Frank Vega
email: vega.frank@gmail.com

The Complexity of Class L

Keywords: complexity classes, logarithmic space, maximum, polylogarithmic time

A major complexity classes are L and P OLY LOGT IM E

1.Objectives

We prove the complexity class L is not contained into the another class P OLY LOGT IM E.

2.Methods

The lower bound in finding a maximum into a collection with n positive integers is within n -1 comparisons [START_REF] Cormen | Introduction to Algorithms[END_REF]. When the size of the input is polynomially bounded by n, then there are variants of this problem which cannot be solved by a random access machine in poly-logarithmic time.

3.Findings

We show a problem LOG-MAXIMUM that should be solved with no less than n comparisons. The value n is exponential in relation to the logarithmic size of the instances of LOG-MAXIMUM. Consequently, this cannot be solved by a random access machine in poly-logarithmic time. However, LOG-MAXIMUM can be solved in logarithmic space. This work solves one of the problems which remained open from several decades, that is L versus P OLY LOGT IM E. Whether L = P is another fundamental question that it is as important as it is unresolved [START_REF] Papadimitriou | Computational Complexity[END_REF]. All efforts to solve the L versus P problem have failed [START_REF] Papadimitriou | Computational Complexity[END_REF]. We hope these results might help us to solve this interesting problem in the near future.

4.Application

Now, we know we cannot always solve every problem that has a logarithmic space algorithm by another algorithm in poly-logarithmic time.

5.Results

How many comparisons are necessary to determine the maximum of a collection of n elements? We can easily obtain an upper bound of n -1 comparisons: examine each element of the set in turn and keep track of the biggest element seen so far [START_REF] Cormen | Introduction to Algorithms[END_REF]. In the following procedure, we assume that the collection resides in an array A, where length[A] = n [START_REF] Cormen | Introduction to Algorithms[END_REF]. return max 13: end procedure Is this the best we can do? Yes, since we can obtain a lower bound of n -1 comparisons for the problem of determining the maximum [START_REF] Cormen | Introduction to Algorithms[END_REF]. Definition 1: LOG-MAXIMUM INSTANCE: A natural number n, a positive integer x represented as a binary string of bit-length log n and an array A of n positive integers not necessarily distinct such that if y = A[i] for some 1 ≤ i ≤ n, then y is represented as a binary string of bit-length log n . For example, for x = 3 and n = 32, then x is represented as a binary string of bitlength 5 = log n as follows 00011: Note that the bit-length of 00011 is equal to 5. QUESTION: Is x the maximum number in A? Definition 2: We define [. . .] as the function that counts the number of bits of any binary string. Note if there is a comma separator or a blank symbol that separates some binary strings, then these symbols are not taking into account in the function [. . .]. Theorem 1: LOG-MAXIMUM / ∈ P OLY LOGT IM E. Proof: We need to compare the bit-length of the binary string representation of x and the elements of A with log n . The total amount is n + 1 comparisons. In general, the number of comparisons that should do every algorithm which decides the language LOG-MAXIMUM is greater than n -1 even though there could exist a possibility where the verification of the bit-length binary representation might be avoided. The reason is because we need to check that x is the maximum in the array A of n positive integers. Indeed, how many comparisons are necessary to determine whether a positive integer x is the maximum of an array of n positive integers? We can easily obtain an upper bound of n comparisons: examine each element of the array in turn and keep track of the biggest element seen so far and finally, we compare the ultimate result with x. In the following procedure, we describe a simple algorithm that uses the previous Algorithm 1. end if 25: end procedure

Algorithm 1 M AXIM U M 's Polynomial
We can obtain a lower bound of n -1 comparisons for the problem of determining the maximum and one another comparison to check whether this is equal to x [START_REF] Cormen | Introduction to Algorithms[END_REF]. Is this the best amount of comparisons we can do? Yes, think of any algorithm that determines the maximum as a tournament among the elements [START_REF] Cormen | Introduction to Algorithms[END_REF]. Each comparison is a match in the tournament in which the bigger of the two elements wins [START_REF] Cormen | Introduction to Algorithms[END_REF]. The key observation is that every element except the winner must lose at least one match [START_REF] Cormen | Introduction to Algorithms[END_REF]. Finally, we compare the winner with x [START_REF] Cormen | Introduction to Algorithms[END_REF]. Hence, n comparisons are necessary to determine whether x is the maximum of the array of positive integers, and the algorithm LOG-MAXIMUM is optimal with respect to the number of comparisons performed to find the maximum [START_REF] Cormen | Introduction to Algorithms[END_REF]. Consequently, LOG-MAXIMUM cannot be decided in less than n steps, where n is the natural number of the input. Actually, if we sum the total amount of comparisons in the Algorithm 2, then this is equal to 2 × n + 1. If the instance (n, x, A) belongs to LOG-MAXIMUM, then the bit-length of the binary representation of (n, x, A) is polynomially bounded by log n × (n + 2) since [n] ≤ log n , [x] = log n and [A] = log n × n because the array A contains n elements represented by binary strings of bit-length log n . As we see above, we should use no less than n comparisons to know whether the instance (n, x, A) is an element of LOG-MAXIMUM. Hence, we cannot always accept every instance (n, x, A) of LOG-MAXIMUM in time O(log k [n, x, A]) by a random access machine for some fixed constant k > 0 that we could choose. The reason is because there is not a fixed constant k > 0 such that log k [n, x, A] ≥ n for every value of n, where n is the natural number of the input. Certainly, [n, x, A] ≤ log n × (n + 2), and thus log[n, x, A] ≤ log(log n ×(n+2)) ≤ 4× log n . However, n is exponentially greater than 4 × log n , therefore there is not a fixed constant k > 0 such that (4 × log n) k ≥ n for every value of the natural number n. Theorem 2: LOG-MAXIMUM ∈ L. Proof: Given a selected instance of the language LOG-MAXIMUM, we are going to demonstrate we can decide it in logarithmic space. In the following Algorithm 3, we assume the function [. . .] calculates the bit-length of a binary string in logarithmic space. Is this a logarithmic space algorithm? Yes, since we compare the value of the functions [x] and [A[i]] (the i th element of A) using a logarithmic space. Indeed, the calculated bit-length of x and A[i] only uses at most logarithmic space. Certainly, in the comparison from the bit-length of A[i] and x with log n we halt and reject immediately when [A[i]] or [x] exceeds log n at least in one digit and thus, we do not need to calculate completely the values of [A[i]] or [x] to reject. In this way, we just keep at most logarithmic space in the calculation of [A[i]] and [x]. Finally, since both bit-lengths are equal, then we compare the elements A[i] and x bit by bit. For this purpose, we compare only two bits in the input tape over the same position j from x and A[i] in a descending order for each step. Note, that we start to compare from the last bit position in a descending order. For example, in the binary string 100 which represents the number 4 with bit-length 3, we start iterating from the last bit element, that is the bit 1. Moreover, we store the position j in the work tapes and this value has at most logarithmic space. In addition, we also store the position i in the work tapes which contains at most logarithmic space in its binary representation. If it would be the case that A[i] is greater than x, then we reject. We continue the iteration with the next value i while the property that x is the maximum number in the array remains as true. However, we only accept when the value of the variable answer is "yes" when initially has the value of "no" by default. The value will be "yes" in the variable answer after the whole iteration for each element in the array if and only if there is at least one element A[i] that is equal to x. Furthermore, if the iteration is completed until the last item, then x is greater than or equal to every element in the array A. To sum up, we return "no" 6:

Algorithm 2

 2 LOG-MAXIMUM's Polynomial Time algorithm 1: procedure LOG-MAXIMUM(n, x, A) 2: /*Compare the bit-length of x with log n *for the elements of the array*/ 8: for i ← 1 to n do 9: /*When the element A[i] bit-length is different of log n */ 10: if [A[i]] = log n then the maximum element of A*/ 16: max ← M AXIM U M (A) 17: /*If the number x is equal to the maximum of the array

Algorithm 3

 3 LOG-MAXIMUM's Logarithmic space algorithm 1: procedure LOG-MAXIMUM(n, x, A) 2:/*Compare the bit-length of x with log n *

/*Compare the bit in the position j of x with the bit in the position j of return answer 41: end procedure show we can decide whether x is the maximum of the array A in logarithmic space and thus, LOG-MAXIMUM ∈ L. Theorem 3: L P OLY LOGT IM E.

Proof: The single existence of a problem in L that is not in P OLY LOGT IM E is sufficient to show L P OLY LOGT IM E. Hence, this is a consequence of Theorems 1 and 2.