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Polynomiality of Plancherel averages of hook-content summations for

strict, doubled distinct and self-conjugate partitions

Guo-Niu Han and Huan Xiong∗

Abstract. The polynomiality of shifted Plancherel averages for summations
of contents of strict partitions were established by the authors and Matsumoto
independently in 2015, which is the key to determining the limit shape of
random shifted Young diagram, as explained by Matsumoto. In this paper, we
prove the polynomiality of shifted Plancherel averages for summations of hook
lengths of strict partitions, which is an analog of the authors and Matsumoto’s
results on contents of strict partitions.

In 2009, the first author proved the Nekrasov-Okounkov formula on hook
lengths for integer partitions by using an identity of Macdonald in the frame-

work of type Ã affine root systems, and conjectured that the Plancherel av-
erages of some summations over the set of all partitions of size n are always
polynomials in n. This conjecture was generalized and proved by Stanley.

Recently, Pétréolle derived two Nekrasov-Okounkov type formulas for C̃ and

C̃ˇwhich involve doubled distinct and self-conjugate partitions. Inspired by
all those previous works, we establish the polynomiality of t-Plancherel aver-
ages of some hook-content summations for doubled distinct and self-conjugate
partitions.

1. Introduction

A strict partition is a finite strict decreasing sequence of positive integers λ̄ =
(λ̄1, λ̄2, . . . , λ̄ℓ) (see [17, 31]). The integer |λ̄| =

∑
1≤i≤ℓ λ̄i is called the size and

ℓ(λ̄) = ℓ is called the length of λ̄. For convenience, let λ̄i = 0 for i > ℓ(λ̄). A strict
partition λ̄ is identified with its shifted Young diagram, which means that the i-th
row of the usual Young diagram is shifted to the right by i boxes. A standard shifted
Young tableau of the shape λ is obtained by filling in the boxes of the shifted Young
diagram of λ with numbers from 1 to |λ| such that the numbers strictly increase
along every row and every column. The shifted Plancherel measure Pn for strict
partitions with size n is defined by (see [3, 13, 18, 19, 20])

Pn(λ̄) :=
2n−ℓ(λ̄)(fλ̄)

2

n!
=

2n−ℓ(λ̄)fλ̄
H(λ̄)

,

where fλ̄ is the number of standard shifted Young tableaux of shape λ̄, and H(λ̄)
is the product of all hook lengths of boxes in the shifted Young diagram of λ̄. For
a function ϕ on the set of strict partitions, its shifted Plancherel average is defined
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by (see [18])

En[ϕ] :=
∑

|λ̄|=n

Pn(λ̄)ϕ(λ̄) =
∑

|λ̄|=n

2n−ℓ(λ̄)(fλ̄)
2

n!
ϕ(λ̄).

The polynomiality of shifted Plancherel averages for functions related to contents
of strict partitions (the definition for contents and hook lengths of strict partitions
are given in the beginning of Section 2) were established by the authors [12] and
Matsumoto [18] recently.

Theorem 1.1 ([12, 18]). Suppose that Q is a given symmetric function. Then

En[Q
((c�

2

)
: � ∈ λ̄

)
] =

∑

|λ̄|=n

2n−ℓ(λ̄)fλ̄
H(λ̄)

Q
((c�

2

)
: � ∈ λ̄

)

is a polynomial in n, where c� is the content of the box � in the shifted Young
diagram of λ̄.

Theorem 1.1 is important in the study of the limit shape problems of random
shifted Young diagram, as explained by Matsumoto [19]. In Section 2 we derive the
following hook length analog for Theorem 1.1.

Theorem 1.2. Suppose that k is a given nonnegative integer and µ̄ is a given strict
partition. Then,

(1.1)
∑

|λ̄/µ̄|=n

2|λ̄|−ℓ(λ̄)fλ̄/µ̄

H(λ̄)


2

∑

h∈H(λ̄)

h2k + (4k − 1)

ℓ(λ̄)∑

i=1

λ̄2k
i




is a polynomial in n of degree at most k + 1, where fλ̄/µ̄ is the number of standard

skew shifted Young tableaux of shape λ̄/µ̄, and H(λ̄) is the multiset of hook lengths
of boxes in the shifted Young diagram of λ̄.

We mention that the term (4k − 1)
∑ℓ(λ̄)

i=1 λ̄2k
i is necessary in the formula (1.1),

since En[
∑

h∈H(λ̄) h
2k] is not a polynomial of n when k ≥ 1.

The following so-called Nekrasov-Okounkov formula
∑

λ∈P

q|λ|
∏

h∈H(λ)

(
1−

z

h2

)
=
∏

k≥1

(1− qk)z−1,

where P is the set of all integer partitions λ with |λ| denoting the size of λ and
H(λ) the multiset of hook lengths associated with λ (see [7]), was discovered in-
dependently several times: first, by Nekrasov and Okounkov in their study of the
theory of Seiberg-Witten on supersymmetric gauges in particle physics [21]; then,
proved by Westbury using D’Arcais polynomials [33]; finally, by the first author us-

ing an identity of Macdonald [17] in the framework of type Ã affine root systems [7].
Moreover, he asked to find Nekrasov-Okounkov type formulas associated with other
root systems [8, Problem 6.4], and conjectured that the Plancherel average

n!
∑

|λ|=n

1

H(λ)2

∑

h∈H(λ)

h2k
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Figure 1. From strict partitions to doubled distinct partitions.

is always a polynomial in n for any k ∈ N, where H(λ) =
∏

h∈H(λ) h. This con-

jecture was proved by Stanley in a more general form. In particular, he showed
that

n!
∑

|λ|=n

1

H(λ)2
Q1(h

2 : h ∈ H(λ))Q2(c : c ∈ C(λ))

is a polynomial in n for any symmetric functions Q1 and Q2, where C(λ) is the
multiset of contents associated with λ (see [29]). For some special functions Q1

and Q2 the latter polynomial has explicit expression, as shown by Fujii-Kanno-
Moriyama-Okada [5] and Panova [24].

The doubled distinct partition of a strict partition λ̄, denoted by λ̄λ̄, is defined
to be the usual partition whose Young diagram is obtained by adding λ̄i boxes to
the i-th column of the shifted Young diagram of λ̄ for 1 ≤ i ≤ ℓ(λ̄) (see [6, 25, 26]).
For example, (6, 4, 4, 1, 1) is the doubled distinct partition of (5, 2, 1) (see Figure 1).

For each usual partition λ, let λ′ denote the conjugate partition of λ (see [6,
17, 25, 26]). A usual partition λ is called self-conjugate if λ = λ′. The set of all
doubled distinct partitions and the set of all self-conjugate partitions are denoted
by DD and SC respectively. For each positive integer t, let

Ht(λ) = {h ∈ H(λ) : h ≡ 0 (mod t)}

be the multiset of hook lengths of multiples of t. Write Ht(λ) =
∏

h∈Ht(λ)
h.

Recently, Pétréolle derived two Nekrasov-Okounkov type formulas for C̃ and

C̃ˇwhich involve doubled distinct and self-conjugate partitions. In particular, he
obtained the following two formulas in [25, 26].

Theorem 1.3 (Pétréolle [25, 26]). For positive integers n and t we have

∑

λ∈DD,|λ|=2nt
#Ht(λ)=2n

1

Ht(λ)
=

1

(2t)nn!
, if t is odd;(1.2)

∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

1

Ht(λ)
=

1

(2t)nn!
, if t is even.(1.3)

We call

PDD
t,n (λ) :=

(2t)nn!

Ht(λ)
(t odd)

and

PSC
t,n(λ) :=

(2t)nn!

Ht(λ)
(t even)
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the t-Plancherel measure for doubled distinct and self-conjugate partitions with
size n, respectively. For a function ϕ on the sets of doubled distinct or self-conjugate
partitions, its t-Plancherel average is defined by

EDD
t,n [ϕ] :=

∑

λ∈DD,|λ|=2nt
#Ht(λ)=2n

PDD
t,n ϕ(λ) =

∑

λ∈DD,|λ|=2nt
#Ht(λ)=2n

(2t)nn!

Ht(λ)
ϕ(λ) (t odd)

and

ESC
t,n[ϕ] :=

∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

PSC
t,nϕ(λ) =

∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

(2t)nn!

Ht(λ)
ϕ(λ) (t even)

respectively.
Actually, the t-Plancherel measure in this paper can be generalized to be defined

on the set of general partitions (see [4]). As we know, the linear and projec-
tive representations of symmetric groups can be labelled bijectively by partitions
and strict partitions, respectively (see [17]). Therefore, the ordinary and shifted
Plancherel measure gives natural probability measure on such representations. Sim-
ilarly, when t is a prime number, the t-blocks in the modular representations of sym-
metric groups can be labelled bijectively by t-core partitions. In fact, the famous
Nakayama conjecture [14, Theorem 6.2.21] states that two irreducible characters
of the symmetric groups are in the same t-block if and only if their corresponding
partitions have the same t-core. The t-Plancherel measure thus gives natural prob-
ability measure on t-blocks in the modular representations of symmetric groups.
Also, as the ordinary and shifted Plancherel measure are closely related to certain
numbers of paths in Young’s lattice, our t-Plancherel measure can be seen as a gen-
eralized probability measure arising from counting the paths (see (4.3) and (5.2))
in Stanley’s t-differential poset theory [30].

Inspired by previous works, we establish the polynomiality of t-Plancherel av-
erages of some hook-content summations for doubled distinct and self-conjugate
partitions. Our main result is stated next.

Theorem 1.4. For any given symmetric functions Q1 and Q2, the following two
t-Plancherel averages

(1.4) EDD
t,n [Q1(h

2 : h ∈ H(λ))Q2(c : c ∈ C(λ))] (t odd)

and

(1.5) ESC
t,n[Q1(h

2 : h ∈ H(λ))Q2(c : c ∈ C(λ))] (t even)

are polynomials in n and t.

In fact, the degrees of the two polynomials in n and t can be estimated explicitly
in terms of Q1 and Q2 (see Corollary 4.8 and Theorem 5.4). When Q1 and Q2 are
two constant symmetric functions, we derive Theorem 1.3. Other specializations
are listed as follows.

Corollary 1.5. We have

(2t)nn!
∑

λ∈DD,|λ|=2nt
#Ht(λ)=2n

1

Ht(λ)

∑

h∈H(λ)

h2 = 6t2n2 +
1

3
(t2 − 6t+ 2)tn (t odd),(1.6)
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(2t)nn!
∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

1

Ht(λ)

∑

h∈H(λ)

h2 = 6t2n2 +
1

3
(t2 − 6t− 1)tn (t even),(1.7)

(2t)nn!
∑

λ∈DD,|λ|=2nt
#Ht(λ)=2n

1

Ht(λ)

∑

c∈C(λ)

c2 = 2t2n2 +
1

3
(t2 − 6t+ 2)tn (t odd),(1.8)

(2t)nn!
∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

1

Ht(λ)

∑

c∈C(λ)

c2 = 2t2n2 +
1

3
(t2 − 6t− 1)tn (t even).(1.9)

The rest of the paper is essentially devoted to completing the proof of Theo-
rems 1.2 and 1.4. In Section 2 we study the difference operator for strict partitions
and prove Theorem 1.2. The polynomiality of summations in (1.4) for t = 1 with
Q1 = 1 or Q2 = 1 has an equivalent statement in terms of strict partitions, whose
proof is also given in Section 2. After recalling some basic definitions and properties
of Littlewood decomposition in Section 3, the doubled distinct and self-conjugate
cases of Theorem 1.4 are proved in Sections 4 and 5 respectively. Finally, Corollary
1.5 is proved in Section 6. The basic idea in the proofs of Theorems 1.2 and 1.4 is
to translate the problem on Plancherel averages to the calculation of some higher-
order difference operators on partitions and strict partitions (see Theorems 2.5, 4.3
and 5.3). Then the polynomiality of Plancherel averages corresponds to the vanish-
ing of such higher-order difference operators on specific functions of hook lengths
and contents. Therefore, we establish the relation between higher-order and lower
order difference operators by studying the combinatorial properties of hook lengths,
contents, inner and outer corners under the Littlewoord decomposition, which then
be used to inductively prove the vanishing properties of difference operators (see
Theorems 2.6, 4.7 and 5.4).

2. Polynomiality for strict and doubled distinct partitions

In this section we prove Theorem 1.2 and an equivalent statement of the poly-
nomiality of (1.4) for t = 1 with Q1 = 1 or Q2 = 1. Let λ̄ = (λ̄1, λ̄2, . . . , λ̄ℓ) be
a strict partition. The leftmost box in the i-th row of the shifted Young diagram
of λ̄ has coordinate (i, i + 1). The hook length of the (i, j)-box, denoted by h(i,j),
is the number of boxes exactly to the right, or exactly above, or the box itself,
plus λ̄j . For example, consider the box � = (i, j) = (1, 3) in the shifted Young
diagram of the strict partition (7, 5, 4, 1). There are 1 and 5 boxes below and to
the right of the box � respectively. Since λ̄3 = 4, the hook length of � is equal to
1+ 5+1+4 = 11, as illustrated in Figure 2. The content of � = (i, j) is defined to
be c� = j − i, so that the leftmost box in each row has content 1. Also, let H(λ̄)
be the multiset of hook lengths of boxes. The hook length and content multisets
of the doubled distinct partition λ̄λ̄ can be obtained from H(λ̄) and C(λ̄) by the
following relations:

H(λ̄λ̄) = H(λ̄) ∪H(λ̄) ∪ {2λ̄1, 2λ̄2, . . . , 2λ̄ℓ} \ {λ̄1, λ̄2, . . . , λ̄ℓ},(2.1)

C(λ̄λ̄) = C(λ̄) ∪ {1− c | c ∈ C(λ̄)}.(2.2)

The proofs of (2.1) and (2.2) can be derived by splitting the Young diagram of the
partition λ̄λ̄ into two sets S1(λ̄λ̄) := {(i, j) ∈ λ̄λ̄ : i < j} and S2(λ̄λ̄) := {(i, j) ∈
λ̄λ̄ : i ≥ j}. By definition, the hook length and content multisets for S1(λ̄λ̄) are
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12 11 8 7 5 4 1

9 6 5 3 2

5 4 2 1

1

1 2 3 4 5 6 7

1 2 3 4 5

1 2 3 4

1

Figure 2. The shifted Young diagram, the hook lengths and the
contents of the strict partition (7, 5, 4, 1).

Figure 3. The skew shifted Young diagram of the skew strict
partition (7, 5, 4, 1)/(4, 2, 1).

H(λ̄) and C(λ̄) respectively, while the hook length and content multisets for S2(λ̄λ̄)
are H(λ̄)∪{2λ̄1, 2λ̄2, . . . , 2λ̄ℓ} \ {λ̄1, λ̄2, . . . , λ̄ℓ} and {1− c | c ∈ C(λ̄)}, respectively
(for a detailed explanation, see [25, p. 9]).

For two strict partitions λ̄ and µ̄, we write λ̄ ⊇ µ̄ if λ̄i ≥ µ̄i for any i ≥ 1. In
this case, the skew strict partition λ̄/µ̄ is identical with the skew shifted Young
diagram. For example, the skew strict partition (7, 5, 4, 1)/(4, 2, 1) is represented
by the white boxes in Figure 3. Recall that fλ̄ (resp. fλ̄/µ̄) denotes the number of

standard shifted Young tableaux of shape λ̄ (resp. λ̄/µ̄). The following formulas
for strict partitions are well-known (see [2, 28, 32]):

(2.3) fλ̄ =
|λ̄|!

H(λ̄)
and

1

n!

∑

|λ̄|=n

2n−ℓ(λ̄)f2
λ̄ = 1.

Identity (1.2) with t = 1, obtained by Pétréolle, becomes
∑

λ∈DD,|λ|=2n

1

H(λ)
=

1

2nn!
,

which is equivalent to the second identity of (2.3) in view of (2.1).

For a strict partition λ̄, the outer corners (see [12]) are the boxes which can be
removed in such a way that after removal the resulting diagram is still a shifted
Young diagram of a strict partition. The coordinates of outer corners are denoted
by (α1, β1), . . . , (αm, βm) such that α1 > α2 > · · · > αm. Let yj := βj − αj

(1 ≤ j ≤ m) be the contents of outer corners. We set αm+1 = 0, β0 = ℓ(λ̄) + 1 and
call (α1, β0), (α2, β1), . . . , (αm+1, βm) the inner corners of λ̄. Let xi = βi−αi+1 be
the contents of inner corners for 0 ≤ i ≤ m (see Figure 4). The following relation
of xi and yj are obvious:

(2.4) x0 = 1 ≤ y1 < x1 < y2 < x2 < · · · < ym < xm.

Notice that x0 = y1 = 1 iff λ̄ℓ(λ̄) = 1. Let λ̄i+ = λ̄
⋃
{�i} such that c�i

=

xi for 0 ≤ i ≤ m. Therefore, λ̄i+ is the partition obtained by adding the box
�i = (αi+1 + 1, βi + 1) to λ. Here λ̄0+ does not exist if y1 = 1. The set of
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·

·

·

·

·

·

(αm, βm)

(α2, β2)

(α1, β1)

Figure 4. A strict partition and its corners. The outer corners
are labelled with (αi, βi) (i = 1, 2, . . . ,m). The inner corners are
indicated by the dot symbol “·”.

contents of inner corners and the set of contents of outer corners of λ̄ are denoted by
X(λ̄) = {x0, x1, . . . , xm} and Y (λ̄) = {y1, y2, . . . , ym} respectively. The following
relations between the hook lengths of λ̄ and λ̄i+ are established in [12].

Theorem 2.1 (Theorem 3.1 of [12]). Let λ̄ be a strict partition with X(λ̄) =
{x0, x1, . . . , xm} and Y (λ̄) = {y1, y2, . . . , ym}. For 1 ≤ i ≤ m, we have

H(λ̄) ∪ {1, xi, 2xi − 2} ∪ {|xi − xj | : 1 ≤ j ≤ m, j 6= i}

∪ {xi + xj − 1 : 1 ≤ j ≤ m, j 6= i}

=H(λ̄i+) ∪ {|xi − yj | : 1 ≤ j ≤ m} ∪ {xi + yj − 1 : 1 ≤ j ≤ m}

and

H(λ̄)

H(λ̄i+)
=

1

2
·

∏
1≤j≤m

((
xi

2

)
−
(
yj

2

))

∏
0≤j≤m

j 6=i

((
xi

2

)
−
(
xj

2

)) .

If y1 > 1, we have

H(λ̄) ∪ {1, x1, x1 − 1, x2, x2 − 1, · · · , xm, xm − 1}

=H(λ̄0+) ∪ {y1, y1 − 1, y2, y2 − 1, · · · , ym, ym − 1}

and

H(λ̄)

H(λ̄0+)
=

∏
1≤j≤m

((
x0

2

)
−
(
yj

2

))

∏
1≤j≤m

((
x0

2

)
−
(
xj

2

)) .

Example 2.1. Let λ̄ = (5, 4, 2). Then X(λ̄) = {1, 3, 6} and Y (λ̄) = {2, 4}. Also,
we have H(λ̄) = {1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 9}, H(λ̄1+) = {1, 2, 2, 3, 3, 3, 4, 4, 5, 7, 8, 9}
and H(λ̄0+) = {1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 9}. Therefore it is easy to check that the
following two equalities in Theorem 2.1 hold:

H(λ̄) ∪ {1, x1, 2x1 − 2} ∪ {|x1 − xj | : 1 ≤ j ≤ m, j 6= 1}

∪ {x1 + xj − 1 : 1 ≤ j ≤ m, j 6= 1}

=H(λ̄1+) ∪ {|x1 − yj| : 1 ≤ j ≤ m} ∪ {x1 + yj − 1 : 1 ≤ j ≤ m}

= {1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 8, 9},
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and

H(λ̄) ∪ {1, x1, x1 − 1, x2, x2 − 1, · · · , xm, xm − 1}

=H(λ̄0+) ∪ {y1, y1 − 1, y2, y2 − 1, · · · , ym, ym − 1}

= {1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 9}.

Let k be a nonnegative integer, and ν = (ν1, ν2, . . . , νℓ(ν)) be a usual partition.
For arbitrary two finite alphabets A and B, the power difference of the alphabet
A−B is defined by [16, p.5]

Ψk(A,B) :=
∑

a∈A

ak −
∑

b∈B

bk,(2.5)

Ψν(A,B) :=

ℓ(ν)∏

j=1

Ψνj (A,B).(2.6)

Let λ̄ be a strict partition. We define

(2.7) Φν(λ̄) := Ψν
(
{

(
xi

2

)
}, {

(
yi
2

)
}
)
.

Theorem 2.2 (Theorem 3.5 of [12]). Let k be a given nonnegative integer. Then,
there exist some ξj ∈ Q such that

Φk(λ̄i+)− Φk(λ̄) =

k−1∑

j=0

ξj

(
xi

2

)j

for every strict partition λ̄ and 0 ≤ i ≤ m, where x0, x1, . . . , xm are the contents of
inner corners of λ̄.

We also need the following lemmas.

Lemma 2.3. Let k be a given nonnegative integer. Then, there exist some con-
stants akij such that

(x− y)2k + (x + y − 1)2k =
∑

i+j≤k

akij

(
x

2

)i(
y

2

)j

for every x, y ∈ C.

Proof. First, it is easy to check that

(x − y)2 + (x + y − 1)2 = 4

(
x

2

)
+ 4

(
y

2

)
+ 1

and

(x − y)2(x+ y − 1)2 =
(
2

(
x

2

)
− 2

(
y

2

))2
,

which imply that the claim holds for k = 1. Let Ak(x, y) = (x−y)2k+(x+y−1)2k.
For k ≥ 2, we have

Ak(x, y) = A1(x, y)Ak−1(x, y) − (x− y)2(x+ y − 1)2Ak−2(x, y).

Then by induction the lemma holds for k ≥ 1. �
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Lemma 2.4 (Theorem 3.2 of [12]). Let k be a nonnegative integer. Then, there
exist some ξν ∈ Q indexed by usual partitions ν such that

∑

0≤i≤m

∏
1≤j≤m

(ai − bj)

∏
0≤j≤m

j 6=i

(ai − aj)
aki =

∑

|ν|≤k

ξνΨ
ν({ai}, {bi})

for arbitrary complex numbers a0 < a1 < · · · < am and b1 < b2 < · · · < bm.

We define the difference operator D̄ for strict partitions by

(2.8) D̄
(
g(λ̄)

)
:= 2

m∑

i=1

g(λ̄i+) + g(λ̄0+)− g(λ̄),

where λ̄ is a strict partition and g is a function of strict partitions. In the above
definition, the symbol g(λ̄0+) takes the value 0 if λ̄0+ does not exist, or equivalently
if λ̄ℓ(λ̄) = 1. By Theorem 2.1, we have

(2.9) D̄
( 1

H(λ̄)

)
= 0.

Theorem 2.5 (Theorem 2.3 of [12]). Let g be a function of strict partitions and µ̄
be a given strict partition. Then we have

(2.10)
∑

|λ̄/µ̄|=n

2|λ̄|−|µ̄|−ℓ(λ̄)+ℓ(µ̄)fλ̄/µ̄g(λ̄) =

n∑

k=0

(
n

k

)
D̄kg(µ̄)

and

(2.11) D̄ng(µ̄) =

n∑

k=0

(−1)n+k

(
n

k

) ∑

|λ̄/µ̄|=k

2|λ̄|−|µ̄|−ℓ(λ̄)+ℓ(µ̄)fλ̄/µ̄g(λ̄).

In particular, if there exists some positive integer r such that D̄rg(λ̄) = 0 for
every strict partition λ̄, then the left-hand side of (2.10) is a polynomial of n with
degree at most r − 1.

For each usual partition δ let

pδ(λ̄) := Ψδ({h2 : h ∈ H(λ̄λ̄)}, ∅).

By (2.1), we have

pk(λ̄) =
∑

h∈H(λ̄λ̄)

h2k = 2
∑

h∈H(λ̄)

h2k + (4k − 1)

ℓ(λ̄)∑

i=1

λ̄2k
i

for a nonnegative integer k.
We will prove the following result, which implies Theorem 1.2.

Theorem 2.6. Suppose that ν and δ are two given usual partitions. Then,

(2.12) D̄r
(pδ(λ̄)Φν(λ̄)

H(λ̄)

)
= 0
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for every strict partition λ̄, where r = |δ|+ ℓ(δ)+ |ν|+1. Consequently, for a given
strict partition µ̄,

(2.13)
∑

|λ̄/µ̄|=n

2|λ̄|−ℓ(λ̄)fλ̄/µ̄

H(λ̄)
pδ(λ̄)

is a polynomial in n of degree at most |δ|+ ℓ(δ).

Proof. Let X(λ̄) = {x0, x1, . . . , xm} and Y (λ̄) = {y1, y2, . . . , ym}. First, we show
that the difference pk(λ̄i+)− pk(λ̄) can be written as the following form

k∑

j=0

ηj(λ̄)

(
xi

2

)j

for 0 ≤ i ≤ m and a nonnegative integer k, where each coefficient ηj(λ̄) is a linear
combination of some Φτ (λ̄) for some usual partition τ of size |τ | ≤ k. Indeed, by
Lemma 2.3 and Theorem 2.1,

pk(λ̄0+)− pk(λ̄) = 2

m∑

j=1

(x2k
j + (xj − 1)2k)− 2

m∑

j=1

(y2kj + (yj − 1)2k) + 22k + 1

= η0(λ̄) =

k∑

j=0

ηj(λ̄)

(
x0

2

)j

(if i = 0 and λ̄ℓ(λ̄) ≥ 2)

and

pk(λ̄i+)− pk(λ̄)

= 2

m∑

j=1

((xi − xj)
2k + (xi + xj − 1)2k)− 2

m∑

j=1

(
(xi − yj)

2k + (xi + yj − 1)2k
)

+ 2x2k
i + 2(2xi − 2)

2k
+ 2− 2(2xi − 1)

2k
+ (22k − 1)

(
x2k
i − (xi − 1)2k

)

=
k∑

j=0

ηj(λ̄)

(
xi

2

)j

(if 1 ≤ i ≤ m).

Next, let A = Φν(λ̄) and B = pδ(λ̄). We have

∆iA := Φν(λ̄i+)− Φν(λ̄) =
∑

(∗)

∏

s∈U

Φνs(λ̄)
∏

s′∈V

(
Φνs′ (λ̄i+)− Φνs′ (λ̄)

)
,

∆iB := pδ(λ̄i+)− pδ(λ̄) =
∑

(∗∗)

∏

s∈U

pδs(λ̄)
∏

s′∈V

(
pδs′ (λ̄i+)− pδs′ (λ̄)

)
,

where the sum (∗) (resp. (∗∗)) ranges over all pairs (U, V ) of positive integer sets
such that U ∪ V = {1, 2, . . . , ℓ(ν)} (resp. U ∪ V = {1, 2, . . . , ℓ(δ)}), U ∩ V = ∅ and
V 6= ∅.

Finally, it follows from (2.9) and Theorem 2.1 that

H(λ̄)D̄
(pδ(λ̄)Φν(λ̄)

H(λ̄)

)

=
H(λ̄)

H(λ̄0+)

(
pδ(λ̄0+)Φν(λ̄0+)− pδ(λ̄)Φν(λ̄)

)
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+ 2

m∑

i=1

H(λ̄)

H(λ̄i+)

(
pδ(λ̄i+)Φν(λ̄i+)− pδ(λ̄)Φν(λ̄)

)
(By (2.9))

=
∑

0≤i≤m

∏
1≤j≤m

((
xi

2

)
−
(
yj

2

))

∏
0≤j≤m

j 6=i

((
xi

2

)
−
(
xj

2

))
(
pδ(λ̄i+)Φν(λ̄i+)− pδ(λ̄)Φν(λ̄)

)
(By Theorem 2.1)

=
∑

0≤i≤m

∏
1≤j≤m

((
xi

2

)
−
(
yj

2

))

∏
0≤j≤m

j 6=i

((
xi

2

)
−
(
xj

2

))
(
A ·∆iB + B ·∆iA+∆iA ·∆iB

)
.

By Theorems 2.4 and 2.2, each of the above three terms could be written as a linear
combination of some pδ(λ̄)Φν(λ̄) satisfying |δ| + ℓ(δ) + |ν| ≤ |δ| + ℓ(δ) + |ν| − 1.
Then the claim follows by induction on |δ|+ ℓ(δ) + |ν|. �

When µ̄ = ∅, the summation (2.13) in Theorem 2.6 becomes

(2.14)
∑

|λ̄|=n

2n−ℓ(λ̄)n!

H(λ̄)2
pδ(λ̄)

or

(2.15) 2nn!
∑

|λ̄λ̄|=2n

1

H(λ̄λ̄)
Ψδ({h2 : h ∈ H(λ̄λ)}, ∅)

by (2.1). The above summation is a polynomial in n. Consequently, Theorem 1.4
is true when t = 1 and Q2 = 1. Other specializations are listed as follows.

Theorem 2.7. Let µ̄ be a given strict partition. Then,

(2.16)
∑

|λ̄/µ̄|=n

2|λ̄|−ℓ(λ̄)−|µ̄|+ℓ(µ̄)fλ̄/µ̄H(µ̄)

H(λ̄)

(
p1(λ̄)− p1(µ̄)

)
= 12

(
n

2

)
+ (12|µ̄|+5)n.

Let µ̄ = ∅. We obtain

(2.17) 2nn!
∑

|λ̄λ̄|=2n

1

H(λ̄λ̄)

∑

h∈H(λ̄λ̄)

h2 = 12

(
n

2

)
+ 5n.

Proof. We have

p1(λ̄0+)− p1(λ̄) = 2

m∑

j=1

(x2
j + (xj − 1)2)− 2

m∑

j=1

(y2j + (yj − 1)2) + 22 + 1

= η0(λ̄) = 8|λ̄|+ 5 (if i = 0 and λ̄ℓ(λ̄) ≥ 2)

and

p1(λ̄i+)− p1(λ̄)

= 2
m∑

j=1

((xi − xj)
2 + (xi + xj − 1)2)− 2

m∑

j=1

((xi − yj)
2 + (xi + yj − 1)2)

+ 2x2
i + 2(2xi − 2)2 + 2− 2(2xi − 1)2 + (22 − 1)(x2

i − (xi − 1)2)

= 4

(
xi

2

)
+ 8|λ̄|+ 5 (if 1 ≤ i ≤ m).
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So that

H(λ̄)D̄
(p1(λ̄)
H(λ̄)

)
=

∑

0≤i≤m

∏
1≤j≤m

((
xi

2

)
−
(
yj

2

))

∏
0≤j≤m

j 6=i

((
xi

2

)
−
(
xj

2

)) (4
(
xi

2

)
+ 8|λ̄|+ 5)

= 4Φ1(λ̄) + 8|λ̄|+ 5

= 12|λ̄|+ 5.

Therefore we have

H(λ̄)D̄2
(p1(λ̄)
H(λ̄)

)
= 12,

H(λ̄)D̄3
(p1(λ̄)
H(λ̄)

)
= 0.

Identity (2.16) follows from Theorem 2.5. By (2.1), we derive (2.17). �

Recall the following results obtained in [12] involving the contents of strict par-
titions.

Theorem 2.8. Suppose that Q is a given symmetric function, and µ̄ is a given
strict partition. Then

∑

|λ̄/µ̄|=n

2|λ̄|−|µ̄|−ℓ(λ̄)+ℓ(µ̄)fλ̄/µ̄

H(λ̄)
Q
((c

2

)
: c ∈ C(λ̄)

)

is a polynomial in n.

Theorem 2.9. Suppose that k is a given nonnegative integer. Then

∑

|λ̄|=n

2|λ̄|−ℓ(λ̄)fλ̄
H(λ̄)

∑

c∈C(λ̄)

(
c+ k − 1

2k

)
=

2k

(k + 1)!

(
n

k + 1

)
.

Theorem 2.10. Let µ̄ be a strict partition. Then,

(2.18)
∑

|λ̄/µ̄|=n

2|λ̄|−ℓ(λ̄)−|µ̄|+ℓ(µ̄)fλ̄/µ̄H(µ̄)

H(λ̄)

( ∑

c∈C(λ̄)

(
c

2

)
−
∑

c∈C(µ̄)

(
c

2

))
=

(
n

2

)
+n|µ̄|.

The above results can be interpreted in terms of doubled distinct partitions. In
particular, we obtain Theorem 1.4 when t = 1 and Q1 = 1.

Theorem 2.11. For each usual partition δ, the summation

(2.19) 2nn!
∑

|λ̄λ̄|=2n

1

H(λ̄λ̄)
Ψδ(C(λ̄λ̄), ∅)

is a polynomial in n.

Proof. Since c + (1 − c) = 1 and c(1 − c) = −2
(
c
2

)
, there exists some ai such that

ck + (1− c)k =
∑s

i=1 ai
(
c
2

)i
. By (2.2), we obtain

∑

c∈C(λ̄λ̄)

ck =
∑

c∈C(λ̄)

(
ck + (1− c)k

)
=

s∑

i=1

ai
∑

c∈C(λ̄)

(
c

2

)i

.

The claim follows from Theorem 2.8. �
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Figure 5. From usual partitions to bi-infinite 01-sequences.

The following results are corollaries of Theorems 2.9 and 2.10.

Theorem 2.12. Suppose that k is a given nonnegative integer. Then,

2nn!
∑

|λ̄λ̄|=2n

1

H(λ̄λ̄)

∑

c∈C(λ̄λ̄)

(
c+ k − 1

2k

)
=

2k+1

(k + 1)!

(
n

k + 1

)
,(2.20)

2nn!
∑

|λ̄λ̄|=2n

1

H(λ̄λ̄)

∑

c∈C(λ̄λ̄)

c2 = 4

(
n

2

)
+

(
n

1

)
.(2.21)

3. The Littlewood decomposition and corners of usual partitions

In this section we recall some basic definitions and properties for usual partitions
(see [10], [17, p.12], [30, p.468], [14, p.75], [6]). Let W be the set of bi-infinite binary
sequences beginning with infinitely many 0’s and ending with infinitely many 1’s.
Each element w of W can be represented by (a′i)i = · · ·a′−3a

′
−2a

′
−1a

′
0a

′
1a

′
2a

′
3 · · · .

However, the representation is not unique, since for any fixed integer k the sequence
(a′i+k)i also represents w. The canonical representation of w is the unique sequence
(ai)i = · · · a−3a−2a−1a0a1a2a3 · · · such that

#{i ≤ −1, ai = 1} = #{i ≥ 0, ai = 0}.

It will be further denoted by · · · a−3a−2a−1.a0a1a2a3 · · · with a dot symbol inserted
between the letters a−1 and a0. There is a one to one correspondence described
as follow between W and the set of partitions P (see, e.g. [30, p.468], [1] for more
details). Let λ be a partition. We encode each horizontal edge of λ by 1 and
each vertical edge by 0. Reading these (0,1)-encodings from top to bottom and
from left to right yields a binary word u. By adding infinitely many 0’s to the left
and infinitely many 1’s to the right of u we get an element w = · · · 000u111 · · · ∈
W . Clearly, the map λ 7→ w is a one-to-one correspondence between P and W .
For example, take λ = (6, 3, 3, 1). Then u = 0100110001, so that w = (ai)i =
· · · 1110100.110001000 · · · (see Figure 5).

Let t be a positive integer. Recall that a partition λ is a t-core if it has no
hook equal to t. The set of all t-core partitions (resp. t-core doubled distinct
partitions) are denoted by Pt-core (resp. DDt-core). The Littlewood decomposition
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(α1, β1)

(α2, β2)

(αm, βm)

·

·

·

·

·

·

Figure 6. A partition and its corners. The outer corners are
labelled with (αi, βi) (i = 1, 2, . . . ,m). The inner corners are indi-
cated by the dot symbol “·”.

maps bijectively a usual partition λ to (λt-core;λ
0, λ1, . . . , λt−1) ∈ Pt-core ×Pt such

that

(P1) λt-core is a t-core and λ0, λ1, . . . , λt−1 are usual partitions;

(P2) |λ| = |λt-core|+ t(|λ0|+ |λ1|+ · · ·+ |λt−1|);

(P3) {h/t | h ∈ Ht(λ)} = H(λ0) ∪H(λ1) ∪ · · · ∪ H(λt−1).

The vector (λ0, λ1, . . . , λt−1) is called the t-quotient of the partition λ.

It is well know that (see [6]) under the Littlewood decomposition, a doubled
distinct partition λ has image (λt-core;λ

0, λ1, . . . , λt−1) ∈ DDt-core × DD × Pt−1

where λi is the conjugate partition of λt−i for 1 ≤ i ≤ t− 1.

Recall that we define in Section 2 the notion of inner corners xi (0 ≤ i ≤ m) and
outer corners yj (1 ≤ j ≤ m) for strict partitions. We use here the same notation
for usual partitions (see Figure 6) as in this section. For usual partitions, it is easy
to verify that xi and yj satisfy the following relation (see [11, 2]):

(3.1) x0 < y1 < x1 < y2 < x2 < · · · < ym < xm.

Define (see [11])

(3.2) Ψν(λ) := Ψν({xi}, {yj})

for each usual partition ν.

Lemma 3.1. Suppose that λ is a partition whose set of contents of inner corners
and set of contents of outer corners are X(λ) = {x0, x1, . . . , xm} and Y (λ) =
{y1, y2, . . . , ym} respectively. Let λi+ = λ ∪ {�i} where c�i

= xi. Then we have

X(λi+) ∪ {xi, xi} ∪ Y (λ) = X(λ) ∪ {xi + 1, xi − 1} ∪ Y (λi+).

Proof. Four cases are to be considered. (i) If βi+1 < βi+1 and αi+1+1 < αi. Then,
the contents of inner corners and outer corners of λi+ areX∪{xi−1, xi+1}\{xi} and
Y ∪{xi} respectively. (ii) If βi+1 = βi+1 and αi+1+1 < αi, so that yi+1 = xi+1.
Hence the contents of inner corners and outer corners of λi+ are X ∪{xi− 1} \ {xi}
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and Y ∪ {xi} \ {xi + 1} respectively. (iii) If βi + 1 < βi+1 and αi+1 + 1 = αi, so
that yi = xi − 1. Then the contents of inner corners and outer corners of λi+ are
X ∪ {xi + 1} \ {xi} and Y ∪ {xi} \ {xi − 1} respectively. (iv) If βi + 1 = βi+1 and
αi+1 + 1 = αi. Then yi + 1 = xi = yi+1 − 1. The contents of inner corners and
outer corners of λi+ are X \ {xi} and Y ∪ {xi} \ {xi − 1, xi + 1} respectively. The
claim is proved. �

The corners of the strict partition λ̄ and the doubled distinct partition λ̄λ̄ are
closely related.

Lemma 3.2. Suppose that λ̄ is a strict partition whose set of contents of inner
corners and set of contents of outer corners are X(λ̄) = {x0, x1, . . . , xm} and
Y (λ̄) = {y1, y2, . . . , ym} respectively. Then,

X(λ̄λ̄) ∪ {y1, 1− y1, . . . , ym, 1− ym} = Y (λ̄λ̄) ∪ {0, x1, 1− x1, . . . , xm, 1− xm}.

Proof. Two cases are to be considered. (i) If y1 = 1, the contents of inner corners
and outer corners of λ̄λ̄ are X(λ̄λ̄) = {x1, 1 − x1, . . . , xm, 1 − xm} and Y (λ̄λ̄) =
{1, y2, 1−y2 . . . , ym, 1−ym} respectively. (ii) If y1 ≥ 2, the contents of inner corners
and outer corners of λ̄λ̄ are X(λ̄λ̄) = {0, x1, 1 − x1, . . . , xm, 1 − xm} and Y (λ̄λ̄) =
{y1, 1− y1, . . . , ym, 1− ym} respectively. This achieves the proof of Lemma 3.2. �

4. The t-difference operators for doubled distinct partitions

Let t = 2t′ + 1 be an odd positive integer. For each strict partition λ̄, the
doubled distinct partition associated with λ̄ is denoted by λ = λ̄λ̄. The Littlewood
decomposition maps λ̄λ̄ to (see [6])

(λt-core;λ
0, λ1, . . . , λ2t′) ∈ DDt-core ×DD × P2t′

where λi is the conjugate partition of λt−i for 1 ≤ i ≤ t′. For convenience we say
that the Littlewood decomposition maps the strict partition λ̄ to

(4.1) λ̄ 7→ (λ̄t-core; λ̄
0, λ1, . . . , λt′),

where λ̄t-core and λ̄0 are determined by λt-core = λ̄t-coreλ̄t-core and λ0 = λ̄0λ̄0.

Example 4.1. Let λ̄ = (6, 5, 4, 1) and t = 3. Then λ = λ̄λ̄ = (7, 7, 7, 5, 3, 3).
The bi-infinite binary sequence of λ is · · · 111000110.0100111000 · · ·. By Little-
wood decomposition (see [30, p.468], [1]), the bi-infinite binary sequence of λt-core,
λ0, λ1, λ2 are · · · 1110.01000 · · · , · · · 11101.001000 · · · , · · · 11101.110000 · · · and
· · · 11100.01000 · · · , respectively, which means that λt-core = (2), λ0 = (3, 1), λ1 =
(1, 1, 1), λ2 = (3), λ̄t-core = (1) and λ̄0 = (2). Therefore, λ̄ = (6, 5, 4, 1) is mapped
to ((1); (2), (1, 1, 1)) in (4.1).

Since the map (4.1) is bijective, we always write

λ = (λ̄t-core; λ̄
0, λ1, . . . , λt′).

Let λ = λ̄λ̄ = (λ̄t-core; λ̄
0, λ1, . . . , λt′) and µ = µ̄µ̄ = (µ̄t-core; µ̄

0, µ1, . . . , µt′)
be two doubled distinct partitions. If λt-core = µt-core, λ̄

0 ⊃ µ̄0 and λi ⊃ µi for
1 ≤ i ≤ t′, we write λ ≥t µ and define

(4.2) FDD
µ/µ := 1 and FDD

λ/µ :=
∑

λ≥tλ
−≥tµ

|λ/λ−|=2t

FDD
λ−/µ (for λ 6= µ).
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In fact, FDD
λ/µ is the number of vectors (P0, P1, . . . , Pt′) such that

(1) P0 is a skew shifted Young tableau of shape λ̄0/µ̄0,
(2) Pi (1 ≤ i ≤ t′) is a skew Young tableau of shape λi/µi,

(3) the union of entries in P0, P1, . . . , Pt′ are 1, 2, . . . , |λ̄0/µ̄0|+
∑t′

i=1 |λ
i/µi|.

Hence,

(4.3) FDD
λ/µ =

(
|λ̄0/µ̄0|+

∑t′

i=1 |λ
i/µi|

|λ̄0/µ̄0|, |λ1/µ1|, . . . , |λt′/µt′ |

)
fλ̄0/µ̄0

t′∏

i=1

fλi/µi .

We set

(4.4) FDD
λ := FDD

λ/λt-core
=

(
|λ̄0|+

∑t′

i=1 |λ
i|

|λ̄0|, |λ1|, . . . , |λt′ |

)
fλ̄0

t′∏

i=1

fλi =
n!

H(λ̄0)
∏t′

i=1 H(λi)

and

GDD
λ :=

2n−ℓ(λ̄0)

tnH(λ̄0)
∏t′

i=1 H(λi)
=

2n−ℓ(λ̄0)FDD
λ

tnn!
,

where n = |λ̄0|+
∑t′

i=1 |λ
i|.

When t = 1, we have t′ = 0, thus FDD
λ = fλ̄0 and GDD

λ = 2n−ℓ(λ̄0)/H(λ̄0). Also,
when λ is a t-core doubled distinct partition, we have FDD

λ = GDD
λ = 1.

4.1. t-difference operators. Let g : DD → R be a function of doubled distinct
partitions and λ be a doubled distinct partition. The t-difference operator DDD

t

for doubled distinct partitions is defined by

(4.5) DDD
t g(λ) =

∑

λ+≥tλ
|λ+/λ|=2t

g(λ+)− g(λ).

The higher-order t-difference operators Dk
t are defined by induction:

(DDD
t )0g := g and (DDD

t )kg := DDD
t ((DDD

t )k−1g) (k ≥ 1).

Lemma 4.1. Let λ be a doubled distinct partition. Then,

DDD
t (GDD

λ ) = 0.

In other words,

GDD
λ =

∑

λ+≥tλ
|λ+/λ|=2t

GDD
λ+ .

Proof. Write λ = (λ̄t-core; λ̄
0, λ1, . . . , λt′). By Theorem 3.3 in [12] we obtain

∑

|(λ̄0)+/λ̄0|=1

GDD
(λ̄t-core ; (λ̄0)+,λ1,...,λt′ )

GDD
λ

=
∑

|(λ̄0)+/λ̄0|=1

21+ℓ(λ̄0)−ℓ((λ̄0)+)H(λ̄0)

tH((λ̄0)+)
=

1

t
.

For 1 ≤ i ≤ t′, we derive

∑

|(λi)+/λi|=1

GDD
(λ̄t-core ;λ̄0,λ1,...,λi−1,(λi)+,λi+1,...,λt′ )

GDD
λ

=
∑

|(λi)+/λi|=1

2H(λi)

tH((λi)+)
=

2

t
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by Lemma 2.2 in [11]. Summing the above equalities, we get

∑

λ+≥tλ
|λ+/λ|=2t

GDD
λ+

GDD
λ

=
1

t
+

t′∑

i=1

2

t
= 1. �

Lemma 4.2. Suppose that µ is a given doubled distinct partition and g : DD → R

is a function of doubled distinct partitions. For every n ∈ N, let

P (µ, g;n) :=
∑

λ∈DD, λ≥tµ
|λ/µ|=2nt

FDD
λ/µg(λ).

Then
P (µ, g;n+ 1)− P (µ, g;n) = P (µ,DDD

t g;n).

Proof. The proof is straightforward:

P (µ, g;n+ 1)− P (µ, g;n) =
∑

ν≥tµ
|ν/µ|=2(n+1)t

FDD
ν/µg(ν)−

∑

λ≥tµ
|λ/µ|=2nt

FDD
λ/µg(λ)

=
∑

ν≥tµ
|ν/µ|=2(n+1)t

∑

ν≥tν
−≥tµ

|ν/ν−|=2t

FDD
ν−/µg(ν)−

∑

λ≥tµ
|λ/µ|=2nt

FDD
λ/µg(λ)

=
∑

λ≥tµ
|λ/µ|=2nt

FDD
λ/µ

( ∑

λ+≥tλ
|λ+/λ|=2t

g(λ+)− g(λ)
)

= P (µ,DDD
t g;n). �

Example 4.2. Let g(λ) = GDD
λ . Then DDD

t g(λ) = 0 by Lemma 4.1, which means
that P (µ,DDD

t g;n) = 0. Consequently, P (µ,GDD
λ ;n+ 1) = P (µ,GDD

λ ;n) = · · · =
P (µ,GDD

λ ; 0) = GDD
µ , or

(4.6)
∑

λ∈DD, λ≥tµ
|λ/µ|=2nt

FDD
λ/µG

DD
λ = GDD

µ .

When µ is a t-core doubled distinct partition, the above identity becomes

∑

λ≥tµ
|λ/µ|=2nt

n!

H(λ̄0)
∏t′

i=1 H(λi)
×

2n−ℓ(λ̄0)

tnH(λ̄0)
∏t′

i=1 H(λi)
= GDD

µ ,

or ∑

λ∈DD, |λ/µ|=2nt
λ≥tµ

(2t)nn!

Ht(λ)
= 1,

which implies (1.2).

Theorem 4.3. Let g : DD → R be a function of doubled distinct partitions and µ
be a given doubled distinct partition. Then,

(4.7) P (µ, g;n) =
∑

λ∈DD, λ≥tµ
|λ/µ|=2nt

FDD
λ/µg(λ) =

n∑

k=0

(
n

k

)
(DDD

t )kg(µ)
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and

(4.8) (DDD
t )ng(µ) =

n∑

k=0

(−1)n+k

(
n

k

)
P (µ, g; k).

In particular, if there exists some positive integer r such that (DDD
t )rg(λ) = 0 for

every doubled distinct partition λ ≥t µ, then P (µ, g;n) is a polynomial in n with
degree at most r − 1.

Proof. Identity (4.7) is proved by induction. The case n = 0 is obvious. Assume
that (4.7) is true for some nonnegative integer n. By Lemma 4.2 we obtain

P (µ, g;n+ 1) = P (µ, g;n) + P (µ,DDD
t g;n)

=

n∑

k=0

(
n

k

)
(DDD

t )kg(µ) +

n∑

k=0

(
n

k

)
(DDD

t )k+1g(µ)

=

n+1∑

k=0

(
n+ 1

k

)
(DDD

t )kg(µ).

Identity (4.8) follows from the famous Möbius inversion formula [27]. �

4.2. µ-admissible functions of doubled distinct partitions. Let µ = µ̄µ̄ be
a t-core doubled distinct partition. A function g : DD → R of doubled distinct
partitions is called µ-admissible, if for each given 1 ≤ i ≤ t′ (resp. i = 0), g(λ+)−
g(λ) is a polynomial in c�i

(resp.
(c�0

2

)
) for every pair of partitions

λ = (µ̄; λ̄0, λ1, . . . , λt′)

and

λ+ = (µ̄; λ̄0, λ1, . . . , λi−1, λi ∪ {�i}, λ
i+1, . . . , λt′)

(resp. λ+ = (µ̄; λ̄0 ∪ {�0}, λ
1, . . . , λt′)),

whose coefficients are of form

∑
K(µ, i; τ0, τ1, . . . , τ t

′

)Φτ0

(λ̄0)

t′∏

j=1

Ψτ j

(λj),

where the summation is taken over the set of (t′ + 1)-tuple of usual partitions

(τ0, τ1, . . . , τ t
′

) and K is some function from the set P × N× Pt′+1 to the set R.

Lemma 4.4. Let µ be a t-core doubled distinct partition. Then, the two functions
of doubled distinct partitions

∑
h∈H(λ) h

2r and
∑

c∈C(λ) c
r are µ-admissible for any

nonnegative integer r.

To prove Lemma 4.4, we recall some results on the multisets of hook lengths and
contents, obtained in [4]. Suppose that a given t-core partition µ has 01-sequence
w(µ) = (aµ,j)j∈Z. For 0 ≤ i ≤ t− 1 we define [4]

bi := bi(µ) = min{j ∈ Z : j ≡ i(mod t), aµ,j = 1}.

Lemma 4.5 (Lemma 5.3 of [4]). Let λ be a partition and (λt-core;λ
0, λ1, . . . , λt−1)

be the image of the Littlewood decomposition of λ. Then,

C(λ) \ C(λt-core) =

t−1⋃

i=0

{tc+ bi(λt-core)− j : 0 ≤ j ≤ t− 1, c ∈ C(λi)}.
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Lemma 4.6 (Lemma 5.4 of [4]). Let 0 ≤ i ≤ t−1, λ and λ+ be two usual partitions
whose images of the Littlewood decomposition are (λt-core;λ

0, λ1, . . . , λt−1) and

(λt-core;λ
0, λ1, . . . , λi−1, λi ∪ {�i}, λ

i+1, . . . , λt−1)

respectively. Write bj = bj(λt-core) (0 ≤ j ≤ t−1). Assume that r is a given integer
and k is an integer satisfying 1 ≤ k ≤ t− 1. Let xj,s (0 ≤ s ≤ mj) be the contents
of inner corners of λj and yj,s (1 ≤ s ≤ mj) be the contents of outer corners of λj

for 0 ≤ j ≤ t− 1. We have
∑

�∈λ+

h�≡0(mod t)

h2r
�

−
∑

�∈λ
h�≡0(mod t)

h2r
�

=

t2r +
∑

0≤s≤mi

(t(c�i
− xi,s))

2r −
∑

1≤s≤mi

(t(c�i
− yi,s))

2r

and
∑

�∈λ+

h�≡k(mod t)

h2r
�

+
∑

�∈λ+

h�≡t−k(mod t)

h2r
�

−
∑

�∈λ
h�≡k(mod t)

h2r
�

−
∑

�∈λ
h�≡t−k(mod t)

h2r
�

=
∑

0≤s≤mi′

(tc�i
+ bi − txi′,s − bi′)

2r −
∑

1≤s≤mi′

(tc�i
+ bi − tyi′,s − bi′)

2r

+
∑

0≤s≤mi′′

(tc�i
+ bi − txi′′,s − bi′′)

2r −
∑

1≤s≤mi′′

(tc�i
+ bi − tyi′′,s − bi′′)

2r

where 0 ≤ i′, i′′ ≤ t−1 satisfy i′ ≡ i+k(mod t) and i′′ ≡ i−k(mod t). Furthermore,

∑

�∈λ+

h2r
�

−
∑

�∈λ

h2r
�

= t2r +

t−1∑

j=0

( ∑

0≤s≤mj

(tc�i
+ bi − txj,s − bj)

2r

−
∑

1≤s≤mj

(tc�i
+ bi − tyj,s − bj)

2r
)
.

For the doubled distinct partition λ whose image under Littlewood decompo-
sition is (λt-core;λ

0, λ1, . . . , λt−1) where λ0 = λ̄0λ̄0, let x0,s (0 ≤ s ≤ m0) be the
contents of inner corners of λ̄0 and y0,s (1 ≤ s ≤ m0) be the contents of outer
corners of λ̄0. Let xi,s (0 ≤ s ≤ mi) be the contents of inner corners of λi and
yi,s (1 ≤ s ≤ mi) be the contents of outer corners of λi for 1 ≤ i ≤ t − 1. Then
xi,s = −xt−i,mi−s and yi,s = −yt−i,mi+1−s since λi and λt−i are conjugate to each
other for 1 ≤ i ≤ t− 1.

Proof of Lemma 4.4. Let λ = (λ̄t-core; λ̄
0, λ1, . . . , λt′) be a doubled distinct parti-

tion and bj = bj(λ̄t-coreλ̄t-core) for 0 ≤ j ≤ t − 1. The following statements are
consequences of Lemma 4.5.

(C1) Let 1 ≤ i ≤ t′ and λ+ = (λ̄t-core; λ̄
0, λ1, . . . , λi−1, (λi)+, λi+1, . . . , λt′) be a

doubled distinct partition such that (λi)+ = λi ∪ {�i}. We have

C(λ+) \ C(λ) = {tc�i
+ bi − j : 0 ≤ j ≤ t− 1} ∪ {−tc�i

+ bt−i − j : 0 ≤ j ≤ t− 1}.

(C2) Let λ+ = (λ̄t-core; (λ̄
0)+, λ1, . . . , λt′) be a doubled distinct partition such

that (λ̄0)+ = λ̄0 ∪ {�0}. We have

C(λ+) \ C(λ) = {tc�0
+ b0− j : 0 ≤ j ≤ t− 1}∪{t(1− c�0

)+ b0− j : 0 ≤ j ≤ t− 1}.
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Hence,
∑

c∈C(λ) c
r is µ-admissible for any nonnegative integer r.

On the other hand, we obtain the following results by Lemma 4.6.
(H1) Let 1 ≤ i ≤ t′ and λ+ = (λ̄t-core; λ̄

0, λ1, . . . , λi−1, (λi)+, λi+1, . . . , λt′) be a
doubled distinct partition such that (λi)+ = λi ∪ {�i}. We have

∑

�∈λ+

h2r
�

−
∑

�∈λ

h2r
�

= t2r + (tc�i
+ bi − b0)

2r

+
t−1∑

j=1

( ∑

0≤s≤mj

(tc�i
+ bi − txj,s − bj)

2r −
∑

1≤s≤mj

(tc�i
+ bi − tyj,s − bj)

2r
)

+
∑

1≤s≤mj

(tc�i
+ bi − tx0,s − b0)

2r −
∑

1≤s≤mj

(tc�i
+ bi − ty0,s − b0)

2r

+
∑

1≤s≤mj

(tc�i
+ bi − t(1− x0,s)− b0)

2r −
∑

1≤s≤mj

(tc�i
+ bi − t(1 − y0,s)− b0)

2r

+ t2r + (−tc�i
+ bt−i − b0)

2r

+

t−1∑

j=1

( ∑

0≤s≤mj

(−tc�i
+ bt−i − txj,s − bj)

2r −
∑

1≤s≤mj

(−tc�i
+ bt−i − tyj,s − bj)

2r
)

+
∑

1≤s≤mj

(−tc�i
+ bt−i − tx0,s − b0)

2r −
∑

1≤s≤mj

(−tc�i
+ bt−i − ty0,s − b0)

2r

+
∑

1≤s≤mj

(−tc�i
+ bt−i − t(1− x0,s)− b0)

2r

−
∑

1≤s≤mj

(−tc�i
+ bt−i − t(1− y0,s)− b0)

2r + (−tc�i
+ bt−i − t(c�i

+ 1)− b0)
2r

+ (−tc�i
+ bt−i − t(c�i

− 1)− b0)
2r − 2(−tc�i

+ bt−i − tc�i
− b0)

2r.

(H2) Let λ+ = (λ̄t-core; (λ̄
0)+, λ1, . . . , λt′) be a doubled distinct partition such

that (λ̄0)+ = λ̄0 ∪ {�0}. We have

∑

�∈λ+

h2r
�

−
∑

�∈λ

h2r
�

= t2r + (tc�0
)2r

+

t−1∑

j=1

( ∑

0≤s≤mj

(tc�0
+ b0 − txj,s − bj)

2r −
∑

1≤s≤mj

(tc�0
+ b0 − tyj,s − bj)

2r
)

+
∑

1≤s≤mj

(tc�0
− tx0,s)

2r −
∑

1≤s≤mj

(tc�0
− ty0,s)

2r

+
∑

1≤s≤mj

(tc�0
− t(1− x0,s))

2r −
∑

1≤s≤mj

(tc�0
− t(1− y0,s))

2r

+ t2r + (t− tc�0
)2r
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+

t−1∑

j=1

( ∑

0≤s≤mj

(t− tc�0
+ b0 − txj,s − bj)

2r −
∑

1≤s≤mj

(t− tc�0
+ b0 − tyj,s − bj)

2r
)

+
∑

1≤s≤mj

(t− tc�0
− tx0,s)

2r −
∑

1≤s≤mj

(t− tc�0
− ty0,s)

2r

+
∑

1≤s≤mj

(t− tc�0
− t(1 − x0,s))

2r −
∑

1≤s≤mj

(t− tc�0
− t(1− y0,s))

2r

+ (t− tc�0
− t(c�0

+ 1))2r + (t− tc�0
− t(c�0

− 1))2r

− 2(t− tc�0
− tc�0

)2r.

Hence,
∑

h∈H(λ) h
2r is µ-admissible for any nonnegative integer r. �

4.3. Main results for doubled distinct partitions. To prove the doubled dis-
tinct case of Theorem 1.4, we establish the following more general result.

Theorem 4.7. Let (ν0, ν1, . . . , νt
′

) be a (t′ + 1)-tuple of usual partitions, and α
be a t-core doubled distinct partition. Suppose that g1, g2, . . . , gv are α-admissible
functions of doubled distinct partitions. Then, there exists some r ∈ N such that

(DDD
t )r

(
GDD

λ

v∏

u=1

gu(λ)Φ
ν0

(λ̄0)

t′∏

i=1

Ψνi

(λi)
)
= 0

for every doubled distinct partition λ with λt-core = α. Furthermore, let µ be a given
doubled distinct partition. By Theorem 4.3,

(4.9)
∑

λ∈DD, λ≥tµ
|λ/µ|=2nt

FDD
λ/µG

DD
λ

v∏

u=1

gu(λ)

is a polynomial in n. Moreover, if

gu(λ) =
∑

�∈λ
h�≡±ju(mod t)

h2ku

�
or

∑

�∈λ
c�≡ju(mod t)

cku

�

for each 1 ≤ u ≤ v where ju, ku ∈ N, then (4.9) is also a polynomial of t.

Proof. We will prove this claim by induction. Let

A =

v∏

u=1

gu(λ), B =

t′∏

i=1

Ψνi

(λi), C = Φν0

(λ̄0),

∆A =
v∏

u=1

gu(ρ)−
v∏

u=1

gu(λ) =
∑

(∗)

∏

s∈U

gs(λ)
∏

s′∈V

(
gs′(ρ)− gs′(λ)

)
,

∆B =

t′∏

i=1

Ψνi

(ρi)−
t′∏

i=1

Ψνi

(λi)

=
∑

(∗∗)

∏

s∈U

Ψνs

(λi)
∏

s′∈V

(
Ψνs′

(ρi)−Ψνs′

(λi)
)
,

∆C = Φν0

(ρ̄0)− Φν0

(λ̄0),
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where the sum (∗) (resp. (∗∗)) ranges over all pairs (U, V ) of positive integer sets
such that U ∪V = {1, 2, . . . , v} (resp. U ∪V = {1, 2, . . . , t′}), U ∩V = ∅ and V 6= ∅.
We have

DDD
t

(
GDD

λ

v∏

u=1

gu(λ)Φ
ν0

(λ̄0)

t′∏

i=1

Ψνi

(λi)
)

= GDD
λ

∑

ρ≥tλ
|ρ/λ|=2t

GDD
ρ

GDD
λ

( v∏

u=1

gu(ρ)Φ
ν0

(ρ̄0)
t′∏

i=1

Ψνi

(ρi)

−
v∏

u=1

gu(λ)Φ
ν0

(λ̄0)

t′∏

i=1

Ψνi

(λi)
)

= GDD
λ

∑

ρ≥tλ
|ρ/λ|=2t

GDD
ρ

GDD
λ

(
∆A · B · C +A ·∆B · C +A ·B ·∆C

+A ·∆B ·∆C +∆A · B ·∆C +∆A ·∆B · C +∆A ·∆B ·∆C
)
.(4.10)

For the first term in the above summation, we obtain

GDD
λ

∑

ρ≥tλ
|ρ/λ|=2t

GDD
ρ

GDD
λ

(
∆A ·B · C

)

=
1

t
GDD

λ Φν0

(λ̄0)

t′∏

i=1

Ψνi

(λi)
∑

0≤i≤m0

∏
1≤j≤m0

((
x0,i

2

)
−
(
y0,j

2

))

∏
0≤j≤m0

j 6=i

((
x0,i

2

)
−
(
x0,j

2

))

×
∑

(∗)

∏

s∈U

gs(λ)
∏

s′∈V

(
gs′((µ̄; (λ̄

0)i+, λ1, . . . , λt′))− gs′(λ)
)

+
2

t
GDD

λ Φν0

(λ̄0)
t′∏

i=1

Ψνi

(λi)
t′∑

k=1

∑

0≤i≤mk

∏
1≤j≤mk

(xk,i − yk,j)

∏
0≤j≤mk

j 6=i

(xk,i − xk,j)

×
∑

(∗)

∏

s∈U

gs(λ)
∏

s′∈V

(
gs′((µ̄; λ̄

0, λ1, . . . , (λk)i+, . . . , λt′ ))− gs′(λ)
)

where C((λ̄0)i+) \ C(λ̄0) = x0,i and C((λk)i+) \ C(λk) = xk,i. Since g1, g2, . . . , gv are
α-admissible functions and thanks to Lemma 2.4,

GDD
λ

∑

ρ≥tλ
|ρ/λ|=2t

GDD
ρ

GDD
λ

(
∆A · B · C

)

could be written as a linear combination of some

GDD
λ

v∏

u=1

g′u(λ)Φ
ν0

(λ̄0)
t′∏

i=1

Ψνi

(λi)
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for some α-admissible functions g′u, where either v < v, or v = v and simultaneously

2|ν0|+
t′∑

i=1

|νi| ≤ 2|ν0|+
t′∑

i=1

|νi| − 2.

On the other hand, we have similar results for other six terms by Lemmas 3.1, 2.4
and Theorem 2.2. Thus, the polynomiality of (4.9) in n is proved by induction on

(v, 2|ν0| +
∑t′

i=1 |ν
i|). Also, notice that bi ≡ i (mod t), then by (C1), (C2), (H1),

(H2) in the proof of Lemma 4.4 we have, for each j, k ∈ N,
∑

�∈λ+

h�≡±j(mod t)

h2k
�

−
∑

�∈λ
h�≡±j(mod t)

h2k
�

and
∑

�∈λ+

c�≡j(mod t)

ck
�
−

∑

�∈λ
c�≡j(mod t)

ck
�

can be written as some polynomials of t with degrees at most 2k + 1 and k + 1
respectively, whose constant terms are 0, and other coefficients are some admissible
functions of λ (independent of t). Moreover, if

gu(λ) =
∑

�∈λ
h�≡±ju(mod t)

h2ku

�
or

∑

�∈λ
c�≡ju(mod t)

cku

�

for each 1 ≤ u ≤ v where ju, ku ∈ N, by previous analysis on each term of (4.10)
and induction,

(DDD
t )r

(
GDD

λ

v∏

u=1

gu(λ)
)

is a polynomial of t, when λ is fixed. Therefore, again by Theorem 4.3, we know
(4.9) is also a polynomial in t. �

As an application of Theorem 4.7, we derive the doubled distinct partition case
of Theorem 1.4 from Lemma 4.4 by letting µ = ∅. Actually, by a similar but more
precise argument as in the proof of Lemma 4.4, we can show that

∑

�∈λ
h�≡±j(mod t)

h2r
�

and
∑

�∈λ
c�≡j(mod t)

cr
�

are µ-admissible for any t-core doubled distinct partition µ, any nonnegative inte-
ger r, and 0 ≤ j ≤ t − 1. By the proof of Theorem 4.7 we derive the following
result.

Corollary 4.8. Let u′, v′, ju, j
′
v, ku, k

′
v be nonnegative integers and α be a given

t-core doubled distinct partition. Then, there exists some r ∈ N such that

(DDD
t )r

(
GDD

λ

(
u′∏

u=1

∑

�∈λ
h�≡±ju(mod t)

h2ku

�

)(
v′∏

v=1

∑

�∈λ
c�≡j′v(mod t)

c
k′

v

�

))
= 0

for every doubled distinct partition λ with λt-core = α. Moreover, let µ be a given
doubled distinct partition. Then

∑

λ∈DD, λ≥tµ
|λ/µ|=2nt

FDD
λ/µG

DD
λ

(
u′∏

u=1

∑

�∈λ
h�≡±ju(mod t)

h2ku

�

)(
v′∏

v=1

∑

�∈λ
c�≡j′v(mod t)

c
k′

v

�

)
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is a polynomial in n of degree at most
∑u′

u=1(ku+1)+
∑v′

v=1
k′

v+2
2 , and a polynomial

in t of degree at most
∑u′

u=1(2ku + 1) +
∑v′

v=1(k
′
v + 1).

5. Polynomiality for self-conjugate partitions

In this section we always set that t = 2t′ is an even positive integer. The set of
all t-core self-conjugate partitions is denoted by SCt-core. Let λ be a self-conjugate
partition. By [6], the Littlewood decomposition maps λ to

(λt-core;λ
0, λ1, . . . , λt−1) ∈ SCt-core × P2t′

where λi is the conjugate partition of λt−1−i for 0 ≤ i ≤ t′ − 1. For convenience
and similarly to the case of doubled distinct partitions, we always write

λ = (λt-core;λ
0, . . . , λt′−1).

Let λ = (λt-core;λ
0, . . . , λt′−1) and µ = (µt-core;µ

0, . . . , µt′−1) be two self-conjugate
partitions. If λt-core = µt-core and λi ⊃ µi for 0 ≤ i ≤ t′ − 1, we write λ ≥t µ and
define

(5.1) FSC
µ/µ := 1 and FSC

λ/µ :=
∑

λ≥tλ
−≥tµ

|λ/λ−|=2t

FSC
λ−/µ (for λ 6= µ).

Then FSC
λ/µ is the number of vectors (P0, P1, . . . , Pt′−1) such that

(1) Pi (0 ≤ i ≤ t′ − 1) is a skew Young tableau of shape λi/µi,

(2) the union of entries in P0, P1, . . . , Pt′ are {1, 2, . . . , n =
∑t′−1

i=0 |λi/µi|}.
Hence,

(5.2) FSC
λ/µ =

( ∑t′−1
i=0 |λi/µi|

|λ0/µ0|, . . . , |λt′/µt′ |

) t′−1∏

i=0

fλi/µi .

We set

FSC
λ := FSC

λ/λt-core
=

( ∑t′−1
i=0 |λi|

|λ0|, . . . , |λt′−1|

) t′−1∏

i=0

fλi =
n!

∏t′−1
i=0 H(λi)

and

GSC
λ :=

2n

tn
∏t′−1

i=0 H(λi)
=

2nFSC
λ

tnn!
.

Let g : SC → R be a function of self-conjugate partitions and λ be a self-
conjugate partition. The t-difference operator DSC

t for self-conjugate partitions is
defined by

(5.3) DSC
t g(λ) =

∑

λ+≥tλ
|λ+/λ|=2t

g(λ+)− g(λ).

The higher-order t-difference operators Dk
t are defined by induction:

(DSC
t )0g := g and (DSC

t )kg := DSC
t ((DSC

t )k−1g) (k ≥ 1).
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Lemma 5.1. Suppose that λ is a self-conjugate partition. Then DSC
t (GSC

λ ) = 0.
In other words,

(5.4) GSC
λ =

∑

λ+≥tλ
|λ+/λ|=2t

GSC
λ+ .

Proof. Write λ = (λt-core;λ
0, . . . , λt′−1). For 0 ≤ i ≤ t′ − 1, we obtain

∑

|(λi)+/λi|=1

GSC
(λt-core ;λ0,...,λi−1,(λi)+,λi+1,...,λt′−1)

GSC
λ

=
∑

|(λi)+/λi|=1

2H(λi)

tH((λi)+)
=

2

t

by Lemma 2.2 in [11]. Summing the above equalities we prove (5.4). �

By analogy with the results on doubled distinct partitions, we have the following
theorems for self-conjugate partitions. Their proofs are omitted.

Lemma 5.2. Suppose that µ is a given self-conjugate partition and g : SC → R is
a function of self-conjugate partitions. For every nonnegative integer n, let

P (µ, g;n) :=
∑

λ∈SC, λ≥tµ
|λ/µ|=2nt

FSC
λ/µg(λ).

Then

P (µ, g;n+ 1)− P (µ, g;n) = P (µ,DSC
t g;n).

Example 5.1. Let g(λ) = GSC
λ . Then DSC

t g(λ) = 0 by Lemma 5.1, which means
that

(5.5)
∑

λ∈SC, λ≥tµ
|λ/µ|=2nt

FSC
λ/µG

SC
λ = GSC

µ .

When µ = ∅, the above identity becomes

(5.6)
∑

λ∈SC, |λ|=2nt
λt-core=∅

(2t)nn!∏
h∈Ht(λ)

h
= 1.

Theorem 5.3. Let g : SC → R be a function of self-conjugate partitions and µ be
a given self-conjugate partition. Then,

(5.7) P (µ, g;n) =
∑

λ∈SC, λ≥tµ
|λ/µ|=2nt

FSC
λ/µg(λ) =

n∑

k=0

(
n

k

)
(DSC

t )kg(µ)

and

(5.8) (DSC
t )ng(µ) =

n∑

k=0

(−1)n+k

(
n

k

)
P (µ, g; k).

In particular, if there exists some positive integer r such that (DSC
t )rg(λ) = 0 for

every self-conjugate partition λ ≥t µ, then P (µ, g;n) is a polynomial in n of degree
at most r − 1.
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Theorem 5.4. Let t = 2t′ be a given integer, α be a given t-core self-conjugate
partition, and u′, v′, ju, j

′
v, ku, k

′
v be nonnegative integers. Then there exists some

r ∈ N such that

(DSC
t )r

(
Gλ

(
u′∏

u=1

∑

�∈λ
h�≡±ju(mod t)

h2ku

�

)(
v′∏

v=1

∑

�∈λ
c�≡j′v(mod t)

c
k′

v

�

))
= 0

for every self-conjugate partition λ with λt-core = α. Furthermore, let µ be a given
self-conjugate partition. Then by Theorem 5.3, we have

∑

λ∈SC, λ≥tµ
|λ/µ|=2nt

FSC
λ/µG

SC
λ

(
u′∏

u=1

∑

�∈λ
h�≡±ju(mod t)

h2ku

�

)(
v′∏

v=1

∑

�∈λ
c�≡j′v(mod t)

c
k′

v

�

)

is a polynomial in n and t. The degrees of this polynomial for n and t are at most∑u′

u=1(ku + 1) +
∑v′

v=1
k′

v+2
2 and

∑u′

u=1(2ku + 1) +
∑v′

v=1(k
′
v + 1), respectively.

By letting µ = ∅ in Theorem 5.4 we derive the self-conjugate partition case of
Theorem 1.4.

6. Square cases for doubled distinct and self-conjugate partitions

As described in Corollary 1.5, the polynomials mentioned in Corollary 4.8 and
Theorem 5.4 have explicit expressions for square cases.

Proof of Corollary 1.5. (1) When λ is a doubled distinct partition with |λ| = 2nt
(t odd) and λt-core = ∅. By the proof of Lemma 4.4 we obtain

1

GDD
λ

DDD
t

(
GDD

λ (
∑

�∈λ

c2
�
)
)
=

1

t

∑

0≤i≤m0

∏
1≤j≤m0

((
x0,i

2

)
−
(
y0,j

2

))

∏
0≤j≤m0

j 6=i

((
x0,i

2

)
−
(
x0,j

2

))

×
t−1∑

j=0

(
(tx0,i − j)2 + (t− tx0,i − j)2

)

+
2

t

∑

1≤k≤t′

∑

0≤i≤mk

∏
1≤j≤mk

(xk,i − yk,j)

∏
0≤j≤mk

j 6=i

(xk,i − xk,j)

×
t−1∑

j=0

(
(txk,i + k − j)2 + (−txk,i + t− k − j)2

)

=
1

t

∑

0≤i≤m0

∏
1≤j≤m0

((
x0,i

2

)
−
(
y0,j

2

))

∏
0≤j≤m0

j 6=i

((
x0,i

2

)
−
(
x0,j

2

))

×
(
4t3
(
x0,i

2

)
+ t3 − t2(t− 1) +

(t− 1)t(2t− 1)

3

)



Polynomiality of Plancherel averages of hook-content summations 27

+
2

t

∑

1≤k≤t′

∑

0≤i≤mk

∏
1≤j≤mk

(xk,i − yk,j)

∏
0≤j≤mk

j 6=i

(xk,i − xk,j)

×
(
2t3x2

k,i +

t−1∑

j=0

(k − j)2 +

t−1∑

j=0

(t− k − j)2
)

= 2t|λ|+
t(t2 + 2)

3
,

therefore
1

GDD
λ

(DDD
t )2

(
GDD

λ (
∑

�∈λ

c2
�
)
)
= 4t2,

and
1

GDD
λ

(DDD
t )3

(
GDD

λ (
∑

�∈λ

c2
�
)
)
= 0.

(2) When λ is a self-conjugate partition with |λ| = 2nt (t even) and λt-core = ∅.
Similarly as in (1) we have

1

GSC
λ

DSC
t

(
GSC

λ (
∑

�∈λ

c2
�
)
)
= 2t|λ|+

t(t2 − 1)

3
,

1

GSC
λ

(DSC
t )2

(
GSC

λ (
∑

�∈λ

c2
�
)
)
= 4t2,

and
1

GSC
λ

(DSC
t )3

(
GSC

λ (
∑

�∈λ

c2
�
)
)
= 0.

Then identities (1.8) and (1.9) follows from Theorems 4.3 and 5.3. Notice that∑
�∈λ h

2
�
−
∑

�∈λ c
2
�
= |λ|2 (see [17]). Identities (1.6) and (1.7) are consequences

of identities (1.8) and (1.9). �
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