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The purpose of this document is to help individuals use the "Essential Motor Cortex Signal Processing MATLAB Toolbox". The toolbox implements various methods for three major aspects of investigating human motor cortex from Neuroscience view point: (1) ERP estimation and quantification, (2) Cortical Functional Connectivity analysis and (3) EMG quantification. The toolbox -which is distributed under the terms of the GNU GENERAL PUBLIC LICENSE as a set of MATLAB R routines -can be downloaded directly at the address: http://oset.ir/category.php?dir=Tools .

or from the public repository on GitHub, at address below:

https://github.com/EsiSeraj/ERP_Connectivity_EMG_Analysis . The purpose of this toolbox is threefold: 1. Extract the event-related-potential (ERP) from preprocessed cerebral signals (i.e. EEG, MEG, etc.), identify and then quantify the event-related synchronization/desynchronization (ERS/ERD) events. Both time-course dynamics and time-frequency (TF) analyzes are included. 2. Measure, quantify and demonstrate the cortical functional connectivity (CFC) across scalp electrodes. These set of functions can also be applied to various types of cerebral signals (i.e. electric and magnetic). 3. Quantify electromyogram (EMG) recorded from active muscles during performing motor tasks.

Introduction

This document is meant to help individuals use the "Essential Motor Cortex Signal Processing MATLAB Toolbox". Using the most popular reference articles in literature, the toolbox implements various methods for three major aspects of neuro-physiological investigation of human motor cortex:

(1) ERP estimation and quantification (e.g. based on [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF][START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Luck | An introduction to the event-related potential technique[END_REF][START_REF] Makeig | Mining event-related brain dynamics[END_REF]), (2) Cortical Functional Connectivity analysis (e.g. based on [5,[START_REF] Carter | Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing[END_REF][START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Varela | The brainweb: phase synchronization and large-scale integration[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF]) and (3) EMG quantification (e.g. based on [START_REF] Ricamato | Quantification of the dynamic properties of emg patterns during gait[END_REF][START_REF] Walter | Temporal quantification of electromyography with reference to motor control research[END_REF]).

The purpose of this toolbox is threefold:

1. Extract the event-related potential (ERP) from preprocessed cerebral signals (i.e. EEG, MEG, etc.), identify and then quantify the event-related synchronization/desynchronization (ERS/ ERD) events. Both time-course dynamics and time-frequency (TF) analysis are included.

2. Measure, quantify and demonstrate the cortical functional connectivity (CFC) across scalp electrodes. These set of functions can also be applied to various types of cerebral signals (i.e. electric and magnetic).

3. Quantify electromyogram (EMG) recorded from active muscles during performing motor tasks.

A primary goal of this toolset is to ease understanding the routines and help individuals alter our codes according to their study and/or implement their own techniques. For this purpose, herein, we first present a detailed tutorial (e.g. Section 2.2.) on signal preconditioning and interpretableimplementation of introduced methods, from a practical view-point.

License -No Warranty

This program is free software; you can redistribute it and/or modify it under the terms of the GNU GENERAL PUBLIC LICENSE as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GENERAL PUBLIC LICENSE for more details. You should have received a copy of the GNU GENERAL PUBLIC LICENSE along with this program; if not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

The Open-Source Electrophysiological Toolbox (OSET)

Open Source Electrophysiological Toolbox (OSET) is a collection of electrophysiological data and open source codes for biosignal generation, modeling, processing, and filtering. OSET, version 3.1, 2014 Released under the GNU GENERAL PUBLIC LICENSE [START_REF] Sameni | The open-source electrophysiological toolbox (oset), version 3.1[END_REF]. Copyright c 2012.

As a progressive general-purpose open-source toolset, OSET is one of the main sources to access the functions and codes of current motor cortex signal processing toolbox and also its documentation and dependencies.

Citation

Within the limits of the GNU GENERAL PUBLIC LICENSE, you can use the toolbox as you please; however, if you use the toolbox in a work of your own that you wish to publish, you need to make sure to cite this user manual and the original studies properly, as shown below. This way you will contribute to helping other scholars find these items.

• Esmaeil Seraj and Karthiga Mahalingam "Essential Motor Cortex Signal Processing: an ERP and functional connectivity MATLAB toolbox -User Guide Version 1.0," arXiv Preprint, June 2019 [Online].

Download and Utilization

The latest version of the toolbox can be downloaded directly from OSET at the address:

http://oset.ir/category.php?dir=Tools

or from the public repository on GitHub, at:

https://github.com/EsiSeraj/ERP_Connectivity_EMG_Analysis

The functions and m-files can be downloaded separately as you need or all together in a compressed file named ERP Connectivity EMG Analysis Toolbox. Once you have downloaded and uncompressed the toolbox, 35 files represented in following Tables shall be appeared in your chosen directory. Table [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF] represents all m-files (i.e. core functions, internal computational functions and demo test files) included in this toolset with their short descriptions and references. Additionally, a copy of both GNU general public license, this user manual and ten recorded sample data are also included (see Section 2.2.1 for details). Moreover, you might add the path of the directory in which you stored the toolbox to your MATLAB in order to easily use and apply the functions for your own dataset.

Getting Help

If you have added the toolbox directory to the MATLAB R path you can simply type: <doc function name> or <help function name> in command window to get online help for the function you are using. Furthermore, you can also contact any of the authors1 directly to ask any related questions or discuss possible difficulties or errors you might encounter. Please feel free to contact in either case.

2 User Guide

Overview

This document is meant to help individuals use the "Essential Motor Cortex Signal Processing MATLAB Toolbox" which implements various methods for three major aspects of investigating human motor cortex from Neuroscience view point: (1) ERP estimation and quantification (e.g. based on [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF][START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Luck | An introduction to the event-related potential technique[END_REF][START_REF] Makeig | Mining event-related brain dynamics[END_REF]), (2) Cortical Functional Connectivity analysis (e.g. based on [5,[START_REF] Carter | Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing[END_REF][START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Varela | The brainweb: phase synchronization and large-scale integration[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF]) and (3) EMG quantification (e.g. based on [START_REF] Ricamato | Quantification of the dynamic properties of emg patterns during gait[END_REF][START_REF] Walter | Temporal quantification of electromyography with reference to motor control research[END_REF]). Measurements and methodologies are all derived based on the procedures suggested by the most popular reference articles in that category, as aforementioned.

The current version of toolbox covers six well-known and widely used approaches within Neuroscience community for analyzing motor cortex potentials and EMG signals, as follows:

• Preconditioning: Preprocessing the signals, including baseline drift removal, artifact rejection, movement onset detection (i.e. for non-cued movements), trigger synchronization (i.e. essential step for ERP extraction through non-synchronized trials of EEG data) and etc. Converting "*.bdf" to "*.mat" Gleb Tcheslavski [START_REF] Tcheslavski | eeg bdf reader matlab function[END_REF] • Time-course ERP Dynamics: Estimation and quantification of ERP (i.e. ERS and ERD events).

• Time-frequency ERP Analysis: Estimation and representation of time-frequency (TF) maps through various widely-accepted TF analysis methods such as Short-time Fourier Transform (STFT), Continuous Wavelet Transform (CWT), Narrow-band Channelization (NBCH) and etc.

• Time-course Cortical Functional Connectivity: Estimation and quantification of local/large -scale functional connectivity between arbitrary pairs of electrodes through Phase Locking Value (PLV) [START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF] and Magnitude Squared Coherence (MSC) [START_REF] Carter | Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing[END_REF].

• Pair-wise Cortical Functional Connectivity: Estimation and quantification of local/large -scale functional connectivity maps across scalp electrodes through PLV and MSC.

• EMG Quantification: Estimation and quantification of electromyogram (EMG) records of active muscles during performing motor tasks.

Fundamentals

Data: Setup, Equipments and Format

ActiveTwo is a very well-known commonly used high-resolution biosignal acquisition system that comes with advantageous capabilities such as active electrodes [START_REF] Biosemi | Biosemi activetwo[END_REF]. Active electrodes are those that does not require extensive skin (scalp) preparation due to the presence of pre-amplifiers in them.

The pin electrodes must be connected to the scalp on one end and to the acquisition system on the other. The acquisition system is then connected to the PC to which it relays electrode data serially.

Electrode gel has to be used on the scalp with electrodes to improve conductivity and to reduce noise. Care should be taken to reduce noise as much as possible by properly grounding all electrical appliances connected with the electrode system, making sure there are minimum head movements while recording etc.

Before starting data collection, all electrodes need to be checked for their proper functionality. This can be performed through the single bucket test [START_REF] Smith | Activetwo system operating guidelines[END_REF]. Electrodes can be placed according to the 10-20 system [START_REF] Technologies | 10/20 system positioning manual[END_REF], which is a very common approach for most studies. EEG cap has to be adjusted based on head circumference, nasion-inion, and ear-to-ear distance. Reference electrode areas are normally chosen to be the average between two ears [START_REF] Biosemi | Biosemi activetwo[END_REF] and thus CMS/DRL flat type electrodes should be placed behind earlobes. Finally, EMG electrodes should be placed directly on the active muscle the activity of which is to be recorded.

The EEG signals recorded by ActiveTwo are stored in *.bdf format files. We provided a very useful MATLAB m-file by Gleb Tcheslavski [START_REF] Tcheslavski | eeg bdf reader matlab function[END_REF] that converts *.bdf format files to *.mat MATLAB data files.

Preconditioning

In ERP and functional connectivity analysis problems, preconditioning mostly refers to preprocessing the signals. This includes baseline drift removal, artifact rejection, movement onset detection from EMG signals, trigger synchronization (i.e. as described above) and etc.

Quick note on artifact rejection: The concept of noise in this problem could be regarded to two different parts of recorded signals. First group are the common sources of noise observed in EEG recordings such as muscle activity, eye movement, electrocardiographic activity, instrumentation and equipment related artifacts and interference, slow drifts and amplifier saturation and etc. [START_REF] Handy | Event-related potentials: A methods handbook[END_REF]. Moreover, background EEG activity is considered as the other source of noise [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF]. In this case, ERP is considered as signal and the background EEG activity as noise [START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF].

Artifact rejection in later case is normally easy, since as widely accepted, background ongoing EEG is considered as uncorrelated to signal (ERP) and thus, can be rejected by an ensemble averaging over trials [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF][START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Luck | An introduction to the event-related potential technique[END_REF]. The best way of dealing with the first group of noises however, is to not have any in first place. The easiest sources of noise to deal with are AC power lines, lighting and electronic equipment such as computers, displays and TVs, wireless routers, notebooks and also mobile phones.

The basic step here is to simply remove any unnecessary sources of electro-magnetic (EM) noise from the recording room and, if possible, replace equipment using alternate current with direct current [START_REF] Repovs | Dealing with noise in eeg recording and data analysis[END_REF][START_REF] Light | Electroencephalography (eeg) and event-related potentials (erps) with human participants[END_REF]. Further, a significant number of noise sources can be rejected through different steps of low-pass, high-pass and sometimes notch filters.

Drift cancellation: Despite having various sources of additional noise on EEG, one of the most important ones to deal with, in this application, is the baseline drift noise (a.k.a base line wander).

The drift noise normally happens due to sweating, drifts of cap and/or electrodes and similar reasons, which could normally lead to amplifier saturation [START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Repovs | Dealing with noise in eeg recording and data analysis[END_REF] and thus incorrect and unreliable measurements. The effect of drifts on ERP estimation application is shown in Fig. 1 which is directly employed from [START_REF] Handy | Event-related potentials: A methods handbook[END_REF]. As shown, although the effect of drift removal from 182 trials is relatively small, still is considerable for analyzing the relative decreases and increases in ERP power (ERD/ERS) quantification. As suggested in [START_REF] Handy | Event-related potentials: A methods handbook[END_REF], a number of issues are to be taken into consideration, such as detecting negative drifts as well as positive ones, using similar specs for the drift rejection method across trials and also choosing a proper-length (long enough) temporal window for drift calculation (preferably between 1 or two seconds) [START_REF] Handy | Event-related potentials: A methods handbook[END_REF]. Nevertheless, the filtering specs in EEG artifact removal are highly dependent on the data and recording conditions and thus, should be chosen empirically [START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Nitschke | Digital filtering in eeg/erp analysis: Some technical and empirical comparisons[END_REF]. The strongest recommendation throughout the literature is to evaluate the filter before becoming committed to [START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Nitschke | Digital filtering in eeg/erp analysis: Some technical and empirical comparisons[END_REF]. An important consideration to be taken into account here is that the filtering procedure itself, depending on the characteristics and nature of the utilized filter and filtering method, can also significantly affect the data in the non-filtered frequency ranges and thus can affect the onset detection and/or amplitude of estimated ERP. Therefore, to prevent these problems, it is highly recommended that filtering should be limited to what is necessary and unavoidable [START_REF] Repovs | Dealing with noise in eeg recording and data analysis[END_REF].

In this toolbox, the function drift reject.m is provided for this purpose which uses two stages of median or moving average temporal filtering to extract the base-line wander and reject it. To operate this function you can simply call function below with proper input parameters:

sig = drift reject(raw sig, L1, L2, approach)
where the inputs and outputs are described later in Section 3. Fig. 2 is an elaboration of how how this function works. 

Time-course ERP Dynamics

For this part, the conventional approach, as proposed in [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF], is implemented. Accordingly, the wellknown five-step method presented below is employed for ERP extraction from EEG signals:

•

Step #1 -Band-pass frequency filtering the EEG data in each trial

•

Step #2 -Squaring the samples of filtered trials to find the power

•
Step #3 -Ensemble averaging over synchronized trials according to trigger time

•
Step #4 -Calculating the trend of output sequence in order to obtain ERP signal

•
Step #5 -Quantifying the estimated ERP signal according to a reference period

The estimated signal in Step #4 is the desired ERP signal. Each step is elaborated below.

Step #1: For this step, zero-phase bandpass frequency filtering using Cascaded Integrator-Comb (CIC) filter is implemented [START_REF] Lyons | Understanding cascaded integrator-comb filters[END_REF]. The filter performs forward-backward filtering successively. It has absolutely zero-phase for even filter order values and a phase-lag equal to a single stage CIC filter for odd filter order values. Therefore, for this application we recommend an even value to be chosen as the filter order to prevent any subsequent phase distortion.

An important issue here is to select the frequency band of interest for showing the time course of ERP [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF]. This concern is very crucial due to the fact that different brain states can modulate different frequency bands of EEG rhythms. Additionally, even for the same action, one might observe intratrial variability on dominant frequencies [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF]. Accordingly, estimating the time-course of ERP signal related to the task for further analysis requires additional cautions to be taken into account.

Due to the subjective process of choosing a proper frequency band for ERP analysis, herein, the functions are designed to accept frequency ranges in a way that users can customize their frequency range of interest and experiment various bands of frequency easily. To read further in these regards, refer to [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF][START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Luck | An introduction to the event-related potential technique[END_REF].

Steps #2, #3 and #4: Steps 2 through 4 are closely related (e.g. even could be considered as one step) where after squaring the samples of the filtered signal, two successive averaging steps are performed across trials and then time [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF]. Ensemble averaging is the most important one among these steps since EEG signals are required to be averaged over synchronized data trials according to their respective trigger time. Based on this, first the onset of movement needs to be estimated (i.e. can be performed either through hardware settings (e.g. cue based recordings) or using our provided emg onset.m function) as the trigger time. Then, the EEG trials have to be sorted and aligned with respect to the trigger time and eventually averaged across data trials. Afterwards, a simple temporal averaging is performed on obtained signal to extract the ERP sequence.

Interested individuals can refer to either the Reference Manual (i.e. Section3) or [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF][START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Luck | An introduction to the event-related potential technique[END_REF] for details of each averaging step and implemented signal trend estimation function.

Steps #5: For this step, normally a 1-sec long reference period before the movement onset is chosen. Afterwards, the relative decrease intervals in power after movement onset are called ERD events and vice versa, the relative increase intervals in power are named ERS [START_REF] Pfurtscheller | Graphical display and statistical evaluation of event-related desynchronization (erd)[END_REF][START_REF] Graimann | Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain[END_REF].

According to discussions presented in [START_REF] Pfurtscheller | Graphical display and statistical evaluation of event-related desynchronization (erd)[END_REF][START_REF] Graimann | Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain[END_REF][START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF], reference period is chosen some seconds before the task onset, completely based on application of interest and data and thus is empirically set. Reference value is calculated as the average of power samples within reference period. An axis according to the reference value is set to 100% and the corresponding crosses of ERP curve are named respectively, time step "0", start of ERD1/ERS1, end of ERD1/ERS1 and so on. Afterwards, standard deviation of the reference period is calculated and the corresponding confidence intervals are defined (mean plus/minus 2 or 3 times STD). Finally, the area enclosed by ERP curve and "mean -confidence interval" is calculated and normalized by the length of that segment as ERD area and vice versa; the area enclosed by ERP curve and "mean + confidence interval" is calculated and normalized by the length as ERS area.

In where the inputs and outputs are described later in Section 3. 

Time-frequency ERP Analysis

Time-frequency representations (TFRs) can monitor ERPs in a wide range of frequency components alongside with their temporal variations. Using TFRs, not only the risk of missing important information is lower, but also the interpretations provided can be more comprehensive and generic.

Herein, as a part of ERP analysis package, a MATLAB function is dedicated to this purpose in which three different approaches for time/frequency analysis, namely Short-Time Fourier Transform (STFT), Continues Wavelet Transform (CWT) and Narrow-Band Channelization method (NBCH) as introduced in [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF], are implemented.

Theoretical concepts of each TFR method is out of scope of the current document, however, interested users can refer to [START_REF] Cohen | Time-frequency analysis[END_REF] for a detailed and comprehensive discussion on time/frequency analysis concepts and its techniques. Nevertheless, as a short description, in STFT, the TF map of each trial is calculated separately through Fourier Transform and averaged over all. Similarly, for CWT the scalogram displaying the squared and over-all-trials-averaged wavelet coefficients are used. Eventually, for NBCH, ERP maps are generated according to ERP behaviors within very narrow frequency bands.

The ERP maps are matrices, the rows of which correspond to frequency-specific ERP estimations.

The implemented function enables variable frequency range. The procedures utilized for all three TFR methods here are in accordance with [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF]. where the inputs and outputs are described later in Section 3. Fig. 5 is an elaboration of how how this function works. It is worth noting that the CWT produces similar results. Note that several benchmark studies such as [START_REF] Seraj | Improved detection rate in motor imagery based bci systems using combination of robust analytic phase and envelope features[END_REF], [START_REF] Seraj | An investigation on the utility and reliability of electroencephalogram phase signal upon interpreting cognitive responses in the brain: A critical discussion[END_REF], [START_REF] Karimzadeh | A distributed classification procedure for automatic sleep stage scoring based on instantaneous electroencephalogram phase and envelope features[END_REF] and [START_REF] Seraj | fmri based cerebral instantaneous parameters for automatic alzheimer's, mild cognitive impairment and healthy subject classification[END_REF] are research show-cases of the real-world applications how these TF analysis data can be put to use. For instance, as investigated and shown by [START_REF] Boostani | A comparative review on sleep stage classification methods in patients and healthy individuals[END_REF] and also [START_REF] Karimzadeh | A distributed classification procedure for automatic sleep stage scoring based on instantaneous electroencephalogram phase and envelope features[END_REF] and [START_REF] Karimzadeh | Presenting efficient features for automatic cap detection in sleep eeg signals[END_REF] inspecting the irregularities of the TF patterns through entropy quantities can be very informative regarding the underlaying motor-task [START_REF] Seraj | Improved detection rate in motor imagery based bci systems using combination of robust analytic phase and envelope features[END_REF], depth of sleep and Neurons activity rate [START_REF] Boostani | A comparative review on sleep stage classification methods in patients and healthy individuals[END_REF][START_REF] Karimzadeh | A distributed classification procedure for automatic sleep stage scoring based on instantaneous electroencephalogram phase and envelope features[END_REF], levels of Alzheimer's disease [START_REF] Seraj | Instantaneous fmri based cerebral parameters for automatic alzheimer, mild cognitive impairment and healthy subject classification[END_REF][START_REF] Seraj | fmri based cerebral instantaneous parameters for automatic alzheimer's, mild cognitive impairment and healthy subject classification[END_REF] and even the cognitive skills and their respective performances in subjects [START_REF] Karimzadeh | Sleep microstructure dynamics and neurocognitive performance in obstructive sleep apnea syndrome patients[END_REF][START_REF] Seraj | An investigation on the utility and reliability of electroencephalogram phase signal upon interpreting cognitive responses in the brain: A critical discussion[END_REF][START_REF] Seraj | Cerebral signal phase analysis toolbox-user guide[END_REF].

Figure 5: TF maps estimated through STFT and NBCH methods. Note that despite the visible differences, both methods show almost same interpretations (note the relative magnitudes), with respect to the trigger time (red dashed line).

Time-course Cortical Functional Connectivity

Time-course cortical functional connectivity is usually used to investigate the local-scale brain connectivity across different electrodes within same brain regions (i.e. primary motor cortex). To this end, Phase Locking Value (PLV) as the common quantity for this purpose [START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF][START_REF] Seraj | Cerebral synchrony assessment: A general review on cerebral signals' synchronization estimation concepts and methods[END_REF] are implemented, measuring both temporal dynamics of local-scale and heat-maps of large-scale functional connectivity. The details of each method is described below.

Phase-locking Value (PLV): PLV is a measure for quantifying how constant the phase difference between two signals is. In order to calculate the PLV in frequency f for two signals (or channels) x(t) and y(t), the following steps are required [START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF]:

• Using narrow-band filters centered at f , calculate the instantaneous frequency-specific phase values φ x (t, f ) and φ y (t, f ).

• Calculate the instantaneous phase-difference between x(t) and y(t) and quantify the local stability of this phase-difference over time as follows:

P LV (f ) = 1 T T t=1 exp (j[φ y (t, f ) -φ x (t, f )]) ( 1 
)
where T is the signal length and the summation is over all temporal samples of the instantaneous phases.

PLV varies between 0 and 1, corresponding to completely non-synchronized signals and complete synchronization, respectively [START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF]. In simple wolds, considering the difference between firing rates of neurons as phase difference between their electrical potentials, PLV measures how "connected " different neurons in far regions of brain are through quantifying the difference between their firing rates [START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF][START_REF] Seraj | Cerebral synchrony assessment: A general review on cerebral signals' synchronization estimation concepts and methods[END_REF].

One very important consideration is the phase estimation approach that one needs to take into account. For phase estimation in first step, the Transfer Function Perturbation (TFP) method introduced in [START_REF] Sameni | A robust statistical framework for instantaneous electroencephalogram phase and frequency estimation and analysis[END_REF] and [START_REF] Seraj | Robust electroencephalogram phase estimation with applications in brain-computer interface systems[END_REF] has been adopted. TFP is a statistical Monte-Carlo based phase estimation approach which uses infinitesimal perturbations on filter and other signal estimation parameters in order to account for stochastic properties of EEG signals. According to the discussion presented in Section 2.2.2, using TFP is specifically required due to presence of background EEG noise (which in this case cannot be rejected as simple). It has been shown in [START_REF] Sameni | A robust statistical framework for instantaneous electroencephalogram phase and frequency estimation and analysis[END_REF] and [START_REF] Seraj | Robust electroencephalogram phase estimation with applications in brain-computer interface systems[END_REF] that without using TFP, estimated phase of EEG may contain variations and spikes which do not have any physiological origins within brain or are not due to brain activity and are merely side-effects of estimation method. For this purpose, cerebral signal phase estimation toolbox [START_REF] Seraj | Cerebral signal phase analysis toolbox-user guide[END_REF] has been used.

In this toolbox, function TCPLV.m is provided for this purpose which first utilizes phase est. 

Pair-wise Cortical Functional Connectivity

Pair-wise cortical functional connectivity is usually used to investigate the large-scale brain connectivity across scalp (i.e. between different brain regions). To this end, the Magnitude Squared Coherence (MSC) and Phase Locking Value (PLV) as the common quantities for this purpose [START_REF] Carter | Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing[END_REF][START_REF] Sun | Measuring interregional functional connectivity using coherence and partial coherence analyses of fmri data[END_REF][START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF][START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF][START_REF] Seraj | Cerebral synchrony assessment: A general review on cerebral signals' synchronization estimation concepts and methods[END_REF] are implemented, measuring heat-maps of large-scale functional connectivity.

Magnitude Squared Coherence (MSC):

The conventional method presented in [START_REF] Carter | Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing[END_REF] for measuring coherence is based on weighted windowing of the Fourier transform of signals [START_REF] Seraj | Cerebral synchrony assessment: A general review on cerebral signals' synchronization estimation concepts and methods[END_REF]. Considering x(t) and y(t) as two channels of recorded EEG signals, MSC can be measured in frequency f as below:

|M SC(f )| 2 = |P SD xy (f )| 2 P SD xx (f )P SD yy (f ) = | N i=1 X i (f )Y * i (f )| 2 N i=1 |X i (f )| 2 N i=1 |Y i (f )| 2 (2) 
The MSC here, is calculated using a non-overlapping hamming window using FFT analysis for EEG, in a frequency range of interest for all trials, and then averaged across trials. The mean MSC then is analyzed within 1 second temporal windows covering -3 to -2, -2 to -1, -1 to 0, 0 to 1 and 1 to 2 seconds, with respect to 0 set as trigger time. MSC measures are calculated for all possible electrode combinations, resulting in N×N MSC maps (for N-channel EEG recording), representing the functional connectivity across the whole scalp. Similar to PLV, MSC varies between 0 to 1 [START_REF] Carter | Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing[END_REF][START_REF] Seraj | Cerebral synchrony assessment: A general review on cerebral signals' synchronization estimation concepts and methods[END_REF][START_REF] Groß | Dynamic imaging of coherent sources: studying neural interactions in the human brain[END_REF].

In where the inputs and outputs are described later in Section 3. This function also outputs figures 

EMG Quantification

The purpose of this section of toolbox is to estimate and quantify electromyogram (EMG) signals recorded from active muscles during performing motor tasks. The EMG quantification is a common practice within Neuroscience community in order to evaluate the work-load of brain (through EMG curve's immediate slope after movement onset) and also for the rehabilitation purposes (stronger muscles after brain stimulation or training). The basic steps for EMG quantification are as below [START_REF] Ricamato | Quantification of the dynamic properties of emg patterns during gait[END_REF]: The first step of this process, i.e. removing the ECG artifact, can be processed through several different simple or more complex approaches [START_REF] Willigenburg | Removing ecg contamination from emg recordings: A comparison of ica-based and other filtering procedures[END_REF]. High-pass frequency filters (HPF) [START_REF] Drake | Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques[END_REF], ECG subtraction through QRS-complex detection (FAS) [START_REF] Aminian | Filtering by adaptive sampling (fas)[END_REF], adaptive filtering (AF) approaches [START_REF] Abbaspour | Removing ecg artifact from the surface emg signal using adaptive subtraction technique[END_REF][START_REF] Nougarou | Efficient procedure to remove ecg from semg with limited deteriorations: Extraction, quasi-periodic detection and cancellation[END_REF], ICA based approaches [START_REF] Abbaspour | Ecg artifact removal from surface emg signal using an automated method based on wavelet-ica[END_REF][START_REF] Chen | Fastica peel-off for ecg interference removal from surface emg[END_REF] and also combined AF-ICA based methods [START_REF] Li | Ecg artifact removal from emg recordings using independent component analysis and adapted filter[END_REF]. Here in this toolbox however, we promise to stick with the simple and fast methods and thus, implement a modified high-pass frequency filtering approach not only to gain from the simplicity but to also improve the performance accuracy of removing ECG artifact from EMG signals. Accordingly, our modified ECG removal approach includes low-pass filter combined with median filtering (LPF+MF). HPF is normally used only to remove the major ECG frequency components which are restricted by the (1-30Hz) [START_REF] Akselrod | Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control[END_REF]. The main drawback of this approach is due to the fact that HPF will remove the frequency components of EMG too [START_REF] Akselrod | Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control[END_REF]. Nevertheless, to overcome this limitation, we implemented and used a LPF+MF to first detect the ECG signal (instead of blindly removing its components) and then perform a temporal subtraction. To this end, first we track the major ECG frequency components (1-30Hz) with a fourth order (can be modified within function parameters) elliptic IIR low-pass filter with pass-band ripple and stop-band attenuations of 0.1dB and -50dB, respectively. As before, the filtering is processed in a forward-backward zero-phase manner to avoid any phase distortion due to non-linear phase response of IIR filters. Afterwards, a median temporal filter with small window-length is used to estimate and extract the ECG patterns more accurately [START_REF] Ricamato | Quantification of the dynamic properties of emg patterns during gait[END_REF][START_REF] Akselrod | Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control[END_REF][START_REF] Barlaam | Time-frequency and erp analyses of eeg to characterize anticipatory postural adjustments in a bimanual load-lifting task[END_REF][START_REF] Krigolson | Event-related brain potentials and the study of reward processing: Methodological considerations[END_REF].

•
In this toolbox, function emg quantification.m is provided for this purpose which first utilizes MATLAB's internal ellip function to generate an elliptic IIR filter and then uses BaseLine2.m function twice; first to track and remove the ECG components and then to quantify the EMG signal as described before. where the inputs and outputs are described later in Section 3. thresholding method [START_REF] Cavanagh | Electromechanical delay in human skeletal muscle under concentric and eccentric contractions[END_REF] which later on has been modified into double-threshold methods [START_REF] Bonato | A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait[END_REF][START_REF] Drapa La | Two stage emg onset detection method[END_REF].

Although there are several complex highly sensitive methods for onset detection, their utility really depends on users' application of interest and thus to reduce computational cost, here we designed and implemented a simple two-stage thresholding method which is highly reliable for ERP application. The proposed two-stage thresholding method is basically formed based on double-thresholding framework (which includes three steps) [START_REF] Bonato | A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait[END_REF][START_REF] Drapa La | Two stage emg onset detection method[END_REF]. The three steps are (1) signal conditioning (which is done in preprocessing phase), (2) detection of an event (performed by calculating a windowed standard deviation over time, named as STD vector) and ( 3) exact detection of the movement time (performed by using a threshold on STD vector's temporal trend). As reported previously in [START_REF] Bonato | A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait[END_REF] and [START_REF] Drapa La | Two stage emg onset detection method[END_REF], moving temporal filtering and thresholding methods are very common and could be satisfactory based on application requirements. Additionally, according to discussions in [START_REF] Bonato | A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait[END_REF] and [START_REF] Drapa La | Two stage emg onset detection method[END_REF], parameters and thresholds in such approaches need to be set empirically based on the data and application.

In this toolbox, function emg onset.m is provided for this purpose which follows the exact procedure as described above. To operate this function you can use the demo m-file test EMGanalysis main.m or simply call function below with proper input parameters:

[onset sampl, onset time] = emg onset(emg, fs, W, th coeff, Trl)

where the inputs and outputs are described later in Section 3. Fig 12 is an elaboration of how this function works. It worth noting that, although the implemented procedure is not as sensitive as complex new methods, it still satisfies our requirements for the application of ERP analysis [START_REF] Barlaam | Time-frequency and erp analyses of eeg to characterize anticipatory postural adjustments in a bimanual load-lifting task[END_REF][START_REF] Krigolson | Event-related brain potentials and the study of reward processing: Methodological considerations[END_REF]. This is due to the fact that ERP is calculated by averaging over a large number of trials and thus here we are interested in intra-trial variations and information rather than inter-trial ones. Purpose: Reading EEG/EMG signal from bdf files, preprocessing and conditioning.

Synopsis (global mode):

[eeg data, emg data, fs] = bdf2mat main(trl num, elec num, emg ch, eeg ch, filename)

Synopsis (local mode):

[eeg data, emg data, fs, emg onset sampl, emg onset time] = bdf2mat main(trl num, elec num, emg ch, eeg ch, filename, drift flag, onset flag) Notes:

Inputs
• An empty bracket [.] Must be assigned to not-specified values.

• EMG and EEG channels of interest have to be a doubles (i.e. either an integer or a vector of indices).

• filename needs to be defined in a way that trl num can be used as an index to track and load all of the stored data. For instance, data file names may be defined as filename i where i = 1, 2, ..., N in which N represents the total number of data files. Refer to our sample data included in this toolbox to see another example of this, if needed.

• One should expect the emg onset sampl and emg onset time within output arguments in case they flagged the onset detection as 1 within input. • An empty bracket [.] Must be assigned to not-specified values.

• The provided function 'bdf2mat main.m' outputs the compatible EEG/EMG data for this function; however, you can simply store your data in a cell array in which each element includes one data trial(s) of interest.

• The output argument 'ensemble eeg' is an essential variable to be used within the provided function 'trigger avg erp.m' and thus you can simply replace it with ~symbol if using this function independently.

• One should expect the synch emg (e.g. synchronized EMG data) within output arguments in case they inputed EMG data.

trigger avg erp.m trigger avg erp.m

Purpose: Trigger-averaged ERP time-course estimation function to extract the temporal dynamics of event-related potentials.

Synopsis (global mode):

[erp, synch eeg, trigger time sec, time vec] = trigger avg erp(eeg, fs, freq band, onset time) • An empty bracket [.] Must be assigned to not-specified values.

Synopsis
• Available options for freq band are: 'delta', 'theta', 'alpha', 'beta' or 'gamma' where are defined in ranges 1-4(Hz), 4-8(Hz), 8-12(Hz), 12-32(Hz) and 32-80Hz, respectively. In case you need to change these ranges, open up the function script and change f0 and bw values for the band you wish to alter (i.e. lines 105 to 115). Note that f0 and bw are center and bandwidth of the frequency range, respectively.

• The provided function 'bdf2mat main.m' outputs the compatible EEG/EMG data for this function; however, you can simply store your data in a cell array in which each element includes one data trial(s) of interest.

• One should expect the synch emg (e.g. synchronized EMG data) within output arguments in case they inputed EMG data. • An empty bracket [.] Must be assigned to not-specified values.

• Reference period variable 'ref per' have to be a double vector in [-a, -b] form where -a and -b are the edges of reference segment in Seconds. Minus sign shows that this period belongs to before movement onset (i.e. trigger time).

• erd area and ers area are stored in a variable-size cell array the size of which depend on the duration of ERP signal after movement onset. For instance, in figure 4 there are 2 ERD events and only one ERS event detected. As a results, the corresponding area cell arrays will be of size 1×2 and 1×1, respectively. • An empty bracket [.] Must be assigned to not-specified values.

• freq rng has to be in [a, b] form double vector where 'a' and 'b' are edges of the frequency band of interest in Hz.

• duration has to be in [-a, b] form double vector where 'a' is the required duration (Seconds) prior to movement onset and 'b' is the required duration (Seconds) after the movement onset.

The specified duration will be segmented into 1-sec-long windows to calculate PLV. Refer to Section 2.2.5 for more details.

• pairofint can either be a double vector or 'all' string. As a double vector it has to be in [a, b] Output Description pwplv estimated pairwise phase locking value (PLV) between all possible electrode pairs Notes:

• An empty bracket [.] Must be assigned to not-specified values.

• freq rng has to be in [a, b] form double vector where 'a' and 'b' are edges of the frequency band of interest in Hz.

• duration has to be in [-a, b] form double vector where 'a' is the required duration (Seconds) prior to movement onset and 'b' is the required duration (Seconds) after the movement onset.

The specified duration will be segmented into 1-sec-long windows to calculate PLV. Refer to Section 2.2.5 for more details. Output Description pwcoher estimated pairwise magnitude squared coherence (MSC) between all possible electrode pairs Georgia Tech Notes:

• An empty bracket [.] Must be assigned to not-specified values.

• freq rng has to be in [a, b] form double vector where 'a' and 'b' are edges of the frequency band of interest in Hz.

• duration has to be in [-a, b] form double vector where 'a' is the required duration (Seconds) prior to movement onset and 'b' is the required duration (Seconds) after the movement onset.

The specified duration will be segmented into 1-sec-long windows to calculate PLV. Refer to Section 2.2.5 for more details.

• This function utilizes all of the electrodes (i.e. not just motor cortex electrode C3) and all possible combinations to calculate MSC values and generate connectivity maps. Refer to Section 2.2.6 for more details.

3.9 emg quantification.m emg quantification.m

Purpose: EMG signal analysis and quantification.

Synopsis (global mode):

[emg quant, synch emg2, ecg estimate2 bl, time vec] = emg quantification(emg data, fs, emg onset sampl)

Synopsis (local mode):

[emg quant, synch emg2, ecg estimate2 bl, time vec] = emg quantification(emg data, fs, emg onset sampl, duration)

Inputs: • th coeff is a coefficient that will be multiplied by the standard deviation of the EMG baseline and by default is set to 1 so that the estimation threshold will be equal to one-standard-deviation of baseline (i.e. 1×STD{emg}).

Input
• An empty bracket [.] Must be assigned to not-specified values.

3.12 phase est.m phase est.m

Purpose: Instantaneous phase estimation by the Transfer Function Perturbation (TFP) method [START_REF] Sameni | A robust statistical framework for instantaneous electroencephalogram phase and frequency estimation and analysis[END_REF][START_REF] Seraj | Robust electroencephalogram phase estimation with applications in brain-computer interface systems[END_REF][START_REF] Seraj | Cerebral signal phase analysis toolbox-user guide[END_REF].

Synopsis (global mode):

[phase avg, freq avg, amp avg, analytic sig avg] = phase est(sig, fs, f0, bw base)

Synopsis (local mode):

[phase avg, freq avg, amp avg, analytic sig avg] = phase est(sig, fs, f0, bw base, pertnum)

Inputs:

Input Description sig input raw signal fs sampling frequency (Hz) f0 center frequency of the passband (Hz) bw base bandwidth of the frequency filter (Hz) pertnum number of perturbations while using the TFP phase estimation method Defaults:

Input

Default Values pertnum 100

Outputs:

Output Description phase avg estimated instantaneous phase of input signal freq avg estimated instantaneous frequency of input signal amp avg estimated instantaneous envelope of input signal analytic sig avg generated analytic form of input signal Notes:

• pertnum is by default set to 100, however the value mostly depends on the application and also the required level of reliability. Nevertheless, 100 has been tested in several applications before and is considered enough [START_REF] Seraj | Robust electroencephalogram phase estimation with applications in brain-computer interface systems[END_REF][START_REF] Karimzadeh | A distributed classification procedure for automatic sleep stage scoring based on instantaneous electroencephalogram phase and envelope features[END_REF][START_REF] Seraj | Improved detection rate in motor imagery based bci systems using combination of robust analytic phase and envelope features[END_REF][START_REF] Seraj | An investigation on the utility and reliability of electroencephalogram phase signal upon interpreting cognitive responses in the brain: A critical discussion[END_REF].

• TFP perturbation parameters are set according to the findings of [START_REF] Sameni | A robust statistical framework for instantaneous electroencephalogram phase and frequency estimation and analysis[END_REF] and are chosen in a way that are physiologically irrelevant. In case one needs to change these values due to different application specs, refer to lines 83 to 88 of code.

• An empty bracket [.] Must be assigned to not-specified values.

3.13 PLV PhaseSeq.m PLV PhaseSeq.m

Purpose: Calculating Phase Locking Value (PLV) matrix (Pairwise PLV) using phase sequences [START_REF] Seraj | Cerebral signal phase analysis toolbox-user guide[END_REF].

Synopsis:

PLV = PLV PhaseSeq(phase sig) PLV = PLV PhaseSeq(phase sig1, phase sig2, phase sig3, ...)

Inputs:

Input Description phase sig input phase matrix phase sig1 input phase vector #1 phase sig2 input phase vector #2 

Original 5

 5 trigger avg TF erp.m trigger averaged ERP time/frequency representation Original 6 erp quantification.m quantifying the area of ERD/ERS events Original 7 TCPLV.m time-course PLV estimation function for a pair of electrodes Original 8 forward-backward zero-phase CIC filtering function OSET [12] 20 task separator.m task based data separation to avoid memory overuse Original 21 eeg read bdf.m

Figure 1 :

 1 Figure 1: The effect of drift (base line wander) on ERP analysis. (a) and (b) examples of trials with drifts. (c) estimated ERP in each case. This figure is adopted from [2].

Figure 2 :

 2 Figure2: Two sample EMG (left) and EEG (right) from provided sample dataset before and after removing the drift artifact as described in[START_REF] Handy | Event-related potentials: A methods handbook[END_REF][START_REF] Repovs | Dealing with noise in eeg recording and data analysis[END_REF][START_REF] Nitschke | Digital filtering in eeg/erp analysis: Some technical and empirical comparisons[END_REF] 

Fig. 3

 3 is an elaboration of how how this function works. Moreover, function erp quantification.m is provided to quantify the calculated ERP signal as the output of trigger avg erp.m according to the exact procedure described above. To operate this function you can simply call function below with proper input parameters: [erd area, ers area, quant erp] = erp quantification(erp, fs, trigger time sec, ref per, cof intv)where the inputs and outputs are described later in Section 3. Fig.4is an elaboration of how how this function works.

Figure 3 :

 3 Figure 3: Time courses of trigger averaged ERP curves, related to alpha and beta bands.

Figure 4 :

 4 Figure 4: Procedure for quantifying the area of ERD/ERS Events. Note that the confidence interval lines are plotted with exaggeration for better representation and are not in scale.

  m function to estimate the instantaneous phase (IP) sequence of input signals through introduced TFP method and then uses PLV PhaseSeq.m function to quantify the phase difference between calculated IPs. Function TCPLV.m measures time-course PLV for 1sec time-steps either between two specified electrode channels or between one important channel and all other channels (resulting in a heat-map across scalp). As recent examples of using such framework and implementation (timecourse PLV) we can mention[START_REF] Seraj | Robust electroencephalogram phase estimation with applications in brain-computer interface systems[END_REF][START_REF] Karimzadeh | A distributed classification procedure for automatic sleep stage scoring based on instantaneous electroencephalogram phase and envelope features[END_REF][START_REF] Seraj | Improved detection rate in motor imagery based bci systems using combination of robust analytic phase and envelope features[END_REF]. To operate this function you can use the demo m-file test connectivity main.m or simply call function below with proper input parameters: tcplv = TCPLV(eeg, fs, freq rng, pairofint, emg onset sampl, duration, pertnum)where the inputs and outputs are described later in Section 3. Figures 6, 7 and 8 are elaborations of how this function works in either of aforementioned cases. Read the figure captions for more details.

Figure 6 :

 6 Figure 6: C3-F3 PLV time-course dynamics for three different motor tasks in a clinical experiment measured for 7-13Hz, 8-12Hz and 13-30Hz rhythms from left to right respectively, within 1 second intervals. Movement onset is around 3.5sec.

Figure 7 :

 7 Figure 7: Electrode placements for time-course PLV maps between C3 and all other EEG channels.

Figure 8 :

 8 Figure 8: Normalized time-course PLV maps between C3 and all other electrodes for beta rhythms (13-30Hz) for 1 second time bins from -3 prior to 2 seconds after the movement onset.

Figure 9 :

 9 Figure 9: MSC maps within 1 second time steps for an upper-body limb movement task.

  Removing Electrocardiogram (ECG) artifacts from EMG signals of each trial • Form the full-rectified signal from the remaining EMG signal of each trial • Trigger-average the rectified signals across trials • Extract the trend of the averaged signal as the quantified EMG

  Fig 10 is an elaboration of how this function works. Performance of simple HPF is also shown for comparison and elaborating the reliability of the propose approach (i.e. LPF+MF). Maximum magnitude (muscle activation strength), activation slope (muscle activation speed) and immediate activation slope after movement onset (muscle-brain work load) are some potentially important information captured from quantified EMG through our provided function. See Fig 11 for graphical elaboration of these concepts.

Figure 10 :

 10 Figure 10: The aforementioned procedure suggested to extract the ECG patterns from EMG signal. Note the final blue curve as the extracted ECG signal. The blue curve is then subtracted from the red one to form the ECG-free EMG signal.

Figure 11 :

 11 Figure 11: Quantified EMG curves over 50 trials of two different tasks. Note the represented important parameters derived from quantified EMG.

Figure 12 :

 12 Figure 12: The implemented EMG movement onset detection procedure.

  

Table 1 :

 1 Essential Motor Cortex Signal Analysis m-files

	.

  The function trigger avg TF erp.m is provided for this purpose which utilizes trigger synch.m function to synchronize cerebral signals according to their trigger time and BPFilter5.m function to perform the aforementioned CIC filtering for NBCH method. Moreover, for STFT and CWT methods, MATLAB's inner spectrogram and cwt functions are used. To operate this function you can use the demo m-file test ERPanalysis main.m or simply call function below with proper input parameters:

[erp tf, synch eeg, synch emg, trigger time sec, freq vec, time vec] = trigger avg TF erp(eeg, emg, fs, emg onset sampl, duration, method)

  To operate this function you can use the demo m-file test EMGanalysis main.m or simply call function below with proper input parameters:

	[emg bl, synch emg2, ecg estimate2 bl, time vec] = emg quantification(emg data, fs,
	emg onset sampl, duration)

  :

	Input	Description
	trl num	number of trials
	elec num	number of electrodes used to record EEG
	emg ch	EMG channel of interest
	eeg ch	scalar or double vector of EEG channels of interest
	filename	file name format as a string
	drift flag baseline drift rejection flag, (options:'drift', 'nodrift')
	onset flag onset detection flag, (options: 1, 0)
	Defaults:	
		Input	Default Values
		drift flag	'drift'
		onset flag	1
	Outputs:	
	Output	Description
	eeg data	preprocessed EEGs of the selected channel from all trials
	emg data	preprocessed EMGs of the selected channel from all trials
	fs	sampling frequency (Hz)
	emg onset sampl sample number of the movement onset
	emg onset time	corresponding time of movement onset (Seconds)

  [ensemble eeg, synch eeg, trigger time sec, time vec, synch emg] = trigger synch(eeg, fs, onset time, duration, emg)

	Synopsis (local mode):	
	Inputs:	
	Input	Description
	eeg	cell array containing EEG channels of interest from all trials
	fs	sampling frequency (Hz)
	onset time vector of onset times (Seconds)
	duration	required signal duration after movement onset (Seconds)
	emg	cell array containing EMG channels of interest from all trials
	Defaults:	
			Input	Default Values
			duration	2
			emg	{.}
	Outputs:	
	Output		Description
	ensemble eeg	ensembles of EEG trials in a matrix
	synch eeg		synchronized EEG signals based on trigger time
	trigger time sec trigger onset flag (Seconds)
	time vec		time vector required for ERP plots
	synch emg		synchronized EMG signals based on trigger time
	Notes:	
	3.2 trigger synch.m
	trigger synch.m	
	Purpose: Synchronizing EEG/EMG signals according to movement onset time.
	Synopsis (global mode):
	[ensemble eeg, synch eeg, trigger time sec, time vec] = trigger synch(eeg, fs,
			onset time)

  Purpose: Trigger-averaged ERP T/F representation to track the time-frequency dynamics of eventrelated potentials. The provided function 'bdf2mat main.m' outputs the compatible EEG/EMG data for this function; however, you can simply store your data in a cell array in which each element includes one data trial(s) of interest.• One should expect the synch emg (e.g. synchronized EMG data) within output arguments in case they inputed EMG data.

	3.4 trigger avg TF erp.m
	trigger avg TF erp.m
	Synopsis (global mode): [erp tf, synch eeg, trigger time sec, time vec, freq vec] = trigger avg TF erp(eeg, fs, onset time) Synopsis (local mode): [erp tf, synch eeg, trigger time sec, time vec, freq vec, synch emg] = trigger avg TF erp(eeg, fs, onset time, duration, method, emg) Inputs: Input Description eeg cell array containing EEG channels of interest from all trials fs sampling frequency (Hz) onset time vector of onset times (Seconds) duration required signal duration after movement onset (Seconds) method method for T/F representation, (options: 'STFT', 'CWT', 'NBCH') emg cell array containing EMG channels of interest from all trials Defaults: Input Default Values duration 2 method 'STFT' emg {.} Outputs: Output Description erp tf estimated ERP time-frequency map synch eeg synchronized eeg signals based on trigger time trigger time sec trigger onset flag (Seconds) time vec time vector required for ERP plots freq vec frequency vector required for ERP map plots synch emg synchronized emg signals based on trigger time Notes: • An empty bracket [.] Must be assigned to not-specified values. erp quantification.m Purpose: ERP area (ERD and ERS events' area) quantification. Synopsis (global mode): [erd area, ers area, quant erp] = erp quantification(erp, fs, trigger time) Synopsis (local mode): [erd area, ers area, quant erp] = erp quantification(erp, fs, trigger time, ref per, cof intv) Inputs: Input Description erp vector of estimated ERP signal fs sampling frequency (Hz) trigger time trigger onset flag (Seconds) ref per vector of reference period (refer to Notes below) cof intv confidence interval coefficient Defaults: Input Default Values ref per [-1.3, -0.3] Seconds cof intv 3 Outputs: Output Description erd area ERD events area ers area ERS events area quant erp ERP with quantified magnitude • 3.5 erp quantification.m Notes:

  Purpose: PLV temporal dynamics estimated within 1 Second time-steps for any arbitrary time range before and after movement onset.

	3.6 TCPLV.m
	TCPLV.m	
	Synopsis (global mode):
			tcplv = TCPLV(eeg, fs, onset time)
	Synopsis (local mode):
	tcplv = TCPLV(eeg, fs, onset time, freq rng, duration, pairofint, pertnum)
	Inputs:	
	Input	Description
	eeg		cell array containing eeg channels of interest from all trials
	fs		sampling frequency (Hz)
	onset time vector of onset times (Seconds)
	freq rng	frequency range of interest (Hz)
	duration	required temporal duration for tracking PLV dynamics (Seconds)
	pairofint channel pair of interest for PLV time-course
	pertnum	number of perturbations while using the TFS phase estimation method
	Defaults:	
			Input	Default Values
			freq rng	[12, 32] (Hz)
			duration	[-3, 2] (Seconds)
			pairofint	'all'
			pertnum	100
	Outputs:	
	Output Description
	tcplv	estimated time-course phase locking value (PLV) dynamics between eeg pairs of interest
	Notes:	

  form resulting in PLV measures between electrode number a and electrode number b. Moreover, if you use 'all', a PLV map will be calculated between C3 electrode and all other electrodes to cover large-scale functional connectivity dynamics between motor cortex and other brain regions. In this case, C3 is chosen as the default electrode; however, if you wish to change this for your data, open up the script, scroll to line 143 of code and change the value 6 to you electrode number of interest.Purpose: Pair-wise Phase-Locking Value (PLV) dynamics estimated within 1-Second time-steps for any arbitrary time range and all electrode pairs.

	3.7 PWPLV.m	
	PWPLV.m	
	Synopsis (global mode):
		pwplv = PWPLV(eeg, fs, onset time)
	Synopsis (local mode):
	pwplv = PWPLV(eeg, fs, onset time, freq rng, duration, pertnum, plot flag)
	Inputs:	
	Input	Description
	eeg	cell array containing eeg channels of interest from all trials
	fs	sampling frequency (Hz)
	onset time vector of onset times (Seconds)
	freq rng	frequency range of interest (Hz)
	duration	required temporal duration for tracking PLV dynamics (Seconds)
	pertnum	number of perturbations while using the TFS phase estimation method
	plot flag	flag to visualize the results or not (options: 'plot', 'noplot')
	Defaults:	
		Input	Default Values
		freq rng	[12, 32] (Hz)
		duration [-3, 2] (Seconds)
		pertnum	100
		plot flag	'plot'
	Outputs:	
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Notes:

• While using the first case, the phase sig have to be a matrix with at least two rows where each row represents a phase signal. In second case, each of the phase sig1...phase sign are row vectors of phase sequences. This option is provided in case that someone needs to calculate the PLV matrix between separate phase signals.

3.14 sig trend.m sig trend.m

Purpose: Calculating the trend of a signal using local minima.

Synopsis: