilin et al., 1996; Ward et al., 2008). In addition, the efficiency of pre-treatments can be 

highly different depending on the characteristics of the substrates and of the pre-treatment parameters 

(Ariunbaatar et al., 2014). Moreover, it is difficult establish a systematic comparison of the effects of a 

given pre-treatment. The main reasons for this are the diversity of substrates and the lack of 

common/standardized protocols for the evaluation (Carlsson et al., 2012; Kianmehr et al., 2010). 

In the present work, an improved fractionation procedure is proposed to explain more in details the 

distribution of biodegradability and the methane yield (BMP) of feedstocks for anaerobic digestion. This 

procedure was complemented with the analysis of chemical oxygen demand (COD), structural 

carbohydrates, total Kjeldahl nitrogen (TKN), water-soluble carbohydrates (WSC), volatile fatty acids 

(VFA) and pH. Additionally, the monitoring of both water-soluble and particulate fractions of the different 

studied properties was performed, which is another originality of this study. Trials were carried out with 

two different types of catch crops and cattle manures. Nevertheless, this procedure should be suitable for 

other types of biomass, such as energy crops or urban organic waste, and appropriate to study storage 

conditions and the effect of substrate pretreatment on AD. The main aim of this work is to provide a useful 

tool to evaluate potential inputs for AD and to optimize the design of biogas plants. For this purpose, several 

agricultural fresh and ensiled feedstocks are been selected to design and test the fractionation procedure. 

Material and methods 



Raw materials 

Two different types of catch crop and fresh cattle manure were collected from an agricultural site near Lyon 

(France). These feedstocks were chosen due to its major relevance in farm-scale AD, especially in France. 

Catch crop 1 (CC1) was a mixture of triticale, peas, vicia and fodder radish, and it was chopped at 4 cm 

maximum length at harvesting. Catch crop 2 (CC2) was a mixture of sunflower, sorghum, peas, vicia and 

Trifolium alexandrinum, and it was shredded with a BLIK BB350 rotary shear crusher before use (8 mm 

output particle size according to the manufacturer). Cattle manure 1 (M1) and Cattle manure 2 (M2) were 

collected from the same site but on different seasons of the year (March and October, respectively). Samples 

were stored at 4°C before further use. 

The characterization procedure described in this work was applied to both fresh and ensiled raw materials. 

Confined storage (ensiling) was performed at 25±2 °C in 3.5 L airtight round plastic storage drums during 

3 months for catch crops and 4 months for cattle manure. Nomenclature and description of feedstocks are 

summarized in Table 1. Ensiling was tested for several reasons. First, it is a common practice for storage 

of herbaceous AD feedstocks (catch and energy crops). Since several biological phenomena occur during 

ensiling, biochemical properties may be extensively modified with biomass storage. In some cases, ensiling 

can be even considered as a biological pretreatment due to its positive impact on the methane potential of 

stored feedstocks (Janke et al., 2019; Vervaeren et al., 2010). Therefore, by testing ensiled feedstocks, we 

assess the applicability of the proposed analytical procedure to feedstocks with different biochemical 

properties, management practices and pretreatments before AD.  

Moreover, at field scale, manure is rather stored in an open-air mode, which leads to considerable loss of 

organic matter and BMP (Teixeira Franco et al., 2018b, 2017b). By storing manure under confined 

conditions, the objective was to evaluate if its BMP could be more efficiently preserved (for simplicity, 

confined conditions are referred to as “ensiling” in the present paper). It has to be mentioned however that 



the evolution of the total mass, TS, VS, BMP during the ensiling process were also measured for all the 

experiments. Since the impact of the ensiling conditions on the global efficiency of the process have been 

investigated in details (Teixeira Franco et al., 2016b, 2017a, 2017b, 2018a), the present paper will rather 

focus on the interest of the proposed experimental procedure. 

Table 1 Nomenclature and properties of raw materials 

Biomass Preparation Nomenclature TS (%) VS (%TS) pH 

Catch crop 1 
Fresh CC1-F 18.2±0.3 89.2±0.7 7.20 

Ensiled CC1-E 16.8±0.3 90.0±0.4 5.41 

Catch crop 2 
Fresh CC2-F 10.1±0.13 83.5±1.4 6.35 

Ensiled CC2-E 8.10±0.3 78.9±4.1 5.59 

Cattle manure 1 
Fresh M1-F 12.8±0.07 79.9±0.17 7.94 

Ensiled M1-E 9.12±0.08 70.6±0.10 8.40 

Cattle manure 2 
Fresh M2-F 11.6±0.12 82.2±0.20 7.70 

Ensiled M2-E 9.34±0.12 77.4±0.04 7.82 

Experimental procedure and chemical analysis 

The developed fractionation procedure (Erreur ! Source du renvoi introuvable.) was based on water 

extraction of the raw sample (leaching test), separation and analysis of its different fractions. Leaching test 

is based on the NF EN 12457-4 (AFNOR, 2002) and it was performed with a standard 10:1 water/TS ratio 

during 2 h under constant bottle rotation at room temperature. Phase separation was done by centrifugation 

(5000 G; 10 min), followed by 0.7 mm particle size filtration. Finally, the particulate phase was dried at 70 

°C until constant weight, and grounded with a Retsch SM 200 cutting mill and a bottom sieve with an 

aperture size of 2 mm. Raw and water-soluble samples were stored at 4 °C until analysis and particulate 

ones were stored at and -20 °C. 



Raw sample (RS) was analyzed for its TS, VS and BMP. For the water-soluble phase, besides TS, VS and 

BMP, pH, WSC, VFA, COD, TKN, and ammonia nitrogen (NH3-N) fractions were determined. Particulate 

solid was analyzed for its TS, VS, COD, TKN, and cell wall constituents. In order to assess the distribution 

of the various components of interest, some properties were determined through mass balances. For 

instance, the BMP of the particulate phase (𝐿𝑆𝑇𝑃/𝑘𝑔𝑉𝑆𝑅𝑆) was estimated as the difference between the 

BMP of the raw material and the BMP of the water-soluble phase (𝐿𝑆𝑇𝑃/𝑘𝑔𝑉𝑆𝑅𝑆). On the other hand, COD 

and TKN of the raw sample were estimated as the sum of the water-soluble and particulate contributions 

(both expressed in 𝑘𝑔/𝑘𝑔𝑉𝑆𝑅𝑆). 

The biodegradability (BD) of each fraction was calculated from BMP and COD values considering the 

theoretical BMP of 0.35 LSTP/kgCOD ( Buswell and Mueller, 1952): 

𝐵𝐷 (%) =
𝐵𝑀𝑃[𝐿𝑆𝑇𝑃/𝑘𝑔𝑉𝑆]

𝐶𝑂𝐷 [𝑘𝑔/𝑘𝑔𝑉𝑆] × 0.35
 



 

Fig. 1 Flowchart of the experimental methodology 

TS was measured by oven drying at 105 °C during 24 h and VS was subsequently burned for 2 h at 550 °C. 

Since TS and VS contents are underestimated due to the loss of volatile compounds during the drying tests 

(Kreuger et al., 2011), data was corrected according to the volatilization coefficients at 100 °C  (Porter and 

Murray, 2001). pH was measured by a Consort C3020 device with a SP10B pH-electrode. WSC, lactic acid 

and formic acid contents were determined with high performance liquid chromatography (LC Module 1 



plus, Waters) equipped with a Supelcogel™ C-610H column (300 x 7.8 mm, Sigma-Aldrich), both 

refractive index (RID) and UV detectors and operating with H3PO4 0.1%v as solvent (flow rate of 0.5 

mL/min). WSC content was estimated as the sum of glucose, xylose, galactose, mannose, arabinose and 

cellobiose and it was determined using the RID detector. Lactic acid and formic acid contents were obtained 

with the UV detector (210 nm). Acetic, propionic, butyric, valeric and caproic acids content were analyzed 

by gas chromatography (Shimadzu Corp.) equipped with a HP-FFAP fused silica capillary column (30 m 

x 0.25 mm, Agilent Technologies), a flame ionization detector and using H2 as carrier gas. Total VFA was 

calculated as the sum of lactic, formic, acetic, propionic, butyric, valeric and caproic acids. TKN and NH3-

N were determined through the procedure described in the NF EN 25663 standard (AFNOR, 1994). COD 

of water-soluble phase was determined through the colorimetric HACH procedure (method 8000). COD of 

particulate phase was measured by the Walkley and Black (1934) modified method, based on the NF ISO 

14235 international standard (ISO, 1998). Neutral detergent fibre (NDF), acid detergent fibre (ADF) and 

acid detergent lignin (ADL) were analysed through Van Soest and Wine (1967) modified extractions 

method based on FD U44-162 standard (AFNOR, 2016). It was conducted on aliquots of powdered dry 

samples corresponding to 2 g of volatile solids. At each step, the residual solids were dried and weighed 

and analysed for VS contents. Four types of organic constituents were quantified, namely: (1) neutral 

detergent soluble compounds (SOL) extracted at the first step by a neutral detergent aqueous solution 

(NDF); (2) Hemicelluloses-like (HEM) extracted with a dilute acidic aqueous detergent solution, calculated 

as NDF minus ADF; (3) Cellulose-like (CELL) extracted with a concentrated 72% sulfuric acid solution, 

calculated as ADF minus ADL; and (4) lignin-like residual organic matter (LIG) which was not extracted 

in the procedure, corresponding to ADL. 

The BMP tests followed the guidelines provided by the international working group on harmonization of 

BMP measurement (Holliger et al., 2016). They were conducted at 35 °C using glass vessels of 2 L for raw 

sample, in order to ensure sample representativity, and 0.1 L for water-soluble phase in order to limit the 



amount of sample needed. Vessels were filled with 5 g/L VS of sample, and 10 gL VS inoculum 

(inoculum/subrate = 2) and a sufficient volume of a mineral solution to achieve 60% of the total volume of 

the vessel. The inoculum used (TS 2.0-3.3%wt; VS 1.4-2.2%wt) was a digested sludge originating from 

the wastewater treatment plant of La Feyssine, Lyon, France. The mineral solution, which contains essential 

elements for microbial growth and also gives the solution a buffer able to control any pH adjustments, was 

prepared according to the recommendations of ISO 11734:1995 standard (ISO, 1995). Once filled, reactors 

were purged with a N2/CO2 mixture (80/20%v) for about 5 minutes, sealed and equilibrated at 35 °C. Blanks 

with inoculum and mineral solution were performed for each batch series in order to correct the BMP from 

residual methane production of the inoculum. All tests were performed in triplicates. Biogas production 

was determined by pressure measurement using a Digitron precision manometer. Biogas was released when 

the pressure exceeded 1200 hPa. Gas composition (CH4, H2, N2, O2, H2O and H2S) was analysed using an 

Agilent 3000 micro gas chromatography with thermal conductivity detector (GC-TCD). Molsieve 5A (14 

m length; pore size: 5 Å) and PoraPlot A (10 m length; 0.320 mm ID) columns were used as stationary 

phases for GC-TCD, with Argon and Helium as carrier gases, respectively. According to the guidelines, 

BMP was considered achieved when daily biogas production represented less than 1% of the total volume 

of biogas produced.  

Results and discussion 

Distribution of methane yield (BMP) and biodegradability (BD) 

The BMP values varied widely within the set of tested raw materials (Table 2). Fresh catch crops had a 

BMP of 210-335 LSTP/kgVSRS, while BMP of fresh cattle manures was 257-288 LSTP/kgVSRS. The 

preparation mode also had an impact on the BMP of the feedstocks. Ensiling had a positive effect on the 

methane production of catch crops. On the contrary, BMP of cattle manure decreased after long-term 

ensiling. This reflects the relevance of controlling storage and preparation of inputs before biogas 



production. Also, it is worth mentioning that BMP of ensiled biomass may be overestimated, since organic 

losses during storage are not taken into account. 

Table 2 Biomethane potential of feedstocks and its phase distribution 

 CC1-F CC1-E CC2-F CC2-E M1-F M1-E M2-F M2-E 

Raw sample 

BMP 

(LSTP/kgVSRS) 
210±14 300±12 335±34 410±7 288±14 255±7 257±6 217±2 

Water-soluble phase 

BMP 

(LSTP/kgVSRS) 
20±0.6 72±5.0 41±2.3 190±28 77±1.1 38±0.3 43±4.0 48±1.8 

% BMPRS 7.3 24.1 12.3 46.3 26.9 15.1 16.6 22.2 

Particulate phase 

BMP 

(LSTP/kgVSRS) 
250±20 228±24 294±46 220±37 210±13 217±8 215±27 169±8 

% BMPRS 92.7 75.9 87.7 53.7 73.1 84.9 83.4 77.8 

Likewise, distinct distributions of BMP were found among the feedstocks. Indeed, contribution of water-

soluble phase to the BMP of the raw sample ranged from 7% to 46%. For catch crops, the ensiling process 

leads to a general increase of the contribution of the soluble fraction to the total BMP (from 7.3 to 24.1 % 

and from 12.3 to 46.3% for CC1 and CC2 respectively). The water-soluble phase mostly contains non-

lignocellulosic and simple compounds that can be transformed in methane afterwards, including different 

types of water-soluble carbohydrates, volatile fatty acids, or even soluble amino acids. These soluble 

compounds are more quickly converted into methane than particulate ones (Pavlostathis and Giraldo-

Gomez, 1991; Shrestha et al., 2017). Therefore, feedstocks with higher contribution of water-soluble phase 

to the BMP will theoretically have a faster degradation during AD, as will be discussed later. In addition, 

soluble compounds are more easily diffused into the reactor, improving feedstock’s accessibility to the 

degrading microorganisms. Therefore, the analysis of BMP distribution provides crucial information 



concerning degradation kinetics, which is essential for feedstock selection, pretreatment operation, and 

design of AD plants. 

Moreover, the distribution of BMP was affected by ensiling, demonstrating that management practices of 

feedstocks before AD may have a significant influence on organic matter structure. On the one hand, for 

catch crops the contribution of water-soluble phase to the BMP increased with ensiling. This may be 

explained by the hydrolysis of complex carbohydrates/proteins and their subsequent accumulation in the 

form VFA after lactic fermentation. These are well documented phenomena in good quality silages (at low 

pH conditions) (Desta et al., 2016; McDonald et al., 1991; Menardo et al., 2015; Pakarinen et al., 2011; 

Teixeira Franco et al., 2017a). On the other hand, while testing cattle manure it is difficult to distinguish a 

specific impact of confined storage on the phase distribution of BMP. This is attributed to the fact that 

manure evolves differently during storage and it is highly degraded due to its inadequate conservation 

properties (lack of WSC, high buffering capacity, etc.) (Teixeira Franco et al., 2018b, 2018a, 2017b). 

It should be noticed that ensiling is sometimes considered as long-term biological pretreatment due to its 

impact on BMP and biomass properties (Ambye-Jensen et al., 2013; Gallegos et al., 2017; Larsen et al., 

2017; Teixeira Franco et al., 2016a). Thus, these results suggest that this type of multiphase analysis may 

also provide important data on the efficiency of various pretreatments, either concerning the solubilization 

of organic matter or the improvement of degradation kinetics.  

From the collected data on BMP tests, it is possible to evaluate the individual methane production kinetics 

between the raw and soluble fraction of a given sample. In all our tests, the methane production (after 

deduction of inoculum methane production) was well represented by a 1st order kinetics. The interesting 

output was that for all the dataset presented, the 1st order constant k ranged from 0.1 to 0.18 d-1 for raw 

samples, and from 0.25 to 0.39 d-1 for the soluble fraction. However, the comparison of the BMP kinetics 

for long-term tests like ensiling is subject to doubts, since the anaerobic inoculum used for the BMP tests 



would probably not have a similar activity. In other word, it is advised to use the same inoculum to compare 

the effect of a given pre-treatment on the BMP production kinetics (Buffière et al., 2018). 

COD balance 

The results of COD analysis and its phase distribution are shown in Table 3. COD of raw sample was 1204-

1553 g/kgVSRS for the tested feedstocks.   

Table 3 Chemical oxygen demand of feedstocks and its phase distribution. WSC and VFA contents (COD 

basis) are presented in the water-soluble phase 

 CC1-F CC1-E CC2-F CC2-E M1-F M1-E M2-F M2-E 

Raw sample 

COD 

(gO2/kgVSRS) 
1280 1527 1296 1553 1476 1204 1314 1310 

Water-soluble phase 

COD 

(gO2/kgVSRS) 
100 464 184 1074 275 146 133 183 

% CODRS 7.8 30.4 14.2 69.2 18.6 12.1 10.2 14.0 

WSC  

(% CODRS) 
0.10 0.11 9.90 0.09 0.00 0.00 0.00 0.16 

VFA  

(% CODRS) 
3.1 16.0 0.72 18.3 2.2 2.3 5.8 10.6 

Particulate phase 

COD 

(gO2/kgVSRS) 
1180 1063 1112 479 1201 1058 1181 1127 

% CODRS 92.2 69.6 85.8 30.8 81.4 87.9 89.8 86.0 

However, as for the methane potential, COD distribution varied greatly depending on the feedstock. The 

COD of the water-soluble phase was 100-1074 g/kgVSRS, which represents a contribution to the total COD 

of 8-69%. Ensiled catch crops have the highest water-soluble COD. In fact, for these feedstocks there was 



a vast production and accumulation of VFA during ensiling. Likewise, VFA content increased during 

ensiling of Cattle Manure 2 (M2). In such cases, VFA produced during ensiling were far larger than initial 

WSC (even neglecting COD yield of endogenous bacteria). This means that part of VFA was a product of 

the hydrolysis (and fermentation) of particulate organic matter, as previously suggested. 

It should be mentioned that it was not possible to establish a fully detailed COD balance of the water-

soluble phase. In fact, the measured WSC and VFA accounted for 12% to 77% of the total water-soluble 

COD. The analysis of other compounds, such as alcohols, oligosaccharides or soluble amino acids, should 

be carried out in order to improve the description of the water-soluble COD.   

Structural carbohydrates and TKN balance 

Table 4 shows a mass balance of the organic matter with a focus on the particulate fraction determined from 

the Van Soest analysis (on a VS basis of the raw sample since the COD of the lignocellulosic fractions are 

not known).  

Table 4 VS balance of feedstocks, with a focus on the particulate organic matter and structural 

carbohydrates. Results are expressed on %VS 

  CC1-F CC1-E CC2-F CC2-E M1-F M1-E M2-F M2-E 

Water-Soluble 8.6 25.7 15.6 68.5 18.0 19.5 16.6 22.2 

Particulate 

SOL 19.7 20.0 49.0 16.9 16.5 14.6 20.7 23.3 

HEM 13.2 9.5 11.3 2.6 32.5 27.7 28.4 22.4 

CEL 40.2 33.4 20.4 9.8 26.8 28.0 25.7 21.4 

LIG 18.2 11.4 3.8 2.1 6.1 10.1 8.5 11 



Besides, the structure of organic matter strongly depends on either if the biomass is conserved through 

ensiling or not. Indeed, for all feedstocks there was a decrease of the lignocellulosic fraction during ensiling. 

According to previous works, this degradation is due to the enzymatic or acid hydrolysis that may occur 

during biomass preservation (Dewar et al., 1963; McDonald et al., 1991). Moreover, the degradation 

products of these reactions should be water-soluble compounds, since no increase of the non-structural 

particulate fraction (SOL) was recorded with ensiling. 

TKN of raw samples varied from 25.8 g/kgVS to 84.1 g/kgVS (results not shown) and no correlation was 

found either for the type of biomass or the mode of preparation. This evidenced a great variability of the 

protein and amino acids content among organic wastes.  

Furthermore, TKN composition clearly depended on the nature of the feedstock, as illustrated in Fig. 2. 

First, TKN was mostly present in the form organic nitrogen (soluble and particulate) for fresh materials. 

This was especially true for catch crops, in which ammonia content was less than 7% of raw sample TKN. 

For fresh manures, ammonia nitrogen was 21-32% of raw sample TKN. The presence of ammonia is an 

indicator of biomass (protein) hydrolysis (McDonald et al., 1991; Teixeira Franco et al., 2016a) and may 

lead to bacterial inhibition (Batstone et al., 2002; Chen et al., 2014; Yenigün and Demirel, 2013). This issue 

should be more significant for the operation of digesters using cattle manure, since its low level of VFA 

may not contribute to mitigate the effects of NH3 on the pH. 

Likewise, ensiling had a marked impact on the distribution of nitrogen between the fractions. The 

particulate fraction of TKN decreased with ensiling, especially for catch crops. This was attributed to the 

slow hydrolysis of protein during storage, followed by a subsequent fermentation of amino acids, producing 

a pool of VFA, H2 and ammonia nitrogen (Batstone et al., 2002; McDonald et al., 1991). In summary, this 

fractionation procedure enabled to show that not only structural carbohydrates but also proteins and amino 



acids are degraded during the storage before AD. All these results clarify the solubilization of COD and 

BMP observed for some raw materials. 

 

Fig. 2 TKN balance of feedstocks 

Organic biodegradability 

The impact of the results discussed above on the biodegradability of organic matter is shown in Fig. 3. It 

presents the different biodegradable (BD) and non-biodegradable (NDB) contributions of water-soluble 

and particulate fractions to the COD of the raw sample. 

Total biodegradability varied among the fresh feedstocks: it was 47% for CC1-F, 74% for CC2-F and 56% 

for both M1-F and M2-F. From the VS balance presented in Table 4, biodegradability of fresh materials 

was negatively correlated with the sum of structural carbohydrates and lignin content. This is in agreement 

with previous studies that have demonstrate a negative impact of lignin content on methane production by 

anaerobic digestion (Buffiere et al., 2006; Jeffries, 1994; Liu et al., 2015; Triolo et al., 2011).  
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On the one hand, the biodegradability of the particulate COD fraction was 59% in average. The non-

biodegradable (NBD) fraction corresponded to the lignocellulosic compounds that are not degraded during 

the BMP tests (Jeffries, 1994), and to the COD used for bacterial growth (biomass yield), which is a small 

amount. The biodegradability of the particulate phase was closely linked to the lignin content. On the other 

hand, the biodegradability of water-soluble phase was 65% in average. It is unlikely that all water-soluble 

NBD corresponds to the COD used for bacterial growth (the biomass yields suggested in the Anaerobic 

Digestion Model 1 is around 10% on a COD basis (Batstone et al., 2002). Therefore, this suggests that an 

important part of the organic matter present in the water-soluble phase is not biodegradable, which was 

unexpected. 

 

Fig. 3 Organic biodegradability of feedstocks and its phase distribution on a COD basis. BD stands for 

biodegradable; NBD stands for non-biodegradable 

Finally, considerable differences in biodegradability were found for some feedstocks before and after 

ensiling. This was especially true for Catch Crop 1 and Cattle Manure 2. In the case of CC1, ensiling had a 
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positive impact on biodegradability (+19%). On the contrary, biodegradability of M2-E was 19% lower 

than that of M2-F. This demonstrates how the efficiency of biomass management before AD is important 

to safeguard the energetic content of organic matter as well as its biodegradability. 

Conclusions 

A fractionation procedure based on the separation of a water soluble and a particulate fraction was 

successfully applied to assess and explain the organic biodegradability and the biomethane potential of 

different catch crops and cattle manures. This procedure evidenced a significant impact of the origin of 

biomass and its management conditions on the BMP and the biodegradability rates. Furthermore, 

biodegradability of fresh materials was negatively correlated with the sum of (hemi-) cellulose and lignin 

content. 

Likewise, distinct distribution of COD and BMP were found among feedstocks: contribution of the water-

soluble phase was 8-69% to the COD and 7-46% to the BMP of the raw sample. The highest water-soluble 

contributions corresponded to the ones of efficient ensiled biomass. Solubilization of organic matter during 

ensiling was mainly due to the production and accumulation of organic acids from particulate carbohydrates 

and organic nitrogen. This procedure enabled to compare different strategies or unit operation during the 

preparation of feedstocks for AD. However, additional methods are required for the identification of the 

soluble non-biodegradable compounds. In addition, this procedure may be useful to detect and explain 

kinetic (methane production rate) and biodegradability differences among biomasses before and after 

pretreatments.  
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